湖北神农架近2000年来的石笋气候记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近2000年来气候变化的研究,对于认识未来气候变化有重要的意义。作者从神农架犀牛洞采到两根分别长255mm(NO.SN)和212mm(NO.BFl)的石笋。基于16个~(230)Th年龄、1187个氧碳同位素数据分析和显微岩相研究,首次建立了神农架高海拔地区近2000年气候演化序列,通过与历史记录、湖泊沉积、孢粉资料对比分析了东亚季风区不同地区气候演化的相似性和差异性。并初步探讨了气候驱动机制问题。
     石笋SN通过9个~(230)Th年龄的多项式拟合建立年代序列,利用清晰可数年层段检验表明,除底部(>196mm)外其它时段基本吻合;BF1结合~(230)Th年龄和年层计数法定年,年层计数结果表明定年在测年误差范围之内。两根石笋氧同位素曲线交叉检验表明建立的时间标尺具有较高精度。
     结合相邻地区大气降水氧同位素组成与温度的关系,分析得出石笋δ~(18)O与温度(T)呈明显的负相关性(dδ~(18)O/T≈-0.64‰/℃)。过去2000年中神农架温度最大变幅约为3.5℃,可细分7个百年尺度以上的冷暖旋回。其中,中世纪暖期呈现两峰夹一谷变化,小冰期划分为5个冷谷4个暖锋。与中国东亚季风区各种温度记录对比表明,东汉时期是一较暖的时期,但冷暖程度不同;中世纪暖期大致从南往北时间跨度越短,中部地区没有东部明显;神农架小冰期开始时间(1480aAD)晚于其它记录(1420aAD),都显示了持续的降温过程。
     石笋纹层厚度和灰度曲线比较清晰地揭示了本区过去2000年降水演化过程,可划分7个干湿旋回。与其它地区干湿记录对比显示,长期变化趋势具有较好的对比性。1100aAD前各记录都显示高降水特征,变幅较大,1100aAD后相对较低,振幅小。由于各记录的分辨率不同,细节对比上稍有差别,也反映了区域性特征。相同时段氧同位素与纹层厚度、灰度对比表明,过去2000多年主要是暖湿、干冷的气候组合方式,但在气候转型期温度、降水并没有完全表现同步变化,体现干暖、冷湿组合。
     受洞穴岩溶系统影响,两根石笋碳同位素变化不完全一致。通过与氧同位素、纹层和灰度指标对比表明,14世纪以前在气候控制下地表植被变化不大,主要以C_3型植被为主,植被变化略滞后于气候变化。15世纪初开始洞穴上覆土壤带植被可能受人类活动影响有逐步退化趋势。结合孢粉资料分析,在冷暖气候变化中本区植被类型变化不大,以落叶阔叶木本植被为主,草本植被为辅。
     近2000年中17次太阳活动和1400aAD以来29次火山活动对气候变化影响的印迹在石笋氧同位素中都有明显的记录,表明气候事件与太阳活动、火山活动有较好的相关性。石笋各代用指标谱分析显示126a、100a、81a、60a、40a、22a、11a等周期成分,也进一步支持了太阳活动对季风区短尺度气候变化的驱动作用。
To predict the evolution of climate in the future, it is important to explore and analyze the processes and mechanism of the climate system over the past 2000 years. Here the author uses two stalagmites (NO. SN with 255mm and BF1 with 212mm in height) from Xiniu Cave, Shennongjia to investigate a decadal-century scale climatic changes of East Asian monsoon covering the most part of the last two millenary. Based on 16 230Th dating ages and 1187 data of stable isotopic compositions as well as annual laminated sequences of the stalagmites, the author firstly presents the climate records of the past 2000 years in Shennongjia region. By comparing the stalagmite record with historical records, lake sediments and pollen data, the author analyzes comparability and differences of climate change in East Asia monsoon area and preliminarily investigates driven forces of climate change.
    A time scale of the sample SN has been reconstructed by a polynomial fitting with 9 dated ages and further tested by annual band counting results. In general, the fitting polynomial line is consistent with the annual band growth rate except for that the bottom part of the stalagmite (a height between 196 to 255mm from the top). However, a time scale of the sample BF1 has been established by the annual band counting chronology bracketed with 7 Th-230 dates. The two chronologies from the different age-determination for the two stalagmites agree well in an
    uncertain of 30 years if using the same 18O signals as tie points.
