C/SiC复合材料与Nb的钎焊工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C/SiC复合材料是一种新型超高温结构材料,在航空航天、武器装备等领域具有广阔的应用前景。本文分别以60wt.%Ni+40wt.%TiH_2混和粉末、4层100μmTi+80μmNi叠层箔片和6层10μmNi+80μmTi+10μmNi叠层箔片为钎料,实现了C/SiC与Nb的真空钎焊。通过分析工艺参数对钎焊接头界面结构及强度的影响,初步揭示了Ti-Ni钎焊C/SiC与Nb的机理。
     试验中发现钎焊过程中Nb向液态钎料溶解、液态钎料在毛细作用下填充C/SiC母材的孔洞并与其发生界面反应。Nb向钎料的溶解可以提高钎缝的塑性,钎料向母材孔洞的填充可以起到钉轧母材的作用。但Nb的溶解量过大,则母材溶蚀严重;溶解量过小,则钎料脆性大,填充孔洞的钎料对母材拘束太强,接头残余应力大。焊前热处理可以对C/SiC起到活化的作用,相同工艺下在界面处生成的TiC+NbC反应层更厚,界面结合强度更高。
     采用Ni+TiH_2粉末钎焊时,Nb向钎料中的溶解量可以通过改变钎焊温度或者升温过程来控制。升温到1000℃长时间保温,可以使钎料大部分转化为TiNi,减少钎焊温度下液态钎料的量,控制Nb向钎料的溶解。
     采用4层Ti/Ni箔片钎焊时,升温过程中接触C/SiC的Ni与SiC反应形成Ni-Si液相。钎焊温度低于Ti-Ni系高Ni共晶点1118℃时,Ni-Si液相可以起到降低连接温度的作用;钎焊温度高于1118℃时,Ni-Si液相可以增加液态钎料的存在时间,增大Nb向钎料的溶解量,改善接头的力学性能。采用6层Ni/Ti/Ni箔片钎焊时,由于Ti的流失比Ni严重,焊后接头主要由(Nb,Ti)和TiNi组成,未发现熔点较低的Ti2Ni,使较低温度下的钎焊接头可以具有较高的使用温度。
     C/SiC与Nb的钎焊强度由接头相组成、接头致密性、钎料与C/SiC结合情况、钎料对母材钉轧的强弱四种因素决定。采用4层箔片在1180℃,10min钎焊时,接头中富Nb相的比例较高,接头中没有孔洞,钎料与母材的结合良好,剪切时C/SiC母材的C纤维被剪断,钉轧母材的钎料具有一定的塑性,属准解理断裂,接头强度最高。未处理C/SiC与Nb的接头室温抗剪强度为67MPa,热处理C/SiC与Nb的接头强度达到128MPa。
C/SiC composite is a type of promising ultra-high temperature structural materials in the aerospace and weaponry fields. In this study, C/SiC and Nb was brazed with 60wt.%Ni+40wt.%TiH_2 powder mixture, four layers of 100μmTi + 80μmNi and six layers of 10μmNi+80μmTi+10μmTi in a vacuum furnace. By analyzing the influence of brazing parameters on the microstructure and the strength of the joint, the brazing mechanism of C/SiC and Nb with Ti-Ni is revealed basically.
     Nb dissolves into the brazing alloy during brazing. The brazing alloy fills in the hole of C/SiC under the capillary force and reacts with the C/SiC at the interface. The plasticity of filler metal is improved by the solution of Nb to the filler metal. The filler metal that fills in the C/SiC hole can anchor the composite. The solution of Nb to the filler metal must be controlled, when it is too much the base metal is corroded. However, when it is too little, the filler metal is brittle. The constrained force of the filler metal that fills in the C/SiC hole on the composite is too high, and a large residual stress is generated in the joint. Preheating can activate the C/SiC, which thickens the TiC+NbC interfacial reaction layer between C/SiC and the filler metal and strengthens the bond of the interface.
