TiN颗粒增强银基复合钎料钎焊CBN磨粒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单层钎焊立方氮化硼(CBN)砂轮凭借高温钎焊时在磨粒、钎料层、及砂轮基体之间界面反应形成的化学和冶金结合,实现了钎料层对CBN磨粒的牢固把持,具有磨料出露高度大、砂轮锋利、容屑空间充裕等显著优势。目前单层钎焊CBN砂轮的研制已取得一定的进展,但CBN磨粒钎焊过程中仍存在一些问题亟待解决,如:Ag-Cu-Ti钎料的剧烈流淌导致钎料层厚度不均,焊后CBN磨粒棱角被钎料层包覆难以出露,以及钎焊时CBN磨粒与钎料之间的界面反应难以主动调控致使磨粒棱角损耗过度、磨粒强度下降等。这些问题阻碍了钎焊CBN砂轮加工性能的进一步提高。为解决上述问题,本文采用在Ag-Cu-Ti合金钎料中添加TiN增强颗粒组成的复合钎料,开展CBN磨粒的钎焊试验研究。
     本文完成的主要研究工作包括:
     (1)采用三维视频显微镜、扫描电镜等仪器分析了TiN增强颗粒对Ag-Cu-Ti钎料铺展性和显微组织的影响,利用电子万能试验机测试了复合钎料钎焊接头剪切强度。结果显示,添加了TiN颗粒后的Ag-Cu-Ti合金钎料在45钢基体表面的铺展性可得到有效控制,钎料层的显微组织得到细化,钎料层的显微硬度和钎焊接头的剪切强度得到明显提高。
     (2)对TiN颗粒增强Ag-Cu-Ti复合钎料层与CBN磨粒之间的界面反应及新生化合物的微观特征进行了研究,并测试了钎焊CBN磨粒的静压强度。与Ag-Cu-Ti合金钎焊CBN磨粒的界面反应物相比,TiN颗粒抑制了界面反应,使得钎焊磨粒界面反应产物的总量显著减少。TiN含量在0~12 wt.%范围内,钎焊CBN磨粒的静压强度并无明显变化。
     (3)通过对复合钎料钎焊CBN磨粒形貌的观察发现,含4~8 wt.% TiN复合钎料钎焊的CBN磨粒包埋深度合适,钎料未铺展到CBN磨粒顶端,磨粒棱角得以出露,能保证足够的把持强度。选用Ag-Cu-Ti钎料和含4 wt.% TiN颗粒的复合钎料分别制作钎焊CBN磨头,并对其干磨削钛合金TC4的磨削性能进行了对比试验研究,验证了复合钎料可制作出性能更优的钎焊CBN磨头
Depending on the interfacial chemical and metallurgical reaction among the abrasive grains, the filler layer and the tool matrix, monolayer brazed CBN grinding wheels improve remarkably the joining strength to the grains and increase the space for holding chips. However, though much progress has been made on the development of brazed CBN wheels, some problems in brazing process are urgent to be solved. For example, the thickness of Ag-Cu-Ti filler layer is non-uniform because of the good flow of the alloy, the edges of the grains are wrapped by molten alloy and may be damaged during brazing. In addition, the interfacial reaction of the grains and filler could not be controlled positively. Therefore, this work carried out.the brazing experiments of CBN abrasive grains and 0.45%C steel using Ag-Cu-Ti alloy reinforced by TiN particles as composite filler. The main contents are summarized as follows:
     (1) The instruments, such as 3-D optical microscope and scanning electron microscope, were utilized to analyze the spreadability and the microstructure of the Ag-Cu-Ti composite filler containing TiN particles. The shear strength of the brazed joint was measured by electrical tensile equipment. The results show that, when the TiN particles added, the spreadability of Ag-Cu-Ti alloy on the 0.45%C steel matrix are controlled. At the same time, the microstructure of alloy layer is refined, the microhardness of filler layer and the shear strength of brazed joints are improved.
     (2) The TiN particles have prominent impacts on the shape and amount of the new-formed reaction products formed at the brazing interface of CBN grains and the filler layer. Otherwise, the compressive strength of CBN grains brazed using the composite filler is almost identical with that brazed using Ag-Cu-Ti alloy.