    A linear regression between 18O of precipitation and in situ temperature in the adjacent regions shows that a temperature-dependent 18O gradient coefficient is d18O/T=0.64%/ C. Using the gradient coefficient, the author estimated that there is the maximum amplitude of 3.5 C in temperature over the past 2000 years in shennongjia region. The 18O proxy climatic time series can be divided into seven cold/warm cycles. The 18O record displays two warm periods with a relative cold event during the Medieval Warm Period, and that is quite different from other records in the studied area. The Little Ice Age indicated by the 18O curve is divided into five cold valleys and four warm peaks. During Donghan Dynasty, the 18O record of stalagmite, the same as all of temperature records in the East Asia monsoon area, shows a significant warming up trend that is different from other records. During the Medieval Warm Period, the lasting time is shorter and shorter from the south to the north in china, and the east china is more obvious than the central china; the beginning time of the Little Ice Age in shennongjia region (1480aAD) is later than that in other regions (1420aAD), but they all display a persistent decrease process of temperature.
    Both the annual banding growth rate curve and grey level curve show the evolution processes of the precipitation over the past 2000 years this region and that divide into seven dry/wet cycles. By comparing precipitation proxies of the shennongjia region with the dry/wet records in other regions, the author finds that the long-term change trend of all records is approximately consistent. All records show the characteristics of high precipitation and large swing before 1100aAD, but the characteristics of low precipitation and small swing after 1100aAD. During the Medieval Warm Period there is a very dry period. During the Little Ice Age precipitation is little. Due to different resolution, every record has difference in detail and also reflects area character. By comparing I8O curve with annual growth rate and grey level curve in the stalagmite during the same period, the author brings forward that that climate in shennongjia region mostly embodies matching modes of warm/wet, cold/dry over the past 2000 years, but temperature was out of harmony with precipitation in the course of climate transforming, which shows that shennongjia climate
    
    
    
    embodies matching modes of cold/wet, warm/dry at part period of time.
    There are inconsistent between the two stalagmites δ13C curve vs. age due to the cave sy
引文
1.Ayalon A, Bar-Matthews M, Kaufman A. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel. Holocene, 1999, 9(6): 715~722
    2.Baker A, Genty D, Barnes W L et al. Testing theoretically predicted stalagmite growth rate with recent annually laminated samples: Implications for past stalagmite deposition. Geochimica et Cosmochimica Acta, 1998, 62:393~404
    3.Baker A, Smart P L, Edwards R L et al. Annual growth banding in a cave stalagmite. Nature, 1993, 364:518~520
    4.Bamola J M, Raynaud D, Korotkevich Y S, et al. Vostok ice core provides 160,000 record of atmospheric CO_2. Nature, 1987, 329: 408~414
    5.Bar-Matthews M, Ayalon A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflecton of regional events: Soreq Cave, Israel. Earth and Planetary Science Letters, 1999, 166:85~95
    6.Bar-Matthews M, Ayalon A. Late Quaternary Paleoclimate in the Eastern Mediterranean Region from Stable Isotope Analysis of Speleothems at Soreq Cave, Israel. Quaternary Research, 1997, 47:155~168
    7.Barnes D J, Lough J M. The nature of skeletal density banding in scleractinian corals: fine banding and second patterns. Journal of Experimental Marime Biology and Ecology, 1989, 129:119~134
    8.Bodri L, Cermak V. Climate change of the last millennium inferred from borehole temperatures regional patterns of climatic changes in the Czech Republic-Part Ⅲ. Global and Planetary Change, 1999, 21(4): 225-235
    9.Bradly R S. Instrumental records of past global change. In: Bradly R S(ed.). Global change of the Past. Boulder, Colorado: UCAR/Office for Interdisciplinary Earth Studies, 1989, 103~116.
    10.Brazdil R. Reconstructions of past climate from historical sources in the Czech Lands. In: Jones P D, Bradley R S, eds. Climatic Variations and Forcing Mechanisms of the Last 2000 Years. Berlin, Heidelberg: Springer-Verlag, 1996. 409~431
    11.Briffa K R, Bartholin T S, Eckstein D, et al. A 1400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 1990, 346(6283): 434~439
    12.Briffa K R, Osborn T J. Blowing hot and cold. Science, 2002, 295: 2227~2228.
    13.Briffa K R, Osborn T J. Seeing the wood from the trees. Science, 1999, 284(7): 926~927
    14.Briffa K R. Annual climate variability in the Holocene: interpreting the message of ancient trees. Quaternary Science Reviews, 2000, 19: 87~105.