     When brazing with the powder mixture, the solution of Nb to the filler metal can be controlled by changing the brazing temperature or the heating profile. If holding at 1000℃for a long time during the heating period, the powder mixture can be translated into TiNi mostly, which can decrease the quantity of liquid phase at the brazing temperature. Therefore, the content of Nb in the filler metal can be controlled.
     When brazing with the four layered Ti/Ni interlayers, the Ni foil adjacent to the C/SiC reacts with it during the heating period, and results in a Ni-Si partial liquid phase. If the brazing temperature is lower than the Ti-Ni eutectic point of 1118℃, the Ni-Si liquid phase leads to the decrease of the brazing temperature. If the brazing temperature is higher than 1118℃, the effect of the Ni-Si liquid phase is increasing the present time of the liquid filler metal and the solution quantity of Nb to the interlayer. Thus, the mechanical property of the brazing joint is improved.
     When brazing with the six layered Ni/Ti/Ni interlayers, Ti runs off more seriously than Ni, the joint is mainly composed of (Nb, Ti) and TiNi. Ti2Ni with a low melting point does not appear in the joint. The joint that achieved at a low brazing temperature can be applied in a high temperature condition.
     The strength of the brazing joint between C/SiCand Nb is determined by the phase composition of joint, the density of joint, the bond between filler metal and the C/SiC and the anchor of the filler metal on the composite. Brazing with the four interlayers under a parameter of 1180℃and 10min, the joint has a high percentage of Nb rich phase and no brazing defect is observed. During shearing, the carbon fibers of the composite are shorn due to good connection between filler metal and composite. Good plasticity of filler metal that fills in the composite hole is found and the fracture in the filler metal presents a quasi-cleavage characteristic. The maximum shear strength at room temperature of the original C/SiC and Nb joint is 67MPa and the heat treated C/SiC and Nb joint reachs 128MPa.
引文
1 William A Goodman, Claus Müller, Marc Jacoby, J D Wells. Thermo-mechanical Performance of Precision C/SiC Mounts. Optical Manufacturing and Testing IV, H. Philip Stahl, Editor, Proceedings of SPIE. 2001, 4451: 468~479
    2童巧英,成来飞,张立同.二维C/SiC复合材料连接的显微结构与性能.材料工程. 2002, 47(11): 14~17
    3 S Schmidta, S Beyera, H Knabeb, H Immicha, R Meistringc, A Gesslerc. Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion Technology Applications. Acta Astronautica. 2004, 55(3/9): 409~420
    4童巧英,成来飞,张立同.三维C/SiC复合材料在线液相渗透连接.稀有金属材料与工程. 2004, 33(1): 101~104
    5 Lin G. B, Huang J H, Brazed Joints of Cf-SiC Composite to Ti Alloy Using Ag-Cu-Ti-(Ti+C) Mixed Powder as Interlayer. Powder Metallurgy. 2006, 49(4): 345~348