     (3) TiN particles control the wettability on the surface of the CBN grains. Compared with the CBN grains brazed using Ag-Cu-Ti filler, the top surface of the grains, which are brazed using the composite filler with 4 ~8 wt.% TiN particles, is not covered. Thus, the edges of the grains emerge. Two kinds of brazed CBN grinding-heads are fabricated using Ag-Cu-Ti filler and composite filler containing 4 wt.% TiN particles, respectively. The grinding experiments are carried out on titanium alloy TC4 without coolant. The results show that, the grinding-heads brazed using composite filler have better wear-resistance and higher machining efficiency than the ones using Ag-Cu-Ti filler.
引文
[1] Wentorf R H. Cubic form of boron nitride. Journal of Chemical Physics, 1957, 26(4): 956
    [2]王祖光.立方氮化硼(CBN)特性综述.超硬材料工程,2005,17(5):41~45
    [3]任敬心,康仁科.难加工材料的磨削.北京,国防工业出版社,1999
    [4]王光祖.立方氮化硼的基本性质及其在工业中的应用.超硬材料与工程,1994,3:26~31
    [5] Z.A. Zoya, R. Krishnamurthy. The performance of CBN tools in the machining of titanium alloys. Journal of Materials Processing Technology, 2000, 100(1-3): 80-86
    [6] R. Cai, W.B. Rowe. Assessment of vitrified CBN wheels for precision grinding. International Journal of Machine Tools & Manufacturing, 2004, 44: 1391~1402
    [7] X.P. Xu, Y.Q. Yu, H. Huang. Mechanisms of abrasive wear in grinding of titanium (TC4) and nickel (K417) alloys. Wear, 2003, 255: 1421~1426
    [8] F.C. Gift, W.Z. Misiolek, E. Force. Mechanics of loading for electroplated cubic boron nitride (CBN) wheels during grinding of a nickel based superalloy in water-based lubricating fluids. Journal of Tribology-Transactions of the ASME, 2004, 126(4): 795~801
    [9] E. Pecherer, S. Malkin. Grinding of steels with cubic born nitride (CBN). Annals of the CIRP, 1984, 33(1): 211~216
    [10]徐西鹏,徐鸿钧,戴勇,等.树脂结合剂CBN砂轮缓进深磨钛合金——CBN砂轮在缓磨中的应用,南京航空航天大学学报,1993,25(5):631~637
    [11] X.P Li. A free-abrasive machining approach to dressing of resin-bonded CBN grinding wheels. Journal of Materials Processing Technology, 1995, 48: 223~230
    [12]傅玉灿,徐鸿钧.超硬磨料砂轮的演变与发展.金刚石与磨料磨具工程,1999,3:14~19
    [13] T.W. Hwang, C.J. Evans, S. Malkin, et al. High speed grinding of silicon nitride with electroplated diamond wheels. Journal of Manufacturing Science and Engineering, 2000, 122(2): 42~50
    [14] Z. Shi, S. Malkin. An investigation of grinding with electroplated CBN wheels. Annals of the CIRP, 2003, 52(1): 267~270
    [15] W. Konig, H. Schleich, K. Yegenoglu. High performance grinding with electroplated CBN wheels. Industrial Diamond Review, 1984, 6: 320~323
    [16] A.K. Chattopadhyay, H.E. Hintermann. On brazing of cubic boron nitride abrasive crystals to steel substrate with alloys containing Cr or Ti. Journal of Materials Science, 1993, 28:5887~5893
    [17] A.K. Chattopadhyay, H.E. Hintermann. On performance of brazed single-layer CBN wheel. Annals of the CIRP, 1994, 43(1): 313~317