    15.Briffa K. Analysis of dendrochronological variability and associated natural climates in Eurasia-the last 10, 000 years(Advence-10K). PAGES, 1999, 7(1): 6~8
    16.Broecker W S. Radiocarbon measurement and annual rings in cave formations. Nature, 1960, 185:93~94
    17.Carriquiry J D, Risk M J and Schwarcz H P. Timing and temperature record from stable isotopes of the 1982~1983 EL Nino warming event in east Pacific corals. Palaeos, 1988, 3: 359~364
    18.Christ M J, David M B. Temperature and moisture effects on the production of dissolved
    
    organic carbon in a spodosol. Soil Biology and Biochemistry, 1996, 28(9): 1191~1199
    19. Cole J E, Fairbanks R G and Shen G L. Recent variability in the Southern Oscillation: Isotopic results from a Tarawa Atoll coral. Science, 1993, 260:1790~1793
    20. Coplen T B, Winograd I J, Landwehr J M, et al. 500,000-year stable carbon isotopic record from Devils Hole,Nevada. Nature, 1994, 263:361~365
    21. Craig H. and Gordon L.I. and Horibe Y., Isotopic exchange effects in the evaporation of water, I: Low temperature results, J. Geophysics Research, 1963, 68:5079-5087
    22. Crowley T J, Lowery T S. How warm was the medieval warm period? AMBIO, 2000, 29(1): 51~54.
    23. Dahl-Jenson D, Mosegaard K, Gundestrup N, et al. Past temperature directly from the Greenland ice sheet. Science, 1998, 282:268~271
    24. Dansgaard W. Stable isotopes in precipitation, Tellus. ⅩⅥ, 1964, 4:436-468
    25. Dasgaard W, Johnsen S J, Reeh N, et al. Climatic changes Norsemen and modern man. Nature, 1975, 255:24~28
    26. Deines P. The isotopic composition of reduced organic carbon, In: Handbook of environmental Isotope Geochemistry, Fritz P and Fontes J C, eds. vol. 1 Eisevier, 1980, 329~406
    27. Duplessy J C, Labeyrite J, Lalou C, et al. Continental climatic variations between 130,000 and 90,000 years BP. Nature, 1970, 226:631~633
    28. Eddy J A. Climate and the changing sun. Climate Change, 1977, (1): 173~190
    29. Eddy J A. The Maunder minimum. Science, 1976,192:1189~1205
    30. Edwards R L, Chen J H, Wasserburg G L. ~(238)U-~(234)U-~(230)~Th systematics and the precise measurement of time over of the past 500000 years. Earth and Planetary Science Letters, 1986-1987, 81: 175~192.
    31. Esper J, Cook E R, Schweingruber F H. Low-frequenency sigmals in long tree-ring chronologies for reconstructing past temperature variability. Science, 2002, 295: 2250~2253.
    32. Fang J Q. Lake evolution during the last 3000 years in China and its implications for environmental chage. Quaternary Research, 1993,39:175~185
    33.FaureG著(潘曙兰,乔广生译).同位素地质学原理.北京:科学出版社,1986.
