磨头磨削钛合金TC11的表面完整性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金由于其比强度大、高低温性能好、耐腐蚀强等众多优点,在航空、航天等行业部门得到广泛应用。许多钛合金零件需要在极其恶劣的环境工作,其不仅需要零件表面粗糙度达到要求,还需要表面完整性达到要求,这无疑给实际加工带来巨大难度。而国内外对钛合金磨削表面完整性研究尚少,对于复杂曲面、微小型腔或由于加工空间所限,大砂轮、砂带不易磨削,而工人手工磨削,效率极低,磨削表面质量难以保证。基于此,本文以TC11为实验对象,研究小磨头在数控加工中心磨削钛合金的表面完整性。
     首先,选择了具有一定弹性的绿色SiC小磨头和超强硬度的陶瓷CBN小磨头来磨削钛合金TC11。SiC小磨头在低速情况下磨削,CBN小磨头在高速情况下磨削,并分别制定了多因素多水平的正交磨削实验参数。
     其次,对钛合金TC11进行了表面完整性的分析。在表面粗糙度方面,对其进行性噪比S/N分析,得出了最优磨削参数组合,并以此加工获得了良好的表面粗糙度值,对磨削因素做了ANVOA分析,获得了各因素对磨削表面质量的影响因子;在显微硬度方面,绘制出了显微硬度分布图,分析了引起硬度变化的原因;在金相组织方面,获得了磨削后表面的金相组织,观察发现没有出现重铸层和白层及金相组织的变化,分析了晶粒的变形原因;在残余应力方面,分析了形成残余应力的原因,给出了残余应力测量方法与计算公式,经测量分析后获得残余压应力,达到了表面完整性要求。
     再次,建立了砂轮与工件的接触模型,针对磨削过程中磨削力对工件变形与所引起的残余应力进行了有限元模拟。获得磨削力对各方向位移变化的规律,在法向磨削力方向产生最大位移变形量。随着磨削力的增大,位移变形量和应力值也将变大。
     最后,建立了热流密度模型,对磨削温度场及应力场进行了有限元模拟。随着热源的移动,温度场也随之变化,热影响区从磨削接触区逐渐向外扩大,温度从磨削中心区向外逐渐降低,之后达到稳定状态。模拟结果表明,磨削温度随磨削力的增大而增大,在几何磨削接触长度情况下磨削温度要大于实际接触长度时的温度。在随之进行的应力场模拟中,获得了应力值为-49.0--64.2MPa表面应力状况,和实际应力测量结果相比,应力性质相同,数量级一致,为磨削加工预测,制定合理的磨削参数提供了很好依据。
The titanium alloys, duo to their high specific strength, good performance at high or low temperature and good corrosion resistance, were widely used in the aviation, aerospace, and so on. Lots of titanium alloy parts had to be applied in the hostile environment, therefore, not only the surface roughness needed to be fulfill the requirements, but also the surface integrity needed, which gave to the considerable difficulty in the machining. However, the surface integrity in grinding titanium alloy was not widely researched at home and abroad. The large grinding wheel and belt were not easily used for the complex curved surface, small cavity or small grinding space. What's more, it is not efficient to grind parts by hand, and the surface quality is not easily guaranteed. Thus, the titanium alloy TC11is chosen, and it is necessary to investigate the surface integrity in grinding titanium alloy with small grinding wheel on the computerized numerical control machine.
     Firstly, the small green SiC wheel with elasticity and vitrified CBN wheel with super hardness were chosen to grind the titanium alloy TC11. The small SiC wheel was used to grind titanium at low velocity, and the vitrified CBN wheel was used at high speed. The many factors and levels orthogonal grinding parameters were estabilished for the two kinds of grinding tools, respectively.
     Secondly, the investigation on surface integrity in grinding titanium alloy TC11was done. For the surface roughness, the surface rouness values were measured, and the sign-noise ratio S/N were done subsequently. The optimal combination of grinding parameters was gotten, which was used to grind titanium, and the good surface topography was gotten. The ANVOA was also done, and the factors that have the most important influence on the surface roughness will be confirmed. For the microhardness, the microhardness profiles were drawn, and the reason of the microhardness variation was analysed. The metallotraphic structure of ground surface was measured. Phase transformation, white layer and recrystallized amorphous layer were not observed, and the reason that caused deformation of the crystalline grain was gotten. For the residual stress, the reason causing the residual stress was analysed, and the measurement method and stress formual were given. The residual compressive stress was obtained, which satisfied the requirement.