    [18]肖冰,徐鸿钧,武志斌,等. Ag-Cu-Ti合金钎焊立方氮化硼砂轮.焊接学报,2002,23(2):29~32
    [19]肖冰.单层超硬磨料工具高温钎焊的基础研究. [博士学位论文],南京,南京航空航天大学,2001
    [20]王秦生.超硬材料制造.北京,中国标准出版社,2001
    [21] M.G. Nicholas, D.A. Mortimer, L.M. Jones, et al. Some observations on the wetting and bonding of nitride ceramics. Journal of Materials Science, 1990, 25: 2679~2689
    [22] H.E. Hintermann, A.K. Chattopadhyay. Abrasive tool having film-covered CBN grits bonded by brazing to a substrate. U.S. Patent, 5389118, February 14, 1995
    [23] H. Mizuhara, K. Mally. Ceramic-to-metal joining with active filler metal. Welding Journal, 1985, 64(10): 27~32
    [24]汪春花.钎焊立方氮化硼的焊接性与微观结构. [硕士学位论文],长春,吉林大学,2006
    [25]丁文锋.镍基高温合金高效磨削用单层钎焊立方氮化硼砂轮的研制. [博士学位论文],南京,南京航空航天大学,2006
    [26]丁文锋,徐九华,卢金斌,等.高温钎焊立方氮化硼界面微结构.焊接学报,2004,25(5):29~32
    [27] W. F. Ding, J. H. Xu, M. Shen, et al. Solid-state interfacial reactions and compound morphology of CBN grain and surface Ti coating. Vacuum, 2006, 8
    [28] W. F. Ding, J. H. Xu,M. Shen, et al. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy, Materials Science and Engineering. 2006, 430 (A) : 301~306
    [29] W. F. Ding, J. H. Xu, M. Shen, et al. Thermodynamic and kinetic interfacial reaction between CBN and titanium activated Ag-Cu alloy. Materials Science and Technology, 2006, 22(1): 105-109
    [30] I. L. Pobol, K. Friedel, J. Felba. Development of method for obtaining brazed joint of cubic boron nitride with base. Proceedings of the Tenth Congress of the IFHT, 1998: 946~951
    [31] E. Benko, E. Bielanska, V.M. Pereverteilo, et al. Formation peculiarities of the interfacial structure during cBN wetting with Ag-Ti, Ag-Zr and Ag-Hf alloy. Diamond and Related Materials, 1997, 6(8): 931~934
    [32]丁文锋,徐九华,傅玉灿,等.立方氮化硼超硬磨料与45钢钎焊接头残余应力有限元分析.机械工程学报,2007,43(5):133~137
    [33]丁文锋,徐九华,傅玉灿,等.单层钎焊立方氮化硼砂轮工作面磨粒包埋深度的确定.中国有色金属学报,2007,17(3):441~445
    [34] K Suganuma, Y Miyamoto, M Koizumi,. Joining of ceramics and metals. Ann.Rev.Mater.Soi, 1988,(18):47~73
    [35] Jianxin CHU, Youming WANG, Congxun HE, et al. Effect of Ti in joining Si3N4 to metal with Ag-Cu-Ti active brazing alloy. Rare Metals, 1991,10(1): 43~47
    [36]吴斌,陈静,万芳,等. Ag-Cu-Ti钎料活性钎焊Si3N4陶瓷的研究.华东船舶工业学院学报,1998,12(2):74~79
    [37]雷永平,韩丰娟,夏志东,等.陶瓷-金属钎焊接头残余应力的数值分析.焊接学报,2003,24(5):33~36
    [38]雷永平,韩丰娟,夏志东,等.陶瓷/金属钎焊接头残余应力的测量及数值计算.中国机械工程,2004,15(9):768~771
    [39]林国标,黄继华,毛建英,等. SiC陶瓷与钛合金(Ag-Cu-Ti)-SiCp复合钎焊接头组织结构研究.航空材料学报,2005,25(6):24~28
    [40]吴京侑,杨建国,方洪源.复合钎料的特点和研究现状.焊接,2002,12:10~14
    [41] W.B. Hanson. Joining of ceramics using a ceramic modified braze alloy. Materials Technology, 1999, 14(2): 53~56
    [42] W.B. Hanson, K.I. Ironside, J.A. Fernie. Active metal brazing of zirconia. Acta Material, 2000, 48(18-19): 4673~4676
    [43] B Zorc, L Kosec, A new approach to improving the properties of brazed joints. Welding Journal, 2000(1):24s