    34. Frank M, David P M and Chris H. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ~(18)O record from SW Ireland. Science, 2001, 294:1328~1331
    35. Fuchtbauer H, Hardie L A. Experimentally determined homogeneous distribution coefficients for precipitated magnesium calcites: Application to marine carbonate cements. Abstr. Geol Sco Am. Annual Meeting, Denver, Colo, 1976
    36. Gagan M K, Chivas A R and Isdale P J. High-resolution isotopic records from corals using ocean temperature and massspawning chronometers. Earth and planetary Science Letters, 1994, 121:549~558
    37. Gascoyne M. Paleoclimate determination from cave calcite deposits. Quaternary Science Reviews, 1992, 11:609~632
    38. Gascoyne M. Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. Journal of Hydrology, 1983, 61:213~222
    39. Genty D, Quinif Y. Annually laminated sequences in the internal structure of some Belgian stalagmites-Importance for paleoclimatology. Journal of Sedimentary Research, 1996, 66(1): 275~288
    
    
    40. Goede A, Vogel J C. Trace element variations and dating of a late Pleistocene Tasmanian speleothem. Palaeogeogr Palaeoclimat Palaeoecol, 1991, 88:121~131
    41.Hammeed S,龚高法。中国历史时期温度变化。张翼,张不远(主编)。中国历史气候变化及其影响。北京:气象出版社,1993。70~77
    42. Harmon R S, Thompson P, Schwarcz H et al. Late Pleistocene Paleoclimates of North America as Inferred from Stable Isotope Studies of Speleothems. Quaternary Research, 1978, 9:54~70
    43. Hendy C H. The isotopic geochemistry of spelethems---Ⅰ, The calculation of the effects of different models of formation on the isotopic composition of speleothems and their applicabity as palaeoclimatic indicators. Geochimica et Cosmochimica Acta, 1971, 35:801~824
    44. Henning G J, Grun R, Brunnacker K, et al. Speleothems, travertines, and paleoclimates. Quaternary Research, 1983, 20:1~29
    45. Hughes M K, Diaz H F. Was there a medieval warm period and if so where and when. Climatic Change, 1994, 26(2): 109~142
    46. Huston M. Variations of coral growth rates with depth at Discovery Bay, Jamanica. Coral Reefs, 1985, 4:19~25
    47. Ikuo Maejima, Yoshio Tagami. Climatic change during historical times in Japan. Tokyo Metropolitan University, 1986, 121:157~171
    48. Johnsen S J, Dansgaard W, Clausen H B, et al. Climatic oscillations 1200-2000 AD. Nature, 1970, 227:482~483
    49. Jones P D, Briffa K R, Barnett T P, et al. High-resolution palaeoclimate records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures. Holocene, 1998, 8:455~471.
    50. Katz A. The interaction of magnesium with calcite during crystal growth at 25~90℃ and one atmosphere. Geochimica et Cosmochimica Acta, 1973, 37:1563~1586
    51. Kaufman A, Wasserburg G J, Porcelli D, et al. U-Th isotope systematics from the Soreq Cave, Israel and climatic correlations. Earth and Planetary Science Letters, 1998, 156:141~155
    52. Knutson D W, Buddemeier R W and Smith S V. Coral Chronometers: seasonal growth bands in reef corals. Science, 1972,177:270~272
    53. Ku T L, Li H C. Speleothems as high-resolution paleoenvironment archives: Records from northeastern China. Proc Indian Acad Sci(Earth Planet Sci), 1998, 107:321~330
    54. Laird K R, Fritz S C, Maasch K A, et al. Greater drough tintensity and frequency before AD 1200 in the Northern Great Plains, USA. Nature, 1996, 384: 552~555.
    55. Lamarche V C. Paleoclimatic inferences from long tree-ring records. Science, 1974, 183: 1043~1048
    56. Lamb H H. Climate Present Past and Future. Volume 2, Climatic History and the Future. London: Methuen. 1997
    57. Lamb H H. The early medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology, 1965, 1:13~37
    58. Lamb H H. Volcanic dust in the atmosphere, with chronology and assessment of its meteorological significance. Philosophical Transactions of the Royal Society, 1970, A266: 25~533
    59. Li W X, Lundberg J, Dickin A P, et al. High-precision mass-spectrometic uranium-series
    
    dating of cave deposits and implications for paleoclimate studies. Nature, 1989, 339: 534~536
    60.Linge H, Launritzen S E, Lundberg J, et al. Stable isotope stratigraphy of Holocene speleothems: examples from a cave system in Rana, northern Norway. Palaeogeography, Palaeoclimatology, Palaeoecology. 2001, 167:209~224
    61.Lough J M, Barnes D J. Possible relation ships between environment variables and skeletal density in a coral from the central Great Barrier Reef. Journal of Experimental Marime Biology and Ecology, 1990, 134:221~241
    62.Lough J M, Barnes D J. Several centuries of variation in skeletal extension, densith and calcification in massive Porites colonies from the Great Barrier Reef: A proxy for seawater temperature and a backround of variability against which to identity unnatural change. Journal of Experimental Marime Biology and Ecology, 1997, 211:29~67
    63.Mann M E, Bradly R S, Hughes M K. Northern hemisphere temperature during the past millennium: inference, uncertainties and limitations. Geophysical Research Letters, 1999, 26(6): 759~762.
    64.Martin-Neto L, Rosell R, Sposito G. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence. Geoderma, 1998, 81: 305~311
    65.McConnaughey T A. ~(13)C and ~(18)O isotopic disquilibria in biological carbonate——1. Patterns. Geochimica et Cosmochimica Acta, 1989, 53:151~162
    66.McCrea J M. The isotopic Chemistry of carbonate and a paleotemperature-scale. Journal of Chemical Physics, 1950, 18: 849~857.
