铝基碳化硅复合材料的超声辅助磨削加工工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝基碳化硅复合材料是以铝合金作为金属基体,加入一定量的碳化硅颗粒,经过一系列处理工艺,制备的特殊材料。铝基碳化硅复合材料除了具有基体金属或合金所具备的良好的抗冲击性能、抗疲劳性能、导热性能、导电性能和抗断裂性能以外,还具有较高耐磨性能和较低热膨胀系数,同时强度、刚度都很高。铝基碳化硅复合材料现在被广泛应用于在机械、汽车、航空航天、电子、光学等领域,成为应用较为广泛的新型材料。
     铝基碳化硅复合材料由于其特殊的组成及物理性能,传统切削加工中存在很多问题。传统加工过程中,铝合金基体局部熔化,生成积屑瘤,刀具磨损变钝,造成粗糙度下降,难以获得高质量的加工表面,相应的形位、尺寸公差也就很难保证。刀具磨损剧烈,导致加工成本高,同时,加工时硬质碳化硅颗粒会破碎、脱落,然后与切削液混合在一起,对机床造成极其不利的影响,降低机床寿命。随着碳化硅体积分数和碳化硅颗粒尺寸的不断变大,铝基碳化硅复合材料的加工会变得越来越难,这严重阻碍了其进一步的广泛应用。
     由于铝基碳化硅复合材料加工出现以上加工问题,本论文拟采用超声辅助磨削的工艺对其加工情况进行改善,重新设计并制造了超声辅助磨削系统,并对其加工铝基碳化硅复合材料的工艺进行研究。主要的工作和研究内容如下:
     1)超声辅助磨削试验平台的重新设计和搭建。根据实际条件以及加工试验的需要,重新设计了超声振动刀柄的结构零件,尤其对超声刀柄结构和工具磨头等进行了深度改进。试验平台是基于一台自制数控立式铣床的改造,在数控立式铣床上安装超声振动刀柄和Kastler三向测力仪等设备,完成超声辅助磨削试验台的搭建。
     2)进行铝基碳化硅复合材料超声辅助磨削工艺研究,主要从超声辅助磨削切削力和刀具磨损两方面进行试验对比,通过试验研究主轴转速、进给速度和磨削深度等参数对磨削力的影响,通过与同参数下普通磨削的磨削力的对比,超声辅助磨削的磨削力降低幅度在20%-50%之间。
     3)进行铝基碳化硅复合材料超声辅助磨削表面粗糙度和表面形貌研究,设计不同的加工工艺参数进行单因素对比试验和超声辅助磨削铝基碳化硅的正交试验,通过试验研究各加工参数对表面粗糙度的影响规律。
     4)根据铝基碳化硅复合材料的特殊性质,对其亚表面损伤检测工艺进行了研究。通过铝基碳化硅复合材料亚表面形貌研究,发现铝基碳化硅超声辅助磨削表面粗糙度较差的原因,并对其超声辅助磨削的材料去除机理进行了研究。
SiCp/Al composite is a stiff particle-reinforced metal matrix composite, of which aluminum alloy is used as the metal matrix and SiC particles are the reinforced phase. With the advantages such as high conductivity, high thermal conductivity, specific strength and specific rigidity, small linear expansibility, good dimension stability and heat resistance, good fatigue performance and low price, etc., SiCp/Al has been widely used in industries such as aviation, automobiles, electronic packaging, astronomy and optics.
     Due to high strength hard and brittle SiC ceramic grain being added, this material has been improved in mechanical properties and is seen to possess isotropic properties under macrography. However, owning to the SiC particle reinforcement, many difficulties are found in machining the material such as heavy tool abrasion, larger cutting force, BUE and high cutting temperature, which make the tool life shorten. In addition, material removal mechanism of SiCp/Al composite is different from ordinary metal materials and it is difficult to ensure good surface quality and machining precision by traditional surface processing. With the increasing of the SiC volume fraction in SiCp/Al composites, machining is one of the major problems that resists its wide spread engineering application.
     To solve the machining problems of SiCp/Al composite, an ultrasonic assisted grinding system was developed in this paper. Some researches were carried out about processing performance of the ultrasonic assisted grinding of materials. The main work and results are as follows:
     1. The ultrasonic assisted grinding test platform was set up. According to the test requirements and the conditions of processing, the ultrasonic generator and the ultrasonic structure devices were designed. Based on self-designed vertical drilling and milling machine, ultrasonic devices and three-dimensional dynamometer were installed to complete the preparation for the experiments.
