C/SiC复合材料与TiAl合金的原位反应辅助钎焊机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C/SiC复合材料和TiAl合金的密度低,具有良好的高温力学性能和抗氧化性能,将两者连接制成应用于航空航天领域的耐高温构件,可减轻结构重量,获得满意的高温性能。但是,C/SiC复合材料和TiAl合金的可靠连接不仅要解决两者热膨胀系数差异导致的接头残余应力,而且还要考虑TiAl合金的扩散溶解对接头界面组织和性能的影响。针对以上两点,本文在使用AgCu钎料分析两种母材钎焊性的基础上,提出了原位反应辅助钎焊TiAl合金和C/SiC复合材料。通过Ti-Ni-B高温钎料的设计,实现了接头热膨胀系数的梯度过渡,研究了界面反应机理,初步揭示了TiAl合金在液态钎料中的溶解现象和规律。
     C/SiC复合材料/AgCu/TiAl合金钎焊接头界面组织和性能分析表明,TiAl合金的扩散溶解量是接头界面组织的主要控制因素。TiAl合金溶解量增加,钎缝中Al-Cu-Ti化合物增多,Ag基固溶体所占比例减小;复合材料侧TiC反应层变厚。TiC反应层过厚导致接头残余应力增加,弱化接头性能。这些结论对原位反应中间层的设计和优化具有指导意义。
     确定了由Ti-Ni-B组成的中间层体系,采用细观力学夹杂理论和试验相结合的方法优化中间层的成分为(Ti-66Ni)1-xBBx(x=2.3~4.0wt.%)。采用粉末机械合金化和电弧熔炼两种方法制备了B含量为3.2wt.%的钎料作为研究对象,两种形式的钎料钎焊接头的界面结构相似,从TiAl到C/SiC侧依次为β/β+τ3/β+τ3+TiB/τ3/TiC。但是,钎缝中TiB的形成机理不同。钎焊过程中,电弧熔炼合金钎料中B源是以块状TiB2的形式参与反应形成长条状TiB相,试验表明,TiB2向TiB的转化是伴随着TiAl合金的溶解逐步发生的。
     钎焊温度为1180°C,保温10min时,优化的粉末钎料钎焊接头的室温抗剪强度和600°C高温抗剪强度最大,平均值分别为99MPa和63MPa。室温剪切后,接头的断裂主要发生在TiC反应层以及复合材料基体,复合材料的破坏形式是C纤维被剪断后沿SiC基体形成台阶状断裂面。600°C高温剪切后,接头的断裂主要发生在复合材料侧τ3反应层。
     建立了TiAl向液态钎料中溶解厚度的数学模型,设计了平行等间隙试验装置,实现了钎缝间隙的可调节性。采用两种方法测量TiAl合金的溶解厚度,提高了TiAl合金溶解厚度测量的精确性。试验验证结果表明,溶解厚度数学模型可用于研究高温钎焊条件下母材的溶解特性及评价钎料对母材的溶蚀。
Both of C/SiC composites and TiAl alloy possess lower density, excellent high-temperature mechanical properties as well as oxidation resistance. Therefore, the preparation of the high-temperature resistant components using the two materials will have a good future of applications in the territory of aerospace due to its lightweight and satisfactory high-temperature properties. However, in order to successfully join the two materials, not only thermal stress caused by the high mismatches of thermal expansion coefficient between TiAl alloy and C/SiC composites, but also the dissolution of the TiAl alloy should be paid attention. AgCu filler metal was used to study the brazing behavior of TiAl and C/SiC. According to the results, the in situ reaction assisted brazing method was used to join TiAl and C/SiC. A novel Ti-Ni-B filler metal was designed to achieve a gradient thermal expansion coefficient of the joint. The interfacial reaction mechanism of the joint and the dissolution of TiAl alloy were also studied in this paper.
     The analysis of the microstructure and mechanical properties of the C/SiC composite/AgCu/TiAl joint shows that the dissolution of the TiAl alloy is the main controlling factor pertains to the microstructure evolution of the joint interface. With the increase of the dissolution of the TiAl, Al-Cu-Ti compounds increased, the proportion of Ag base solid solution decreased and TiC reaction layer thickened. The thickness of TiC layer plays an important role on the shear strength of the joint. These results are significance for the design and optimize of the high temperature filler metal.
