置氢TC4钛合金与C/SiC复合材料钎焊工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
置氢钛合金,即通过热氢处理技术来改变钛合金的相组成和微观结构,得到的热塑性、热加工性及扩散性均有所改善的钛合金,这是材料科学领域新兴的一个热门方向。目前,国内外的研究主要集中在置氢钛合金热塑性、热加工性以及残钛处理等方面,而对其连接方面的研究很少。C/SiC复合材料具有优异的耐高温、耐磨及抗氧化的特性。因此,实现两种新材料有效连接,既可以应用于先进火箭推力室,又能为置氢钛合金与异种材料的连接提供了技术参考。本文采用AgCu箔与Ni箔实现置氢TC4钛合金与C/SiC复合材料的钎焊连接,研究钎焊工艺参数对接头微观组织的影响规律;揭示界面产物形成的热力学因素及机理;分析连接工艺参数对接头力学性能影响规律,解明接头的断裂行为机制,优化连接工艺。
     采用AgCu箔连接时,典型的界面结构为:置氢TC4钛合金/针状韦德曼组织/[Ti(s.s)+Ti2Cu]过共析组织/(Ti2Cu+TiCu+Ti3Cu4)扩散带/Ag(s.s)+Cu(s.s)/TiCu+ Ti5Si3Cx/TiC/C/SiC复合材料。当T=840℃/t=10min时,接头抗剪强度达到最高值97MPa。随着钎焊规范的提高,接头的抗剪强度均先增大后减小,TiC反应层为断裂路径的关键。
     采用纯Ni箔钎焊时,典型的界面结构为:置氢TC4钛合金/过共析组织[Ti2Ni+Ti(s.s)]/Ti2Ni+少量过共晶组织[Ti2Ni+Ti(s.s)]/TiC/C/SiC复合材料。钎焊规范提高,接头界面产物没有明显的变化。钎缝中部Ti2Ni层中原本断续分布的灰黑色块状的Ti(s.s)逐渐长大;钛合金侧Ti2Ni+Ti(s.s)过共析组织厚度不断增大,α-Ti的生长更为粗大。当T=1070℃/t=15min时,接头的抗剪强度最高,达到110MPa。
     氢改善钛合金钎焊连接性的主要表现在:氢通过降低α→β转变温度、改变钛合金微观组织和增加位错密度,提高了钛合金的超塑性流变能力,与钎料箔达到良好的接触;氢的分解活化钛合金待焊表面,使钎料和待焊母材较快达到原子间接触;氢引起的弱键效应可降低原子结合能,增强空位密度及其迁移能力,从而使得元素间互扩散与自扩散能力增强,原子间的扩散与反应更充分。
     本文还采用综合热分析研究了置氢TC4钛合金的放氢特性,发现置氢TC4钛合金在600℃-950℃之间脱氢分解,温度为750℃时脱氢反应率达到最大值。并对TiC反应层进行了热力学和动力学分析,通过分析其成长规律,获取了反应层成长动力学参数,得到了反映反应层成长行为的动力学方程。
Titanium and hydrogen processing technology (THT) was used to change the alloy phase composition and microstructure in order to improve thermoplastic, thermal processing and diffusion of titanium alloy. THT was a hot new direction in the field of materials science. Present studies are most focused on the thermoplastic, hot workability and the residual of hydrogen titanium alloy, but there were few studies on their connectivity. C/SiC composite had excellent high temperature, wear and antioxidant properties. Therefore, to achieve an effective connection of the two new materials, could both be used in advanced rocket thrust chamber, but also provide a technical reference for connection of the hydrogenation titanium alloys and dissimilar materials. In this paper, AgCu foil and Ni foil were used for solder joint of hydrogen achieved Alloy TC4 and C/SiC composite. The purpose was to study the influence of brazing parameters on microstructure of joints;reveal the thermodynamics of interface product and its formation mechanism; study the influence of connection parameters on mechanical properties of joint; explain the fracture behavior of joints; optimize connection process.
     AgCu foil connection had a typical interface structure:titanium alloys/needle Veidemann organization/[Ti(s.s)+Ti2Cu] hypereutectoid organization/(Ti2Cu+TiCu+ Ti3Cu4) diffusion zone/Ag(s.s)+Cu(s.s)/Ti2Cu+Ti5Si3Cx/TiC/C/SiC Composite. At 840℃,10min insulation, Joint shear strength up to 97MPa. With the increased brazing temperature or holding time, the shear strength of joints first increased and then decreased, TiC reaction layer is the key to breaking the path.
     Pure Ni foil soldering, the typical interface structure:hydrogen TC4 titanium alloy/hypereutectic structure [Ti2Ni+Ti(s.s)]/Ti2Ni+a small amount of hypereutectic structure [Ti2Ni+Ti(s.s)]/TiC/C/SiC composites. Improveing brazing Specification, the joint interface product did not change significantly. The original dark gray block of Ti (ss) distribut in the Ti2Ni layer growed up; The thickness of Ti2Ni+Ti(s.s) eutectic on titanium side had been increased, a-Ti growing more coarse. At 1070℃,15min insulation, the joint shear strength is 110MPa and the highest.