    6 Guobiao Lin, Jihua Huang, Hong Zhang. Joints of Carbon Fiber-reinforced SiC Composites to Ti-alloy Brazed by Ag-Cu-Ti Short Carbon Fibers, Journal of Materials Processing Technology. 2007, 189(1~3): 256~261
    7 Salvo M et al. Joining of CMCs for Thermonuclear Fusion Application. Journal of Nuclear Materials. 1996, 233~237: 947~953
    8 Jiangtao Xiong, Jinglong Li, Fusheng Zhang, Weidong Huang. Joining of 3D C/SiC Composites to Niobium Alloy, Scripta Materialia. 2006, 55(2): 151~154
    9所俊,陈朝辉,韩卫敏,郑文伟.硅树脂高温转化陶瓷结合层连接陶瓷材料.硅酸盐学报. 2005, 33(3):386~390
    10 Moorhead A J, Keating H. Direct Brazing of Ceramic for Advanced Heavy-Duty Diesels. Welding Journal. 1986, 65(10): 17~31
    11奈贺正明,冯吉才, Julius C Schuster. SiC/Ti结合界面の构造と强度.溶接学会论文集. 1996, 14(2): 338~343
    12 Singh M. A Reaction Forming Method for Joining of Silicon Carbide-basedCeramics. Scripta Materialia. 1997, 37(8): 1151~1154
    13 Pippel E, Woltersdorf J, Colombo P, Donato A. Structure and Composition of Interlayers in Joints between Sic Bodies. Journal of the European Ceramic Society. 1997, 17(10): 1259~1265
    14 Isola C, Salvo M, Ferraris M, Appendino Montorsi M. Joining of Surface Modified Carbon/Carbon Composites Using a Barium-Aluminum-Boro-Silicate Glass. Journal of the European Ceramic Society. 1998, 18(8): 1017~1024
    15 Shujie Li, Huiping Duan, Shen Liu, Yonggang Zhang, Zijiu Dang, Yan Zhang, Chengang Wu. Interdiffusion Involved in SHS Welding of SiC Ceramic to Itself and to Ni-based Superalloy. International Journal of Refractory Metals & Hard Materials. 2000, 18(1): 33~37
    16段辉平,李树杰,张永刚,刘深,张艳,党紫九,刘登科. SiC陶瓷与镍基高温合金的热压反应烧结连接.稀有金属. 1999, 23(5): 326~330
    17 Nishimoto Akio, Ando Masaaki, Takahashi Makoto Aritoshi, Masatoshi Ikeuchi. Interfacial Reaction Layers in SiC/Cu Joint Friction-bonded with Nb Intermediate Layer. Materials Transactions, JIM. 1999, (9): 953~956
    18 Kiyoshi Nogi, Kazumi Ogino. Wettability of SiC by Liquid Pure Metals. Transation of the Japan Institute of Metals. 1988, 52(8): 786~791
    19 Rado C, Kalogeropoulou S, Eustathopoulos N. Bonding and Wetting in Non-reactive Metal: SiC Systems: Weak or Strong Interfaces? . Materials Science and Engineering A. 2000, 276(1): 195~202
    20 Li J G, Husner H. Wettability of Silicon Carbide by Gold, Germanium and Silicon. Journal of Materials Science Letters. 1991, 10(21): 1275~1276
    21 Rado C, Drevet B, Eustahopoul N. The Role of Compound Formation in Reactive Wetting: the Cu/SiC System. Acta Mater. 2000, 48(18): 4483~4491
    22 Kalogeropoulou S, Baud L, Eustahopoul N. Relationship between Wettability and Reactivity in Fe/SiC System. Acta metal, Mater. 1995, 43(3): 907~912
    23 Laurent V, Rado C.Wetting Kinetics and Bonding of Al and Al Alloys onα-SiC. Materials Science & Engineering A. 1996, 205(1): 1~8