    67.McCulloch M T, Gagan M K, Mortimer G E, et al. A high-resolution Sr/Ca and O coral record from the Great Barrier reef, Australia, and the 1982-1983 E1 Nino. Geochimica e Cosmochimica Acta, 1994, 58:2747~2854
    68.Mcgarry Siobhan F, Baker A. Organic acid fluorescence: application to speleothem palaeoenvironmental reconstrution. Quaternary Science Reviews, 2000, 19:1087~1101
    69.Min G R, Edwards R L, Taylor F W, et al. Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochimica et Cosmochimica Acta, 1995, 59:2025~2042
    70.Mitsuguchi, T, Matsumoto E, Abe O, et al. Mg/Ca Thermometry in Coral Skeletons. Science, 1996, 274:961~963
    71.Mosley-Thompson E. Paleoenvironment conditions in Antarctica since AD 1,500: ice core evidence. In: Bradley R S, Jones P D, eds. Climate Since AD 1500. London: Routledge, 1992.572~591
    72.O'Neil J R, Clayton R N, Mayeda T.K. Oxygen isotope fractionation in Divalent Metal carbonates. The Journal of Chemical Physics, 1969, 51:5547-5549
    73.Ogilve A, Farmer G. Documenting the Medieval climate. In: Hulma M, Barrow E, eds. Climates of the British Isles. Present, Past and Future. London: Routledge, 1997.112~133
    74.Pfister C, Luterbacher J, Schwarz-zanetti G, et al. Winter air temperature variations in western Europe during the early and high middle ages(AD750-1300). The Holocene, 1998, 8(5): 535~552
    75.Procter J C, Baker A, Barnes W L, et al. A thousand year speleothem proxy record of North Atlantic climate from Scotland. Climate Dynamics, 2000, 16:815~820
    76.Reid G C. Solar total irradiance variations and the global sea surface temperature record. J
    
    Geophys Res, 1991, 96(D2): 2835~2844
    77.Roberts M S, Smart P L, Baker A. Annual trace element variations in a Holocene speleothem. Earth and Planetary Science Letters, 1998, 154:237~246
    78.Rozanski K., Arzguas-Araguas L., Gonfiantini R. Isotopic patterns in the modern global precipitation, In: Swart P.K. et al,eds, Climate change in continental isotopic records, Amer Geophys Union, Monograph 78, 1993.1-36
    79.Savin S M, and Yeh H W. Stable isotopes in ocean sediments, in Emiliani C. eds. The Sea, The Oceanic Lithosphere: Wiley-Inerscience, 1981, 7:1521-1554
    80.Schwarcz H P, Ford D C. Continental Pleistocene climatic variations from speleothem age and isotope data. Science, 1974, 184:893-895
    81.Shen C C, Lee T, Chen C Y, et al. The calibration of D (Sr/Ca) versus sea temperature relationship for porites corals. Geochimica et Cosmochimica Acta, 1996, 60:3846~3858
    82.Shen G T, Cole J E, Lea S W A, et al. Surface ocean variability at Galapagos from 1936~1982: calibration of geochemical traces in corals, Paleoceanography, 1992, 5:563~588
    83.Shen G T, Dunbar R B. Environmental controls on uranium in reef corals. Geochimica et Cosmochimica Acta, 1995, 59:2009~2024
    84.Shopov Y Y, Ford D C and Schwarcz H P. Luminescent microbanding in speleothems: High-resolution chronology and paleoclimate. Geology, 1994, 22:407~410
    85.Siegenthaler U. Stable hygrogen and oxygen isotopes in the Water cycle, in Jager E. and Hunziker J. C. eds., Lectures in isotope Geology, Springer-Verlag, 1979, 264~270
    86.Stocker T F, Mysak L A. Climatic fluctuations on the century time scale: A review of high-resolution proxy data and possible mechanisms. Climatic Change, 1992, 20:227~250
    87.Stuiver M, Braziunas T F, Becket B, et al. Climatic, Solar, Oceanic, and geomagnetic influences on late-glacial and Holocene atmospheric ~(14)C/~(12)C change. Quaternary Research, 1991, 35:1~24
    88.Stuiver M, Braziunas T F. Evidence of solar activity variations, in: Bradley R S, Jones P D eds. Climate since AD 1500. London: Routledge, 1992.593~603