     2. This paper researches on the contrast experiments between ultrasonic assisted grinding and traditional grinding about the grinding force. The influence of grinding parameters such as grinding force, spindle speed, feed rate and grinding depth on the grinding force were obtained. Compared with the traditional method, the grinding force could be reduced by50%at most in the ultrasonic machining.
     3. This paper also presented a study of the surface qualification of ultrasonic assisted grinding and common grinding. By observing surface morphology and testing the surface roughness, it could be seen that the surface qualification of SiCp/Al by ultrasonic grinding was worse than that by common grinding.
     4. According to the characteristics of SiCp/Al composite, the paper contains a research on the SiCp/Al composite subsurface damages testing method. Through the research on the subsurface damages of SiCp/Al machined by ultrasonic grinding, the reason that the SiCp/Al surface roughness by ultrasonic is worse than that by common grinding was found. After all the researches, the paper presented the processing mechanism of ultrasonic assisted grinding SiCp/Al composite.
引文
[1]马建平,樊建中,肖伯律,等SiCp/Al复合材料在航空航天领域的应用与发展[J].材料导报,2007,10:639-643.
    [2]王文明,曾苏民等.碳化硅颗粒增强铝基复合材料开发与应用的研究现状[J].兵器材料科学与工程,2004,3(27):61-67.
    [3]田治宇.颗粒增强金属基复合材料的研究及应用[J].金属材料与冶金工程,2008,1:3-8.
    [4]高维华.自生铝基复合材料的制备及其性能[D].山东:山东大学,2010.
    [5]崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002,6:3-6.
    [6]李培纶SiCp/Al复合材料的发展历史及研究现状[J].内蒙古科技与经济,2011,4(230):132-133.
    [7]石广新,张锐,等SiCp/Al复合材料研究进展[J].河南建材,2005,1:16-18.
    [8]胡永平,潘复生,等.金属基复合材料的应用现状[J].铝加工,1998,6(21):49-54.
    [9]黄世民.铝基复合材料的研究和发展[J].航空航天科学技术,1993,6:46-50.
    [10]王莹,刘向东.碳化硅颗粒增强铝基复合材料的现状及发展趋势[J].铸造设备研究,2003(3):18-22.
    [11]刘红霞.碳化硅颗粒增强铝基复合材料的钎焊工艺与机理研究[D].南京:南京航空航天大学,2008.
    [12]张建云.碳化硅颗粒增强铝基复合材料的性能研究[D].南京:南京航空航天大学,2006.
    [13]Carl Zweben. Advanced Materials for Optoelectronic Packaging[J]. Optoelectronics, 2002(9):37-40.
    [14]黄永攀,等.铝基复合材料的性能、应用及制造工艺[J].湖南冶金,2004,2(24):3-6.
    [15]王宇鑫,等.铝基复合材料的研究[J].上海有色金属,2010,4(13):36-42.
    [16]王维威,等.金属基复合材料的加工方法及应用[J].科技创新导报,2010,29:64-64.
    [17]周家林SiCp/Al复合材料高速切削机理研究[D].沈阳:沈阳理工大学,2008.
    [12]章文峰,潘晓南.PCD刀具加工SiC颗粒增强铝基复合材料的合理切削速度[J].材料工程,1999(1):10-14.
    [19]吴震宇,陈明,等.SiC颗粒增强铝基复合材料高速铣削实验研究[J].机械工程师,2003,8:14-17.
    [20]周明,李丹,等.电镀金刚石砂轮磨削加工SipC颗粒增强铝基复合材料的研究[J].金刚石与磨料磨具工程,2008,5(167):39-43.
    [21]S. Basavarajappa, G. Chandramohan, J. Paulo Davim. Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques [J]. Journal of materials processing technology,2008,196:332-338.
    [22]孔凡霞,张德远,等TiAIN涂层刀具高速铣削颗粒增强铝基复合材料时的磨损行为[J].机械工程材料,2009,8(33):81-84.
    [23]全燕鸣,周泽华.SiC/ZL复合材料的切削力.华南理工大学学报,2000,5(28):1-5.
    [24]Xiaoping Li.et al. Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear,2001 (247):161-171.
    [25]Joshi.S, Sramakrishnan. N. Wear of rotary carbide tools in machining of Al/SiCp composites [J]. Wear,1999,2 (230):124-132.
    [26]Pedersen, WE, Ramulu, M. Experimental analysis of turning centrifugally cast SiCp aluminum metal matrix composites with PCD and thick film CVD diamond tools [J]. TRANSACTIONS OF THE NORTH AMERICAN MANUFACTURING RESEARCH INSTITUTION OF SME,2003(XXXI):177-183.