    24张巧莉,李树杰,陈志军,唐华. SiC/ Co-Cr体系的润湿性研究.复合材料学报. 2006, 23(4): 60~64
    25 Shujie Li, Ying Zhou, Huiping Duan. Wettability and Interfacial Reaction inSiC/Ni Plus Ti System. Journal of Materials Science. 2002, 37(12): 2575~2579
    26 Chung Y S, Iseki T. Interfacial Phenomena in Joining of Ceramics by Active Metal Brazing Alloy. Engineering Fracture Mechanics. 1991, 40: 941~948
    27 Lee Hyoung Keun, Hwang Sun Hyo, Lee Jai Young. Effects of the Relative Contents of Silver and Copper on the Interfacial Reactions and Bond Strength in the Active Brazing of SiC. Journal of Materials Science. 1993, 28: 1765~1774
    28 Martínez V, Ordoňez S, Castro F, Olivares L, Marín J. Wetting of Silicon Carbide by Copper Alloys. Journal of Materials Science. 2003 , 38: 4047~4054
    29 Yupko V L. Wetting of Silicon Carbide by Cu-Ti and Cu-Sn-Ti Alloys. Poroshkovaya Metallurgiya. 1977, 16(9): 81~84
    30 Lee Hyoung Keun, Lee Jai Young. A Study of the Wetting, Microstructure and Bond Strength in Brazing SiC by Cu-X(X=Ti, V, Nb, Cr) Alloys. Journal of Materials Science. 1996, 31(8): 4133~4140
    31 Xiao P, Derby B. Wetting of Silicon Carbide by Chromium Containing Alloys. Acta mater. 1998, 46(10): 3491~3499
    32吕宏,康志君,张小勇,楚建新,王林山. CuSiAlTi钎料对SiC陶瓷的润湿性.稀有金属材料与工程. 2005, 34(7): 1106~1108
    33 Chai Y H, Weng W P, Chuang T H. Relationship between Wettability and Interfacial Reaction for Sn10Ag4Ti on Al2O3 and SiC Substrates. Ceramics International. 1998, 24(4): 273~279
    34 Rado C, Senillou C, Eustathpoulos N. Coupled Study ofα-SiC Single Crystals Surface Chemistry Using AES and Wettability by Non-reactive Alloys. Proceeding of the 2nd International Conference on High Temperature Capillarity, Cracow, Poland, 1997: 53~58
    35 Naidich Y V, Zhuravlev V, Krasovskaya N. The Wettability of Silicon Carbide by Au–Si Alloys. Materials Science and Engineering A. 1998, 245(2): 293~299
    36 Ferro A C, Derby B. Development of a Micro-droplet Technique for Wettability Studies: Application to the Al-Si/SiC Aystem. Scripta Metallurgica et Materialia. 1995, 33(5): 837~842
    37 Mcdermid J R, Drew R A L. Brazing of Reaction-bonded Rilicon Carbide and Inconel 600 with an Iron-based alloy. Journal of Materials Science. 1990, 25(11): 4804~4809
    38 Rado C, Kalogeropoulou S, Eustathopoulos N. Wetting and Bonding of Ni-Si Alloys on Silicon Carbide, Acta Mater, 1999, 47(2): 461~473
    39张利,孙卫忠,李树杰,段辉平. Ni-Ti/ SiC系统的润湿及界面反应产物研究.武汉理工大学学报. 2006, 28(11): 32~35
    40夏云玲,李树杰,闫联生. Co-Ti/SiC、Co-Ti/石墨体系的润湿性研究.粉末冶金技术. 2005, 23(6): 414~417
    41 Huaping Xiong, Bo Chen, Yansheng Kang, Wei Mao, Akira Kawasaki, Hiroshi Okamura, Ryuzo Watanabe. Wettability of Co-V. and PdNi-Cr-V System Alloys on SiC Ceramic and Interfacial Reactions. Scripta Materialia. 2007, 56(2): 173~176