     The ternary system Ti-Ni-B with the optimized components of (Ti-66Ni)1-xBBx (x=2.3-4.0wt.%) was designed as the filler metal. The filler metal was prepared by mechanical alloying and conventional tungsten vacuum arc melting respectively. The similar joint interfacial structure of the two filler metal isβ/β+τ3/β+τ3+TiB/τ3/TiC from TiAl side to C/SiC side. However, the formation mechanism of TiB in the brazing seam was different. The B resource from the filler metal prepared by vacuum arc remelt was TiB2 blocks which react with active elements Ti to form TiB strips during the brazing process.
     The maximum shear strength of the joint using the optimized filler metal power is 99MPa at room temperature and 63MPa at 600°C respectively, with the corresponding brazing temperature 1180°C for 10 min. After shear tests at room temperature, the fracture path mainly occurs along the TiC layer and the matrix of the composite. After the C fiber was pulling up, a step-like fracture surface was formed along the SiC matrix. When shear test at 600°C, the brazing seam adjacent to C/SiC composite become the weak area of the joint.
     A mathematic model was set up to evaluate the base metal dissolution thickness. In order to achieve an adjustable brazing gap, the parallel test model was designed. Meanwhile, two kinds of dissolution thickness measurement methods were used to improve the measurement accuracy. According to the experimental results, the dissolution thickness model has good accuracy and reliability, it can be used to evaluate the dissolution characteristics of TiAl base metal and estimate the corrosion of brazing filler metals, which is very important for the utility of TiAl alloy brazed joint.
引文
1 A.G. William, M. Claus, J. Marc, J.D. Wells. Thermo-mechanical Performance of Precision C/SiC Mounts. Optical Manufacturing and Testing IV, H Philip Stahl, Editor, Proceedings of SPIE. 2001, 4451:468~479
    2 S. Schmidta, S. Beyera, H. Knabeb, etal. Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion Technology Applications. Acta Astronautica. 2004, 55(3/9):409~420
    3 C. Thomas, T. Joseph, M. James, etal. Dynamic Properties of 3-D Reinforced C/SiC for the RS-2200 Liner Aerospike Engine. Ceramic engineering and society proceedings, 2000, 21(3):1~9
    4 K. Jian, Z.H. Chen, Q.S. Ma, W.W. Zheng. Effects of Pyrolysis Processes on the Microstructure and Mechanical Properties of C/SiC Composites Using Polycarbosilane. Materials Science and Engineering A. 2005, 390:154~158
    5 J.C. Williams, S.J. Edgar. Progress in Structural Materials for Aerospace Systems. Acta Materialia. 2003, 51:5775~5799
    6 M.C. Chaturvedi, Q. Xu, N.L. Richards. Development of Crack-free Welds in a TiAl-based Alloy. Journal of Materials Processing Technology. 2001, 118:74~78
    7 Y.L. Li, P. He, J.C. Feng. Interface Structure and Mechanical Properties of the TiAl/42CrMo Steel Joint Vacuum Brazed with Ag–Cu/Ti/Ag–Cu Filler Metal. Scripta Materialia. 2006, 55:171~174
    8 P. He, J.C. Feng, W. Xu. Microstructure and Kinetics of Induction Brazing TiAl-based Intermetallics to Steel 35CrMo Using AgCuTi Filler Metal. Materials Science and Engineering A. 2006, 418:53~60
    9 G.B. Lin, J.H. Huang. Brazed Joints of Cf-SiC Composite to Ti Alloy Using Ag-Cu-Ti-(Ti+C) Mixed Powder as Interlayer. Powder Metallurgy. 2006, 49:345~348.