    [27]Pedersen, WE, Ramulu, M. Proposed tool wear model for machining particle reinforced metal matrix composites [J]. Transactions of the North American Manufacturing Research Institution of SME,2005(33):549-556.
    [28]J.Paulo Davim et al. Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminum [J]. Journal of Materials Processing Technology,2000(103):417-423.
    [29]Pedersen, WE, Ramulu. M. A study of drilling of varying reinforcement SiCp/Al with solid carbide and carbide tipped drills [J]. Transactions of the North American Manufacturing Research Institute of SME,2004(32):279-286.
    [30]N. Muthukrishnan, M. Murugan, et al. Machinability issues in turning of AlSiC (10p) metal matrix composites [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,2008,3(39):211-218.
    [31]Muthukrishnan, N, Murugan. An investigation on the machinability of Al/SiC metal matrix composites using pcd inserts [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY.2008,38(5-6):447-454.
    [32]A. Manna, B.'Bhattacharayya. A study on machinability of Al/SiC-MMC [J].Journal of Materials Processing Technology,2003,140:711-716.
    [33]张元晶SiCp/Al复合材料高速切削加工表面微观形貌表征的研究[D].哈尔滨:哈尔滨工业大学,2010.
    [34]于晓琳,黄树涛.高速铣削高体积分数SiCp/Al复合材料表面形貌及切屑机制的研究[J].中国机械工程,2010,5(21):519-524.
    [35]Zhao, Hang. Du, Jinguang. Zhou, Zhiyong. Li, Jianguang. Experimental study on mill-grinding SiCp/Al [J]. Journal of Harbin Institute of Technology (New Series),2010 (17):179-182.
    [36]许立福,周丽,等.PCD刀具高速铣削SiCp/Al复合材料的表面粗糙度研究[J].沈阳理工大学学报,2009,1(28):41-43.
    [37]Yao, Y. X. Du, J. G. Li, J. G. Zhao, H. Surface Quality Analysis in Mill-Grinding of SiCp/Al [J]. Advanced Materials Research,2011(299-300):1060-1063.
    [38]Wang, Yang Jun. Zhou, Ming. Zhang, Yuan Jing. The Study on Three-Dimensional Roughness of Machined Surface in High Speed Milling of SiCp/Al Composites [J]. Advanced Materials Research,2011(150-151):129-132.
    [39]Abeesh C. Basheera, Uday A. Dabadea, Suhas S. Joshi. Modeling of surface roughness in precision machining of metal matrix composites using ANN [J]. Journal of materials processing technology,2008(197):439-444.
    [40]Gul Tosun, Mehtap Muratoglu. The drilling of Al/SiCp metal-matrix composites. Part Ⅱ: work piece surface integrity [J]. Composites Science and Technology.2004,64:1413-1418.
    [41]Uday A. Dabade a, Suhas S.Joshi. Surface finish and integrity of machined surfaces on Al/SiCp composites [J]. Journal of Materials Processing Technology.2007(192):166-174.
    [42]Zhang, C. Y. Zhou, L. Huang, S. T. Experimental Study of Grinding Characteristics on SiCp/Al Composites [J]. Key Engineering Materials,2011(487):70-74.
    [43]Xu, L.F. Zhou, L. Yu, X. L. Huang, S. T. An experimental study on grinding of SiCp/Al composites [J] Advanced Materials Research,2011(188):90-93.
    [44]GUl Tosun, Mehtap Muratoglu. The drilling of an Al/SiCp metal matrix composites. Part I:microstructure [J]. Composites Science and Technology,2004(64):299-308.
    [45]El-Gal lab. M, Sklad. M. Machining of Al/SiC particulate metal-matrix composites Part I: Tool performance [J]. Journal of Materials Processing Technology 1998,13(83) 151-158.
    [46]Venkatesh, R. Hariharan, A. M, et al. Machinability Studies of Al/SiC/(20p) MMC by Using PCD Insert (1300 grade) [C]. WORLD CONGRESS ON ENGINEERING,2009. London:INT ASSOC ENGINEERS-IAENG,2009.
    [47]Avinash. R, C. Ramaswamy, S et al. An investigation on effect of workpiece reinforcement percentage on tool wear in cutting Al-Sic metal matrix composites [C]. In PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, DESIGN AND MANUFACTURING 2007. NewYork:AMER SOC MECHANICAL ENGINEERS,2008:
    [48]邢绍美,马建平.碳化硅铝基复合材料的应用与加工[J].航天返回与遥感,1998,2(19):47.
    [49]冷金凤,武高辉SiCp/Al基复合材料的切削加工研究现状[J].宇航材料工艺,2007,02:6-9.