    89.Stuiver M, Braziunas T S and Grootes P M. Is there evidence for solar forcing of climate in the GISP oxygen isotope record. Quaternary Research, 1997, 48:259~266
    90.Stuiver M, Grootes P M and Braziunas T S. The GISP2 ~(18)O climate record of the past 16, 500, years and the role of the sun, ocean and volcanoes. Quaternary Research, 1995, 44:341~354
    91.Stuiver M. Solar variations and climatic change during the millennium. Nature, 1980,286:868~871
    92.Thompson G, Lumsden D N, Walker R N, et al. Uranium-series dating of stalagmite from Blanchard Springs Cavern, USA. Geochimica et Cosmochimica Acta, 1975, 39:1211~1218
    93.Thompson L G, Mosley-Thompson E, Davis M E, et al. A 1000-year climate ice-core record from the Guliya ice cap, China: its relationship to global climate variability. Annual of Glaciology, 1995, 21:175~181
    94.Thompson L G, Mosley-Thompson E. Evidence of abrupt climatic change during the last 1500 years recorded in ice cores from the tropical Quelccaya ice cap Peru. In: Berger W H, Labeyrie L D, eds. Abrupt Climatic Change-Evidence and Implications. NATO Advanced Science Institures Series C. Mathemmatical and Physical Sciences Vol. 216, D Reidel Publishing Co. Dordrecht, 1987.99~110
    95.Thompson L G. Ice core evidence from Peru and China. In: Bradley R S, Jones P D, eds.
    
    Climate Since AD 1500. London: Routledge, 1992.517~548
    96. Tudhope A W, Shimmield G B, Chilcott C P, et al. Recent changes in climate in the far western equatoroal Pacific and their relationship to the Southern Oscillation: Oxygen isotope records from massive corals, Papua New Guinea. Earth and planetary Science Letters, 1995, 136:575~590
    97. Verschuren D, Laird K R, Cumming B F. Rainfall and drought in equatoria least Africa during the past 1100 years. Nature, 2000, 403: 410-414.
    98. Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated monsoon record from Hulu Cave, China. Science, 2001, 294: 2345~2348.
    99. White J W C, Gorodetzky D, Cook E R, et al. Frequency analysis of an annually resolved, 700 year palaeoclimate record from the GISP2 ice core. In: Jones P D, Bradley R S, eds. Climatic Variations and Forcing Mechanisms of the Last 2000 years. Years. Berlin, Heidelberg: Springer-Verlag, 1996.501~517
    100. Wigley T M L, Kelly P M. Holocene climatic change, 14C wiggles and variations in solar irradiance. Philosophical Transactions of the Royal Society of London, Set. A, 1990, 330: 547~560
    101. Woodhouse C A, Overpeck J T. 2000 years of drought variability in the central United States. Bulletin of the American MeteorologicalSociety, 1998, 79(12): 2693~2714
    102. Working Group I of the Intergovernmental Panel on Climate Change. Summary for Policymaker: A Report of Working Group I of the Intergovernmental Panel on Climate Change./index.htm.
    103. Wu Xiangding, Zhan Xuzhi and Sun Li. Reconstructing middle-Tibet climate during the last 600 years by dendroclimatological method. Acta Meteorologica Sinica, 1990, 4(3): 294~304
    104. Yadav R R, Park W K and Bhattacharyya A. Spring-temperature variations in western Himalaya India, as reconstructed from tree-rings: AD 1390~1987. The Holocene, 1999, 9(1): 85~90
    105. Zhao J X, Xia Q K, Collerson K D. Timing and duration of the Last Interglacial inferred from high resolution U-series chronology of stalagmite growth in Southern Hemisphere. Earth and Planetary Science Letters, 2001, 184:635~644
    106.陈家其.近2000年长江三角洲气候变化与小冰期气候.中国科学院南京地理与湖泊研究所集刊[C].1995,第13号.26-35.
    107.陈家其。旱涝变化与太阳活动。第三届全国天地生相互关系讨论会论文集。北京:中国科学技术出版社,1989
    108.陈家其。太湖流域气候变化规律与未来气候。气候变化与环境问题全国学术讨论会论文汇编。北京:中国科学技术协会,1991。30
    109.陈文寄,彭贵.年轻地质体系的年代测定.北京:地震出版社,1991.