    10 G.B. Lin, J.H. Huang, H. Zhang. Joints of Carbon Fiber-reinforced SiC Composites to Ti-alloy Brazed by Ag-Cu-Ti Short Carbon Fibers. Journal of Materials Processing Technology. 2007, 189(1~3):256~261
    11 J.H. Xiong, J.H. Huang, H. Zhang, X.K. Zhao. Brazing of Carbon Fiber- reinforced SiC Composite and TC4 Using Ag-Cu-Ti Active Brazing Alloy. Materials Science and Engineering A. 2010, 527:1096~1101
    12 Y.H. Ban, J.H. Huang, H. Zhang, etal. Microstructure of Reactive Composite Brazing Joints of Cf/SiC Composite to Ti-6Al-4V Alloy with Cu-Ti-C Filler Material. Rare Metal Materials and Engineering. 2009, 38(4):713~716
    13 M. Singh, R. Asthana, T.P. Shpargel. Brazing of Ceramic-matrix Composites to Ti and Hastealloy Using Ni-base Metallic Glass Interlayers. Materials Science and Engineering A. 2008, 498:19~30
    14张建军,李树杰,段辉平等.用Zr/Ta复合中间层热压扩散连接C/SiC和镍基高温合金.稀有金属材料与工程. 2002, 31(增刊1):393~396
    15 S.J. Li, J.J. Zhang, X.B. Liang, etal. Joining of Carbon Fibre Reinforced SiC (Cf/SiC) to Ni-based Super-alloy with Multiple Interlayers. International Journal of Modern Physics. 2003, 17(8-9):177~178
    16熊江涛,李京龙,张赋升.二维碳/碳化硅复合材料与铌合金的连接.无机材料学报. 2006, 21(6):1391~1396
    17所俊. SiC陶瓷及其复合材料的先驱体高温连接及陶瓷金属基梯度材料的制备与连接研究.国防科技大学博士学位论文. 2005,74~89
    18刘洪丽,田春英,吴明忠.陶瓷先驱体聚硅氮烷连接Cf/SiC工艺及连接性能.中国有色金属学报. 2008, 18(2):278~281
    19童巧英,成来飞,张立同.三维C/SiC复合材料在线液相渗透连接.稀有金属材料与工程. 2004, 33(1):101~104
    20 S.J. Lee, S.K. Wu. Infrared Joining Strength and Interfacial Microstructures of Ti-48Al-2Nb-2Cr Intermetallics Using Ti–15Cu–15Ni Foil. Intermetallics. 1999, 7(1):11~21
    21王彦芳,王存山,高强等. TiAl合金的非晶钎焊.焊接学报. 2004, 25(2):111~114
    22 A. Guedes, A.M.P. Pnto, M.F. Viera, F. Viana. The Influence of the Processing Temperature on the Microstructure ofγ-TiAl Joints Brazed with a Ti-15Cu-15Ni Alloy. Materials Science Forum. 2003, 426-432(5):4159~4164
    23 I.C. Wallis, H.S. Ubhi, M.P. Bacos. Brazed Joints inγ-TiAl Sheet: Microstructure and Properties. Intermetallics. 2004, 12(3):303~316
    24 A. Guedes, A.M.P. Pnto, M.F. Viera, F. Viana. Joining Ti-47Al-2Cr-2Nb with a Ti/(Cu,Ni)/Ti Clad-laminated Braze Alloy. Journal of Materials Science. 2003, 38(11):2409~2414
    25 U. Keisuke, S. Hiroyuki, K.F. Kojiro. Joining of Intermetallic Compound TiAl by Using Al Filler Metal. Zeitschrift fuer Metallkunde. 1995, 86(4):270~274
    26 R.K. Shiue, S.K. Wu, S.Y. Chen. Infrared Brazing of TiAl Using Al-based Braze Alloys. Intermetallics. 2003, 11:661~671
    27 R.K. Shiue, S.K. Wu, S.Y. Chen. Infrared Brazing of TiAl Intermetallic Using BAg-8 Braze Alloy. Acta Materialia. 2003, 51:1991~2004
    28薛小怀,吴鲁海,茅及放. TiAl合金与40Cr钢的真空钎焊研究.航空材料学报. 2003, 23 (S1):136~138
    29 J.M. Koo, W.B. Lee, M.G. Kim. Induction Brazing ofγ-TiAl to Alloy Steel AISI4140 Using Filler Metal of Eutectic Ag-Cu Alloy Coated with Ti Film. Materials Transactions. 2005, 46(2):303~308
    30吴铭方,杨敏,张超. Ti/Cu共晶反应液相铺展及组织.焊接学报. 2005, 26(10):68~71
    31于文花,肖爱群,庄鸿寿.铝合金真空钎焊用低温铝基钎料的研究.航天制造技术. 2005(6):10~13
    32张新平,史耀武,任耀文.镍基非晶态及晶态钎料真空钎焊工艺性能的比较.焊接学报. 1996, 17(4):205~211
    33 S.J. Lee, S.K. Wu, R.Y. Lin. Infrared Joining of TiAl Intermetallics Using Ti-15Cu-15Ni Foil-Ⅰ. The Microstucture Morphologies of Joint Interfaces. Acta Materialia. 1998, 46(4):1283~1295