     Thirdly, the contact model of grinding wheel and workpiece was established, and the finite element simulation that grinding force caused the deformation of workpiece and residual stress in the grinding process was done. The law of grinding force casusing displacement variation was obtained, the maximal displacement deformation in the normal grinding force direction was observed. The larger grinding force was, the larger the displacement deformation and residual stress were.
     Finally, the heat flux model was set. The grinding temperature field and stress field were simulated by finite element method. The temperature field was changed with the heat source moving. The temperature reduced gradually from the grinding center to outer, and then reached to the stable state as time went. The simulated results indicated that the grinding temperature rised when the grinding force was larger and larger. The temperature was larger at the geometric contact length rather than at the actual contact length.The residual compressive stresses-49.0-62.2MPa were obtained in the ground surface. Compare to the actual measurement value, they were all residual compressive stresses and the same order of magnutide, which was a good base to establish grinding parameters and to forecast the grinding result.
引文
[1]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005.
    [2]曹春晓.我国航空用钛合金面临的21世纪的挑战[J].钛工业进展,1995(5):1-5.
    [3]任敬心,康仁科,王曦彬.难加工材料磨削技术[M].北京:电子工业出版社,2011.
    [4]杨冠军.钛合金研究和加工技术的新进展[J].钛工业进展,2001(3):1-5.
    [5]中国航空材料手册编辑委员会编.中国航空材料手册[M].北京:中国标准出版社,2001.
    [6]C.莱茵斯,M.皮特尔斯编,陈振华等译.钛与钛合金[M].北京:化学工业出版社,2005.
    [7]M. V. Ribeiro, M. R. V. Moreira, J. R. Ferreira. Optimization of titanium alloy (6A1-4V) machining [J]. Journal of Materials Processing Technology,2003,143-144:458-463.
    [8]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003.
    [9]肖鹏.钛合金TC4超高速磨削表面完整性的研究[D].长沙:湖南大学机械与运载工程学院,2009.
    [10]曾泉人,刘更,刘岚.机械加工零件表面完整性表征模型研究[J].中国机械工程,2010,21(24):2995-2999.
    [11]王贵成,洪泉,朱云明等.精密加工中表面完整性的综合评价[J].兵工学报,2005,26(6):0820-0824.
    [12]Field M, Kahles J F. The Surface Integrity of Machined and Ground High Strength Steels[J].DMIC Report,1964,210:54-77.
    [13]Field M, Kahles J F. Review of Surface Integrity of Machined Components[J].Annals of the CIRP,1971,20(2):153-162.
    [14]Field M, Kahles J F, Cammett J T. Review of Measuring Methods for Surface Integrity[J].Annals of the CIRP,1972,21(2):219-238.
    [15]盛晓敏.超高速磨削技术[M].北京:机械工业出版社,2010.
    [16]冯宝富,赵恒华,蔡光起等.高速单颗磨粒磨削机理的研究[J].东北大学学报,2002(5):0470-0473.
    [17]俞兴华.陶瓷结合剂CBN砂轮高速磨削钛合金(TC4)的实验研究[D].厦门:华侨大学,2011.
    [18]任敬心,华定安.磨削原理[M].北京:电子工业出版社,2011.
    [19]郭隐彪,杨炜,王振忠.磨削加工工艺及应用[M].北京:国防工业出版社,2010.
    [20]蔡光起,冯宝富,赵恒华.磨削磨料加工技术的最新发展[J].航空制造技术,2003(4):31-40.
    [21]郑焕文,蔡光起.国内外磨削技术的现状与主要发展方向[J].汽车工艺与材料,1996(5):1-5.
    [22]宋涛,赵恒华.磨削加工技术的现状[J].制造技术与机床.2011(11):60-63.
    [23]Bernhard kuttkat加工超长曲轴的随动磨削技术[J].现代制造,2007(13):98-99.
    [24]修世超,冯强.绿色磨削实现技术及其理论框架的构建[J].制造技术与机床,2008(10):28-32.
    [25]霍文国,徐九华,傅玉灿等.绿色磨削加工技术研究现状及进展[J].工具技术,2011,45(9):3-6.
    [26]T. Tawakoli, M. J. Hadad, M. H. Sadeghi. Influence of oil mist parameters on minimum quantity lubrication-MQL grinding process [J]. International Journal of Machine Tools & Manufacture,2010,50:521-531.
    [27]Sanchez J A, Pombo I, Alberdi R, et al. Machining evaluation of a hybrid MQL-CO2 grinding technology [J].Journal of Cleaner Production,2010,18(18):1840-1849.