    110.葛全胜,郑景云,方修琦,等.过去2000年中国东部冬半年温度变化幅度研究.第四纪研究,2002,22(2):166~173
    111.葛全胜,郑景云,满志敏,等.过去2000年中国东部冬半年温度变化序列重建及初步分析.地学前缘,2002,9(2):169~181
    112.洪业汤,姜洪波,李汉鼎,等。近5ka以来的金川泥炭δ~(18)O记录。中国科学(D),1997,27(6):525~530
    113.湖北省十堰市水文水资源勘测局。神农架林区水文特征。水文,2001,21(1):55~56
    114.黄春长。环境变迁。北京:科学出版社,1998。
    
    
    115.黄春彦,孔昭寰。颐和园昆明湖3500余年沉积物研究。北京:海洋出版社,1996。3
    116.康兴成,张其花,Graumlich L J,等.青海都兰过去2000年来的气候重建及其变迁.地球科学进展.2000,15(2):215~221
    117.况润元,汪永进,张向华,等.石笋铀同位素组成对土壤环境变化的指示.科学通报,2002,47(13):1022-1026.
    118.蓝勇。近2000年来长江上游荔枝分布北界的推移与气温波动。第四纪研究,1998,25(1):39~45
    119.李红春,顾德隆,Lowel D.Stott.高分辨率洞穴石笋稳定同位素应用之一—京津地区500a来的气候变化—δ~(18)O记录.中国科学(D辑),1998,28(2):181~186
    120.李红春,顾德隆,Dorte P,等。陕南石笋稳定同位素记录中的古气候和古季风信息。地震地质,2000,22(增刊):63-78
    121.李红春,顾德隆,陈文寄,等。利用洞穴石笋的δ~(18)O和δ~(13)C重建3000年以来北京地区古气候和古环境——石花洞研究系列之三。地震地质,1997,19:77-86
    122.李江风,等.新疆年轮气候年轮水文研究.北京:气象出版社,1989.30~36;37~48;104~108
    123.刘东生,谭明,秦小光,等.洞穴碳酸盐微层理在中国的首次发现及其对全球变化研究的意义.第四纪研究,1997(1):41~51
    124.刘若新,仇士华,蔡莲珍,等。长白山天池火山最近一次大喷发年代研究及其意义。中国科学(D辑),1997,27(5):437~441
    125.罗建育,陈镇东。台湾高山湖泊沉积记录指示的近4000年气候与环境变化。中国科学,1997,27(4):366~372
    126.满志敏,张修桂.中国东部中世纪温暖期的历史证据和基本特征的初步研究.见:张兰生主编.中国生存环境历史演变规律研究.北京:海洋出版社,1993.95~103
    127.满志敏。关于唐代气候冷暖问题的讨论。第四纪研究,1998,25(1):20~30
    128.牟保磊编著.元素地球化学.北京:北京大学出版社,1999.122~128
    129.聂宝符,陈特固,梁美桃,等.南沙群岛及其邻近礁区造礁珊瑚与环境变化的关系.北京:科学出版社,1997
    130.彭子成.第四纪年龄测定的新技术——热电离质谱铀系法的发展近况.第四纪研究,1997,3:258~264
    131.秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义——Ⅱ.灰度的年际变化
    132.秦小光,刘东生,谭明,等.石笋微层的谱分析和北京地区1千年来的气候演变.地理学报(D辑),1999,28(3):543~549
    133.秦小光,刘东生,谭明等,1998,北京石花洞石笋微层灰度变化特征及其气候意义——Ⅰ.微层显微特征,中国科学,D辑,28(1):91~96
    134.任国玉,张兰生.科尔沁沙地麦里地区晚全新世植被变化.植物学报,1997,39(4):353~362.
    135.邵雪梅,吴祥定.采用树木年轮资料重建华山地区500年来的春末夏初降水变化.见:符淙斌,严中伟主编.全球变化与我国未来的生存环境.北京:气象出版社,1996.17~27
    136.邵雪梅,吴祥定.利用树轮资料重建长白山地区过去气候变化.第四纪研究,1997,1:76~85
    137.施少华。中原地区历史时期气候变化的周期分析。中国科学院南京地理与湖泊研究所集刊(10)。北京:科学出版社,1993。81~87
    138.施雅风,孔昭宸,王苏民.中国全新世大暖期的气候波动与重要事件.中国科学(B),
    
    1992,12:1300~1308.