    [50]李德溥,等.颗粒增强金属基复合材料加工技术进展[J].工具技术,2006,10(40):3-9.
    [51]祁立军,马保吉,等.颗粒增强铝基复合材料的特种加工研究进展[J].中国材料科技与设备,2008,5:5-7.
    [52]李德溥,等.颗粒增强金属基复合材料的特种加工研究现状[J].机械制造,2006,10:65-68.
    [53]V. I. Babitsky, A. N. Kalashnikov, A. Meadows, et al. Ultrasonically assisted turning of aviation materials [J]. Journal of Materials Processing Technology,2003 (132):157-167.
    [54]Z.C. Li, Y. Jiao, T. W. Deines, Z.J. Pei, et al. Rotary ultrasonic machining of ceramic matrix composites:Feasibility study and designed experiments[J]. Department of Industrial and Manufacturing Systems Engineering, Kansas State University, 2004(45):1402-1411.
    [55]Z. J. PEI, P. M. FERREIRA, S. G. KAPOOR, et al., ROTARY ULTRASONIC MACHINING FOR FACE MILLING OF CERAMICS[J]. Tools Manufact,1994,35(7):1033-1046.
    [56]焦锋,赵波,刘传绍等.PCD刀具超声振动车削SiCp/Al复合材料时的切削力特性研究[J].工具技术,2002,36(8):22-25.
    [57]杨鑫宏,韩杰才.脆性光学材料的超声磨削实验研究[J].光学技术,2007,33(1):65-67.
    [58]Xiang, Daohui, Yue, Guangxi,et al. Studies on Cutting Forces of High Volume Fraction SiCp/Al Composites with Ultrasonic Vibration High Speed Milling [J]. Advanced Materials Research,2011, (295-297):785-788.
    [59]Xiang D. H, Yue, G. X., et al. Study on cutting force and tool wear of high volume SiC/Al MMCs with ultrasonic vibration high speed milling[J]. Key Engineering Materials, 2011(455):264-268.
    [60]Xueli Cheng, Xiao Ma. Microstructure analysis of SiCp/Al composites with ultrasonic vibration turning[C]. In Biomedical Engineering and Informatics (BMEI),2010 3rd International Conference on. Yantai:2010:2321-2324.
    [61]Gao Guofu, Zhao Yanyan, et al. Experimental Research on Ultrasonic Vibration Milling Metal Matrix Composites SiCp/Al [J]. Advanced Materials Research,2011,291-294:1725-1728.
    [62]B Zhao, C.S Liu, X. S Zhu, et al. Research on the vibration cutting performance of particle reinforced metallic matrix composites SiCp/Al [C]. In Journal of Materials Processing Technology Volume, China,2002:380-384.
    [63]Liu C. S, et al. Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al[J]. Journal of Materials Processing Technology,2002,129, (1-3):196-199.
    [64]Xu X. X, Zhang X.H., et al. Drilling Characteristics of SiC Particle Reinforced Aluminum-Matrix Composites with Ultrasonic Vibration[J].Key EngineeringMaterials,2011(455):302-306.
    [65]Xu, Xingxin, Mo, Yalin, et al. Drilling Force of SiC Particle Reinforced Aluminum-Matrix Composites with Ultrasonic Vibration [J]. Key Engineering Materials,2009 (416):243-247.
    [66]黄德中.超声波振动凿岩机探讨[J].噪声与振动控制,2002,4:35-36.
    [67]张云电,余芳.硅镜超声加工声学系统设计[J].机电工程,2008,6(28):24-26.
    [68]任宇江.碳纤维复合材料的超声辅助磨削加工技术研究[D].大连:大连理工大学,2010.
    [69]辛推宁.一种新型超声电源换能系统的研究设计[D].西安:西北工业大学,2005.
    [70]Ken-ichi Ishikawa, Hitoshi Suwabe, et al. A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials [J]. Precision Engineering,1998(22):196-205.
    [71]董志刚.单晶MgO微观力学行为和磨粒加工表面层损伤[D].大连:大连理工大学,2010.
    [72]张银霞.单晶硅片超精密磨削加工表面层损伤的研究[D].大连:大连理工大学,2006.
    [73]吴东江,等.KDP晶体加工表面的亚表面损伤检测与分析[J].光学精密工程,2007,11(15): 1721-1726.
    [74]张云电,等.中间有圆柱孔的换能器和变幅杆[J].太原机械学院学报,1993,3(14):231-237.
    [75]齐海群.拉丝用超声波换能器设计方法的研究[J].黑龙江工程学院学报,2006,2:31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700