    [28]顾礼铎.准干式绿色磨削可应用性及加工参数与表面质量关系的研究[D].青岛:青岛理工大学,2009.
    [29]赵恒华,蔡光起,高航.基于绿色磨削的冷气冷却实验研究[J].制造技术与机床,2004(4):54-55.
    [30]孙向东.磨削工艺绿色评价指标体系的AHP灰关联分析[J].金刚石与磨料磨具工程,2008(1):64-67.
    [31]D. A. Axinte, J. Kwong, M. C. Kong. Workpiece surface integrity of Ti-6-4 heat-resistant alloy when employing different polishing methods [J]. Journal of Materials Processing Technology,2009,209:843-852.
    [32]C. H. Che-Harona, A. Jawaid. The effect of machining on surface integrity of titanium alloy Ti-6% Al-4% V[J].Journal of Materials Processing Technology,2005,166:188-192.
    [33]D. K. Aspinwall, S. L. Soo, A. E. Berrisford, et al. Workpiece surface roughness and integrity after WEDM of Ti-6A1-4V and Inconel 718 using minimum damage generator technology[J]. CIRP Annals-Manufacturing Technology,2008,57:187-190.
    [34]A. Ginting, M. Nouari. Surface integrity of dry machined titanium alloys[J] International Journal of Machine Tools & Manufacture,2009,49:325-332.
    [35]A. L. Mantl, D. K. Aspinwall. Surface integrity of a high speed milled gamma titanium aluminde[J].Journal of Materials Processing Technology,2001,118:143-150.
    [36]D. Arola, M. Ramulu. Material removal in abrasive water jet machining of metals Surface integrity and texture[J].Wear,1997,210:50-58.
    [37]J. Sun, Y. B. Guo. A comprehensive experimental study on surface integrity by end milling Ti-6A1-4V [J]. Journal of Materials Processing Technology,2009,209:4036-4042.
    [38]H. Ali Razavi, Thomas R. Kurfess, Steven Danyluk. Force control grinding of gamma titanium aluminide[J].International Journal of Machine Tools & Manufacture,2003,43:185-191.
    [39]R. Hooda, F. Lechner, D. K. Aspinwall, et al. Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive[J]. International Journal of Machine Tools & Manufacture,2007,47:1486-1492.
    [40]D. A. Axinte, M. Kritmanorot, M. Axinte, et al. Investigations on belt polishing of heat-resistant titanium alloys[J].Journal of Materials Processing Technology,2005,166:398-404.
    [41]C. Guo, Y. Wu, V. Varghese, et al. Temperatures and Energy Partition for Grinding with Vitrified CBN Wheels[J].Annals of the ClRP,1999,48:247-250.
    [42]C. Guo, S. Ranganath, D. McIntosh, et al. Virtual high performance grinding with CBN wheels[J]. CIRP Annals-Manufacturing Technology,2008,57:325-328.
    [43]唐昆.TC4钛合金高效深磨工艺实验研究及其磨削质量预测[D].长沙:湖南大学机械与汽车工程学院,2007.
    [44]任敬心,华定安,黄奇等.陶瓷结合剂CBN砂轮磨削钛合金的研究[J].磨料磨具与磨削,1990,4(5):17-21.
    [45]康仁科,任敬心.改善钦合金磨削残余应力的有效途径[J].航空工艺技术,1990(2):7-11.
    [46]韩淑媛,任敬心,周文亚等.连续测量钦合金磨削表层残余应力的方法[J].航空工艺技术,1989(3):11-15.
    [47]黄奇,任敬心,华定安.单颗磨粒磨创钦合金的试验研究[J].航空工艺技术,1988(6):1-4.
    [48]任敬心,华定安,黄奇等.磨削钦合金时砂轮磨损机理的研究[J].航空学报,1991,12(6):B266-B272.
    [49]张智龙,任敬心,华定安.高效钦合金磨削液的研究[J].磨料磨具与磨削,1990,2(56):9-14.
    [50]杨茂奎,李雅卿,史兴宽等.陶瓷结合剂CBN砂轮磨削GH4169高温合金的磨削加工性与磨削表面完整性[J].工具技术,1996,30(11):6-10.
    [51]Yang C Y, Xu J H, Ding W F, et al. Dimension Accuracy and Surface Integrity of Creep Feed Ground Titanium Alloy with Monolayer Brazed CBN Shaped Wheels [J]. Chinese Journal of Aeronautics,2010,23:585-590.
    [52]Ding W F, Xu J H, Chen Z Z, et al. Grindability and Surface Integrity of Cast Nickel-based Superalloy in Creep Feed Grinding with Brazed CBN Abrasive Wheels[J]. Chinese Journal of Aeronautics,2010,23:501-510.