     Hydrogen could improve brazing connectivity of titanium alloy for:Hydrogen could reduce theα→βtransition temperature which can change the alloy microstructure and increase dislocation density, improve the superplastic flow capacity of titanium alloy, achieve a good contact to solder foil. The decomposition of hydrogen activated the surface of the welded titanium, so solder and base materials could be soldered fast to atomic contacts; the addition of hydrogen in titanium. Caused vacancy concentration, increased the host elements Ti and alloying element diffusion and mutual diffusion coefficient, so that the diffusion rate increases and the diffusion distance increases, Diffusion and reaction between atoms became better.
     The hydrogen TC4 titanium alloy dehydrogenation decomposition between 600℃-950℃. At 750℃, the rate of dehydrogenation reaction rate is maximum. By analyzing the pattern of growth for the TiC reaction layer, this paper obtained growth kinetics parameters, then got the dynamic equations for growth behavior of the reaction layer.
引文
1. O. N. Senkov. Thermohydrogen Processing of Titanium Alloys. International Journal of Hydrogen Energy.1999,24(6):565-576
    2.张勇.钛合金及Ti3Al基合金的氢处理研究.航空材料.1996,(4):56~61
    3. V. Bhosle, M. Miranova. Dehydrogenation of TiH2. Materials Science and Engineering.2003,356(1-2):190-199
    4. Zhang. H. The Effect of Hydrogen on the Strength and Superplastic Deformation of Beta Titanium Alloys. Materials Science.1996,31:6105-6110
    5. 张少卿.氢在钛合金热加工中的作用.材料工程.1992,(2):24~29
    6.何鹏,杨秀娟,冯吉才等.保温时间对置氢TC4真空钎焊界面结构及连接强度的影响.焊接学报.2008,29(2):1-4
    7. Feng Jicai, Liu Hong, He Peng. Effect of Hydrogen on Diffusion Bonding of the Hydrogenated Ti6A14V Alloy Containing 0.3wt.% Hydrogen. International Journal of Hydrogen Energy.2009,32(14):3054-3058.
    8. Xu. Y. D, Cheng. L. F. Carbon/Silicon Carbide Composites Prepared by Chemical Vapor Infiltration Combined with Silicon Melt Infiltration. Carbon.1999, 37(8):1179-1187
    9.沈保罗,冯可芹,高升吉.钛合金氢脆的研究进展.全面腐蚀控制.2000,14(3):3-4
    10.严铿,徐济进,蒋成禹.T225NG钛合金在高温高压水介质中应力腐蚀行为的研究.稀有金属.2009,28(2):1-3
    II. E. TalGutelmacher, D. Eliezer, D. Eylon. The Effects of Low Fugacity Hydrogen in Duplex and Betaannealed Ti6A14V Alloy. Materials Science and Engineering.2004, 381(1):230-236
    12. D. Eliezer. Positive Effects of Hydrogen in Metals. Materials Science and Engineering.2007,280(1):220-224
    13.侯红亮,李志强,王亚军等.钛合金热氢处理技术及其应用前景.中国有色金属学报.2003,13(3):1~17
    14. W. R. Kerr, R. R. Smith, M. E. Rosenblum. Hydrogen as an Alloying Element in Titanium. Science and Technology.1980:2477-2486
    15. O. N. Senkov, F. H. Froes. Thermohydrogen Processing of Titanium Alloys. International Journal of Hydrogen Energy.1999,24(6):565-576
    16. M. A. Murzinova, G. A. Salishchev, D. D. Afonichev. Formation of Nanocrystalline Structure in Two-phase Titanium Alloy by Combination of Thermohydrogen Processing with Hot Working. International Journal of Hydrogen Energy.2002, 27(7):775-782
    17. I. Qazi. Thermhydrogen Processing of Ti6Al4V and TiAl Alloy. Doctoral Dissertation of Idaho University.2002:11-20
    18. Fang Tunying, Wang Wen. Microstructural Features of Thermo Chemical Processing in Ti6Al4V Alloy. Materials Chemistry and Physics.1998,56(1):35-47
    19. M. A. Murzinova. Application of Reversible Hydrogen Alloying for Formation of Submicrocrystalline Structure in (α+β) Titanium Alloys. International Journal of Hydrogen Energy.1997,22(2-3):201-204
    20.宫波,徐振声,赖祖涵Ti6Al4V合金的吸氢行为以及吸氢过程的相变.材料科学进展.1989,3(4):318~324