    34 S.J. Lee, S.K. Wu, R.Y. Lin. Infrared Joining of TiAl Intermetallics Using Ti-15Cu-15Ni Foil-Ⅱ. The Microstuctural Evolution at High Temperature. Acta Materialia. 1998, 46(4):1297~1305
    35 R.K. Shiue, S.K Wu, S.Y. Chen. Infrared Brazing of TiAl Intermetallic Using Pure Silver. Intermetallics. 2004, 12(7-9):929~936
    36方洪渊,冯吉才.材料连接过程中的界面行为.哈尔滨工业大学出版社. 2005:54~55
    37 X.P. Zhang, Y.W. Shi. A Dissolution Model of Base Metal in Liquid Brazing Filler Metal During High Temperature Brazing. Scripta Materialia. 2004, 50:1003~1006
    38 P. Villars, A. Prince, H. Okamoto. Handbook of Ternary Alloy Phase Diagrams. ASM International. Metals Park. 1995, 3:1985
    39 Y.Q. Qin, J.C. Feng. Microstructure and Mechanical Properties of C/C Composite/TC4 Joint Using AgCuTi Filler Metal. Materials Science and Engineering A. 2007, 454:322~327
    40梁英教,车荫昌.无机物热力学手册.东北大学出版社,1993:372~383
    41 P. Villars, A. Prince, H. Okamoto. Handbook of Ternary Alloy Phase Diagrams. ASM International. Metals Park. 1995, 3:1992
    42 A.P. Xian Residual Stress in a Soft-Buffer-Inserted Metal/ Ceramic Joint. Journal of American Ceramic Society. 1990, 73(11):3462~3466
    43 B Zorc, L Kosec. A New Approach to Improving the Properties of Brazed Joints. Welding Journal. 2000, 79:24~31
    44张春光,乔冠军,金志浩. Ni-Ti焊料部分液相瞬间连接高纯Al2O3-Kovar工艺的研究.稀有金属材料与工程. 2002, 31(4):299~302
    45孙德超,柯黎明,邢丽.陶瓷与金属梯度过渡层的自蔓延高温合成.焊接学报. 2000, 21(3):44~46
    46 K. Morsi, V.V. Patel. Processing and Properties of Titanium-Titanium Boride (TiBw) Matrix Composites-A Review. Journal of Material Science. 2007, 42:2037~2047
    47 S.C. Tjong, Y.W. Mai. Processing-Structure-Property Aspects of Particulate- and Whisker-reinforced Titanium Matrix Composites. Composites Science and Technology. 2008, 68:583~601
    48 S. Gorsse, D.B. Miracle. Mechanical Properties of Ti-6Al-4V/TiB Composites with Randomly Oriented and Aligned TiB Reinforcements. Acta Materialia. 2003, 51:2427~2442
    49 R. Banerjee, A. Genc, D. Hill, P.C. Collins, H.L. Fraser. Nanoscale TiB Precipitates in Laser Deposited Ti-matrix Composites. Scripta Materialia. 2005, 53:1433~1437
    50 W.J. Lu, L. Xiao, K. Geng, J.N. Qin, D. Zhang. Growth Mechanism of In-situ Synthesized TiBw in Titanium Matrix Composites Prepared by Common Casting Technique. Materials Characterization. 2008, 59:912~919
    51 T. Yamamoto, A. Otsuki, K. Ishihara, P.H. Shingu. Synthesis of Near Net Shape High Density TiB/Ti Composite. Materials Science and Engineering A. 1997, 239:647~651
    52 K.B. Panda, K.S.R. Chandran. Synthesis of Ductile Titanium-Titanium Boride (Ti-TiB) Composites with a Beta-Titanium Matrix: The Nature of TiB Formation and Composite Properties. Metallurgicaland Materials Transactions A. 2003, 34:1371~1385
    53 J.C. Schuster. Critical Data Evalution of the Aluminium-Nickel-Titanium system.Intermetallics. 2006, 14:1304~1311
    54潘竹.多元铝合金相图拓扑关系的理论和实验研究.中南大学大学博士学位论文. 2007,77~80
    55 K. Zeng, R. Schmid-Fetzer, B. Huneau, P. Rogl, J. Bauer. The Ternary System Al-Ni-Ti Part II: Thermodynamic Assessment and Experimental Investigation of Polythermal Phase Equilibria. Intermetallics. 1999, 7:1347~1359
    56 P. Villars, A. Prince, H. Okamoto. Handbook of Ternary Alloy Phase Diagrams. ASM International. Metals Park. 1995, 5:576

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700