    [53]童圣亭.单层钎焊CBN砂轮成型磨削钛合金的研究[D].长沙:湖南大学机械与汽车工程学院,2007.
    [54]徐蔡俊.钛合金高效砂带磨削实验研究[D].南京:南京航空航天大学,2008.
    [55]任守良.钛合金砂带磨削研究[D].南京:南京航空航天大学,2007.
    [56]X P Xu, Y Q Yu, H Huang. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys[J]. Wear,2003,255:1421-1426.
    [57]胡忠辉,衷哲俊.磨削残余应力产生机理的研究[J].哈尔滨工业大学学报,1989(3),51-60.
    [58]S. Shaji, V. Radhakrishnan. Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method[J].Journal of Materials Processing Technology,2003,141,51-59.
    [59]A. Bendell, J. Disney, W. A. Pridmore. Taguchi Methods Applications in World Industry [M], UK:IFS Publications,1989.
    [60]W. H. Tang, Y. S. Tarng. Design optimization of cutting parameters for turning operations based on the Taguchi method[J].Journal of Materials Processing Technology,1988,84:122-129.
    [61]J. Kang, M. Hadfield. Parameter optimization by Taguchi methods for finishing advanced ceramic balls using a novel eccentric lapping machine[J].Journal of Engineering Manufacture,2001,215-B:69-78.
    [62]R. Komanduri, M. Jiang. Application of Taguchi method for optimization of finishing conditions in magnetic float polishing[J].Wear,1997,213(1-2):59-71.
    [63]J. L. Lin, K. S. Wang, B. H. Yan, Y. S. Tarng. Optimization of electrical discharge machining process based on the Taguchi method with fuzzy logics[J].Journal of Materials Processing Technology,2000,102:48-55.
    [64]Y. L. Su, S.H. Yao, C. S. Wei, et al. Analysis and design of a WC milling cutter with Ti CN coating[J].Wear,1998,215:59-66.
    [65]omer Savas, Ramazan Kayikci. Application of Taguchi's methods to investigate some factors affecting microporosity formation in A360 aluminium alloy casting[J] Materials and Design,2007,28:2224-2228.
    [66]Sudhir Kumar, Pradeep Kumar, H. S. Shan. Optimization of tensile properties of evaporative pattern casting process through Taguchi's method[J].Journal of Materials Processing Technology,2008,204:59-69.
    [67]Chen-Hao Li, Ming-Jong Tsai, Ciann-Dong Yang. Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method[J].Optics & Laser Technology,2007,39:786-795.
    [68]任敬心,康仁科,吴小玲等.钛合金的磨削烧伤和磨削裂纹[J].制造技术与机床,2000(10):40-42.
    [69]Saeed M, Gultekin 0, Victoria J, et al. Strengths and Limitations of Taguchi's Contributions to Quality, Manufacturing, and Process Engineering[J].Journal of Manufacturing Systems,2004,23(2):73-126.
    [70]Julie Z. Zhang, Joseph C. Chen b, E. Daniel Kirby. Surface roughness optimization in an end-milling operation using the Taguchi design method[J].Journal of Materials Processing Technology,2007,184:233-239.
    [71]Chin-Ping Fung, Po-Chung Kang. Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis[J].Journal of Materials Processing Technology,2005,170:602-610.
    [72]卢秉恒.机械制造技术基础[M].北京:机械工业出版社,2007.
    [73]S. A. Bentley, N. P. Goh,D. K. Aspinwall. Reciprocating surface grinding of a gamma titanium aluminide intermetallic alloy[J].Journal of Materials Processing Technology,2001,118:22-28.
    [74]Durul Ulutan, Tugrul Ozel. Machining induced surface integrity in titanium and nickel alloys:A review[J].International Journal of Machine Tools & Manufacture,2011,51: 250-280.
    [75]C. H. Che-Haron, A. Jawaid, The effect of machining on surface integrity of titanium[J].Journal of Materials Processing Technology,2005,166:188-192.
    [76]J I Hughes, A R C Sharman, K Ridgway. The effect of tool edge preparation on tool life and workpiece surface integrity[J].Journal of Engineering Manufacture,2004,218(9):1113-1123.
    [77]邓朝辉,刘改,刘禄祥等.强力砂带平面磨削工件表面残余应力的研究[J].湖南大学学报,1995,22(6):65-69.
    [78]米谷茂著,朱荆璞,邵会孟译.残余应力的产生和对策[M].北京:机械工业出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700