    21.黄东,南海,吴鹤.氢处理技术在钛合金中的应用.金属热处理.2004,29(6):1~5
    22.曹兴民,奚正平,赵永庆.TC21合金高温渗氢组织变化研究.热加工工艺.2005,(1):29~33
    23.韩明臣.钛合金的热氢处理.宇航材料工艺.1999,29(1):1~6
    24.何晓,沈保罗,曹建玲.氢对两种新型钛合金强度和塑性的影响.稀有金属材料科学与工程.2009,13(3):1-17
    25.苏彦庆,骆良顺,毕维升等.置氢对Ti6Al4V合金室温组织的影响.材料科学与工艺.2005,13(1):1-5
    26. A. A. Ilyin. Phase and Structure Transformations in Titanium Alloys Alloyed with Hydrogen. Izv VUZ Tsvetnaya Metallurgiya.1987, (1):96-101
    27. F. H. Froes, O. N. Senkov, J. I. Qazi. Hydrogen as a Temporary Alloying Element in Titanium Alloys:Thermohydrogen Processing. International Materials Reviews. 2008,49(3-4):227-245
    28. A. A. Ilyin, A. M. Mamonov. Temperature-concentration Diagrams of Phase Composition of Hydrogen-bearing Multicomponent Titanium Alloys. Russian Metallurgy.1994, (5):52-57
    29. W. R. Kerr, R. R. Smith, M. E. Rosenblum. Hydrogen as an Alloying Element in Titanium (Hydrovac). Titanium 80:Science and Technology.1980, (2)2477-2486
    30. A. A. IIyn, B. A. Kolachev, A. M. Mamonov. Titanium 92:Science and Technology. 1993, (1):941-947
    31. J. I. Qazi, J. Rahim, O. N. Senkov, F. H. Froes. Phase Transformations in the Ti-6Al-4V-H System. Journal of the Minerals Metals and Materials Society.2009, 54(2):68-71
    32. E. Hayashi, Y. Kurokawa, Y. Fukai. Hydrogen-Induced Enhancement of Interdiffusion in Cu-Ni Diffusion Couples. Physical Review Letters.1998, 80(25):5588-5590
    33. Y. Fukai, N. Okuma. Formation of Superabundant Vacancies in Pd Hydride under High Hydrogen Pressures. Physical Review Letters.1994,73(12):1640-1643
    34. K. Watanabe, N. Okuma, Y. Fukai. Superabundant Vacancies and Enhanced Diffusion in Pd-Rh Alloys under High Hydrogen Pressures. Scripta Materialia.1996, 34(4):551-557
    35. B. A. Kolachev, A. A. Ⅱyin, V. K. Nosov. Hydrogentechnology as New Perspective Type of Titanium Alloy Processing. Advances in the science and technology of titanium alloy processing.1996, (2):331-338
    36. H. Liu, J. Cao, P. He, J.C. Feng. Effect of Hydrogen on Diffusion Bonding of commercially Pure Titanium and Hydrogenated Ti6A14V Alloys. International Journal of Hydrogen Energy.2009,34(2):1108-1113
    37.李峰利.置氢TC21\Ti600及Ti40钛合金扩散连接工艺研究.哈尔滨工业大学硕士学位论文.2008:14~42
    38.范龙TiAl合金与置氢TC4钛合金扩散连接工艺研究.哈尔滨工业大学硕士学位论文.2008:25~40
    39.杨秀娟,何鹏,刘宏等.连接温度对Al-12Si钎焊连接置氢TC4钛合金接头组织及力学性能的影响.第十二届全国钎焊与特种连接技术交流会论文集.2007:211~213
    40.杨秀娟,何鹏,刘宏等.连接温度对TiZrNiCu钎焊连接置氢TC4钛合金接头组织及力学性能的影响.第十二届全国钎焊与特种连接技术交流会论文集.2007:214~217
    41. G. B. Lin. Brazed Joints of Cf-SiC Composite to Ti Alloy Using Ag-Cu-Ti-(Ti+C) Mixed Powder as Interlayer. Powder Metallurgy.2006,49(4):345-348
    42. Lin Guobiao, Huang Jihua, Zhang Hong. Joints of Carbon Fiber-reinforced SiC Composites to Ti-alloy Brazed by Ag-Cu-Ti Short Carbon Fibers, Journal of Materials Processing Technology.2007,189(1-3):256-261
    43. Salvo. M. Joining of CMCs for Thermonuclear Fusion Application. Journal of Nuclear Materials.1996, (233-237):947-953
    44.刘玉章C/SiC复合材料与Nb的钎焊工艺及机理研究.哈尔滨工业大学硕士学位论文.2008:10-35
    45.董振华C/SiC复合材料与TC4钎焊工艺研究.哈尔滨工业大学硕士学位论文.2008:12~45
    46.董巧英,成来飞,张立同C/SiC复合材料与Nb的液相渗透连接.航空材料学报.2004,24(1):54-57
    47. Xiong Jiangtao, Li Jinglong, Huang Weidong. Joining of 3D C/SiC Composites to Niobium Alloy. Scripta Materialia.2006,55(2):151-154
    48.李树杰,张利.SiC基材料自身及其与金属的连接.粉末冶金技术.2004, (4):91~97
    49.张建军.用Zr/Ta复合中间层热压扩散连接C/SiC和镍基高温合金.稀有金属材料与工程.2002,(31):393~399
    50.刘多AgCu/Ni复合中间层钎焊Si02陶瓷与TC4钛合金的工艺及机理研究.哈尔滨工业大学博士学位论文.2009:94~123
    51.刘宏.氢在TC4钛合金扩散连接中的作用机理研究.哈尔滨工业大学博士学位论文.2008:80~96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700