    139.施雅风,姚潭栋,杨保。近2000a古里雅冰芯的10a尺度的气候变化及其与东部文献记录的比较。中国科学(D),1999,29(增刊1):79~86
    140.覃军,王海军。湖北省1961年以来气温和降水变化趋势及分布。1997,16(4):405~410
    141.汪永进,孔兴功,邵晓华,等。末次盛冰期百年尺度气候变化的南京石笋记录。第四纪研究,2002,22(3):2423~2251
    142.王绍武,龚道溢.全新世几个特征时期的中国气温.自然科学进展,2000,10(4):325~332
    143.王绍武,叶谨琳,龚道溢.中国小冰期的气候。第四纪研究,1998,1:54~64
    144.王绍武。公元1380年以来我国华北气温序列的重建。中国科学(B),1990,20(5):553~560
    145.王文,谢志仁。从史料记载看中国历史时期海面波动。地球科学进展,2001,16(2):272~278
    146.王铮,周清波,张丕远,等。19世纪上半叶一次气候突变。自然科学进展,1995,5(3):323~329
    147.魏菊英,王关玉。同位素地球化学。北京:地质出版社,1988。112~139
    148.温孝胜,彭子成,赵焕庭.中国全新世气候演变研究的进展.地球科学进展,1999,14(3):292~298
    149.吴宏歧,党安荣。隋唐时期气候冷暖特征与气候波动。第四纪研究,1998,25(1):31~38
    150.武仙竹.神农架犀牛洞旧石器时代遗址发掘报告。人类学学报,1998,17(2):121~136
    151.夏玉梅,汪佩芳。密山杨木3000多年来气候变化的泥炭记录。地理研究,2000,19(1):53~59
    152.严中伟,李兆春,马晓春.历史上10~100年尺度气候跃变的分析.大气科学,1993,17(6):663-672.
    153.杨保,康兴成,施雅风.近2000年来都兰树轮十年尺度的气候变化及其与中国其他地区温度代用资料的比较.地理科学,2000,20(5):397~402
    154.姚檀栋,秦大河,田立德,等.青藏高原2 ka来温度和降水变化—古里雅冰芯记录.中国科学(D辑),1996,26(4):348~353
    155.姚檀栋,Thompson L G.敦德冰芯记录与过去5ka温度变化。中国科学(B),1992,10:1089~1093
    156.张德二,刘传志,江剑民.中国东部6区域近1000年干湿序列的重建和气候跃变分析.第四纪研究,1997,1:1-11.
    157.张德二.我国历史时期以来降尘的天气气候学初步分析.中国科学(B)辑,1984,(3):278-288.
    158.张德二.我国中世纪温暖期气候的初步研究。第四纪研究,1993,1:7~15
    159.张德二.中国历史文献中的古气候记录和古全球变化研究。中国的气候变化和气候影响研.北京:气象出版社,1996.36-42.
    160.张华,蔡靖芳,刘会平。神农架大九湖12500aBP以来的孢粉植物群与气候变化。华中师范大学学报(自然科学版),2002,36(1):87~93
    161.张兰生,方修琦,任国玉,等.我国北方农牧交错带的环境演变.地学前缘,1997,1:127~136
    162.张丕远(主编)。中国历史气候变化。济南:山东科技出版社,1996。435~436
    163.张先恭,张富国。火山活动与我国旱涝,冷暖的关系。气象学报,1985,43(2):196~207
    164.张祥松。冰川的气候变迁记录。李克让,张丕远(主编)。中国气候变化及其影响。北京:海洋出版社,1992。103~139
    
    
    165.张志华,吴祥定.采用树木年轮资料恢复祁连山地区近700年来气候变化.科学通报,1997,42(8):849~851
    166.张钟先,涂杰峰,田均良,等.中国黄土地区土壤中天然放射性元素的生物地球化学.土壤学报,1995,32(4):353~360
    167.章新平,姚檀栋.我国降水中δ~(18)O的分布特点.地理学报,1998,53(4):356-364
    168.赵文兰,叶愈源。近500年长江气候变化的初步研究。水文,1996,5:19~23
    169.郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究.科学通报,1983,13:801~806
    170.郑斯中,张福春,龚高法.我国东南地区近2000年气候湿润状况的变化.气候变迁和超长期预报文集.北京:科学出版社,1977.29-32.
    171.周陆生,汪青春.青海湖流域全新世以来气候变化的初步探讨.见:孙国武主编.中国西北干旱气候研究.北京:气象出版社,1997.20~26
    172.朱士光,王元林,呼林贵。历史时期关中地区气候变化的初步研究。第四纪研究,1998,2:1~11
    173.竺可桢.中国近五千年来气候变迁的初步研究.考古学报,1972,1:15~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700