    42 Huaping Xiong, Xiaohong Li, Wei Mao, Yaoyong Cheng. Wetting Behavior of Co Based Active Brazing Alloys on SiC and the Interfacial Reactions. Materials Letters. 2003, 57(3): 3417~3421
    43熊华平,毛唯,程耀永,李晓红.几种钴基高温钎料对SiC陶瓷的润湿与界面结合.金属学报. 2001, 37(9): 991~996
    44金朝阳,陈铮,顾晓波,刘凯.用铝基钎料钎焊SiC陶瓷及其在SiC陶瓷表面浸润性的研究.华东船舶工业学院学报(自然科学版). 2001, 15(4): 12~16
    45李树杰,张利. SiC基材料自身及其与金属的连接.粉末冶金技术. 2004, 22(2): 91~97
    46冯吉才,刘会杰,韩胜阳,李卓然,张九海. SiC/Nb/SiC扩散连接接头的界面构造及接合强度.焊接学报. 1997, 18(2): 20~23
    47玉井富士夫,奈贺正明. Cu-Ti合金にとるSiC/SiC结合体の组织と强度.溶解学会论文集. 1996, 14(2): 333~337
    48吕宏,康志君,楚建新,张小勇.铜基钎料钎焊SiC/Nb的接头组织及强度.焊接学报. 2005, 26(1): 29~32
    49刘会杰,冯吉才,钱乙余,李卓然. SiC陶瓷与TC4钛合金反应钎焊的研究.焊接. 1998, 19(11): 22~25
    50谢永慧,熊华平,毛唯,程耀永.钴基高温活性钎料钎焊SiC陶瓷的接头组织及性能.焊接学报. 2005, 26(3): 55~58
    51 B Riccardi, C A Nannetti, T Petrisor, M Sacchetti. Low Activation Brazing Materials and Techniques for SiCf/SiC Composites. Journal of Nuclear Materials. 2002, 307~311(2): 1237~1241
    52 B Riccardi, C A Nannetti, T Petrisor, J Woltersdorf, E Pippel, S Libera, L Pilloni. Issues of low Activation Brazing of SiCf/SiC Composites by Using Alloys without Free Silicon. Journal of Nuclear Materials. 2004, 329~333: 562~566
    53 O M Akselsen. Review: Diffusion Bonding of Ceramics. Journal of Materials Science. 1992, 27: 569~579
    54深井卓,刘玉莉,奈贺正明.用Fe-Ti合金扩散连接SiC陶瓷.焊接学报. 1998, 19(6): 93~97
    55冯吉才,刘玉莉,张九海,奈贺正明,李学军.碳化硅陶瓷和金属铌及不锈钢的扩散结合.材料科学与工艺. 1998, 6(2): 5~7
    56 M Naka, J C Feng, J C Schuster. Phase Formation in SiC/Metal Joints at High Temperatures. Materials Transactions, JIM. 1996, 394~398
    57冯吉才. SiC/Ta/SiC结合体の界面反应と强度.日本金属学会志. 1997, 61(5): 456~461
    58奈贺正明.接合层の构造と破断强度.日本金属学会志. 1997, 61(7): 636~642
    59刘玉莉,冯吉才.用Ti-Co合金液相扩散连接SiC陶瓷.哈尔滨工业大学学报. 1998, 30(6): 61~65
    60冀小强,李树杰,马天宇,张艳.用Zr/Nb复合钎料连接SiC陶瓷与Ni基高温合金.硅酸盐学报. 2002, 30(3):305~310
    61 Junqin Lia, Ping Xiao. Fabrication and Characterisation of Silicon Carbide/Superalloy Interfaces. Journal of the European Ceramic Society. 2004, 24: 2149~2156
    62杨冠军,郝士明. Ti-Ni-Nb三元系相图800℃等温截面的实验测定.稀有金属材料与工程. 1997, 26(2): 18~22
    63杨冠军,郝士明. Ti-Ni-Nb三元系相图700℃等温截面.中国有色金属学报. 1996, 6(1): 103~107
    64 L I Pryakhina, K P Myasnikova, V V Burnashova, E E Cherkashin, V Ya Markiv. Ternary Chemical Compounds in the Ni-Ti-Nb System. Poroshkovaya Metallurgiya. 1966, 44(8): 61~69
    65 W Luob, K Ishikawa, K Aoki. High Hydrogen Permeability in the Nb-rich Nb-Ti-Ni Alloy. Journal of Alloys and Compounds. 2006, 407:115~117
    66 Kunihiko Hashi, Kazuhiro Ishikawa, Takeshi Matsuda, Kiyoshi Aoki. Microstructures and Hydrogen Permeability of Nb-Ti-Ni Alloys with High Resistance to Hydrogen Embrittlement. Materials Transactions. 2005, 46(5): 1026~1031
    67 Sungtae Kim, J H Perepezko, Z Dong, A S Edelstein. Interface Reaction between Ni and Amorphous SiC. Journal of Electronic Materials. Special Issue Paper, 2004, 33(1): 1064~1070

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700