    [44] Guisheng ZOU, Aiping WU. Solid-liquid state pressure bonding of Si3N4 ceramics with aluminum based alloys and its mechanism. Transactions of Nonferrous Metals of China, 2001,11(2):178~182
    [45] G. Blugan, J. Janczak-Rusch, J. Kuebler. Properties and fractography of Si3N4/TiN ceramic joined to steel with active single layer and double layer braze filler alloy. Acta Materialia, 2004, 52: 4579~4588
    [46]张德库,吴爱萍,邹贵生,等.原位生成法半固态连接Si3N4复相陶瓷的接头组织.清华大学学报(自然科学版),2004,44(5):613~615
    [47]林国标,黄继华,张华. Zr对(Ag-Cu-Ti)-SiCp钎焊SiC陶瓷/钛合金连接层组织结构的影响.材料研究学报,2006,20(2):176~180
    [48] Andrew Cullison. Dissimilar materials joined by brazing. Welding Journal,1999(12):49-50
    [49]李盛.陶瓷金属复合结构钎焊质量和变形的研究与控制. [硕士学位论文],北京,清华大学,2001
    [50]杨建国,方洪渊,吴京洧. Ag-Cu-Ti复合钎料钎焊Al2O3接头微观结构研究.第十届全国焊接学术交流会暨第十一届全国钎焊及特种连接技术交流会论文集,天津,2001,10:12~18
    [51] Fang Hongyuan, Yang Jianguo, Wu Jingwei. The microstructure of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material. Proceedings of 2001 International Brazing & soldering Conference, 2001(10)
    [52]杨建国,方洪渊,万鑫,等. Ag-Cu-Ti活性钎料加入Al2O3陶瓷颗粒对Al2O3陶瓷钎焊接头性能的影响.材料科学与工艺,2001(增刊)
    [53]杨俊,吴爱萍,邹贵生,等. Si3N4复相陶瓷半固态连接的接头组织和界面反应.材料科学与工程学报,2004,22(2):157~160
    [54]张德库,吴爱萍,邹贵生.采用复合钎料钎焊Si3N4陶瓷.焊接学报,2005,26(10):59~61
    [55]杨俊,吴爱萍,邹贵生,等. TiN改性钎料连接Si3N4陶瓷的接头高温性能.焊接学报,2006,27(7):18~20
    [56]郭松瑞.工程结构陶瓷.天津,天津大学出版社,2002
    [57]郝保红,喻强,万汉城.颗粒增强金属基复合材料的研究(一).北京石油化工学院学报,2003,11(4):58~60
    [58]甘明亮.氮化钛、碳化钛和碳氮化钛的合成及其在炭砖中的应用. [硕士学位论文],武汉,武汉科技大学,2006
    [59]于仁红,蒋明学. TiN的性质、用途及其粉末制备技术.耐火材料,2005,39(5):386~389
    [60] I. Mukerji I, S.K. Biswas. Synthesis properties and oxidation of alumina-titanium nitride composites. Journal of the American Ceramic Society, 1990, 73(1): 142~145
    [61]崔春翔,吴人洁.自生纳米级TiN、AlN颗粒增强Al基复合材料的制备与形成机制.科学通报,1996,41(12):1147~1150
    [62]刘德宝,崔春翔. TiN颗粒增强铜基复合材料的制备及性能研究.稀有金属,2004,28(5):856~861
    [63]张启运,庄鸿寿.钎焊手册.北京,机械工业出版社,1998
    [64]李荣久.陶瓷——金属复合材料.北京,冶金工业出版社,2004
    [65]中国机械工程学会焊接学会.焊接手册第2卷(第2版).北京,机械工业出版社,2001
    [66]邹僖.钎焊(第2版).北京,机械工业出版社,1989
    [67] S. Mandal, V. Rao, A.K. Ray. Characterization of the brazed joint interface between Al2O3 and (Ag-Cu-Ti). Journal of Materials Science, 2004, 39: 5587~5590
    [68] H.J. Liu, J.C. Feng, Y.Y. Qian. Microstructure and strength of the SiC/TiAl joint brazed with Ag-Cu-Ti filler metal. Journal of Materials Science Letters, 2000, 19: 1241~1242
    [69]蒋成禹,吴铭芳,于治水,等. Al2O3/(Ag72Cu28)97Ti3/Ti-6Al-4V界面结构及性能研究.稀有金属材料与工程,2001,8(30):264~267
    [70]黄志骏.高温钎焊制作单层CBN砂轮的试验研究. [硕士学位论文],南京,南京航空航天大学,2004
    [71]童圣亭.单层钎焊CBN砂轮成型磨削钛合金的研究. [硕士学位论文],南京,南京航空航天大学,2007
    [72]吴铭芳,于治水,祁凯,等. Al2O3/Ag-Cu-Ti钎料/Nb连接的微观结构及性能.硅酸盐学报,2000,28(5):475~478
    [73]陈文静.异种金属焊接工艺及接头性能研究. [硕士学位论文],成都,西华大学,2008
    [74]姚伟,王思爱,沈卓申. AgCu28共晶钎料的铺展性研究.电子元件与材料,2004,23(8):36~38
    [75]张振宇.基于Sn-Pb-Zn钎料铝合金钎焊工艺研究. [硕士学位论文],上海,上海交通大学,2008
    [76]许宏飞,闫振春,于新霞,等.利用背散射电子像观察研究NdFeB磁性材料.山西机械,1997,4:4~6
    [77]眭润舟,楼宏青,喻莉花,等.耐磨材料的显微分析.镇江船舶学院学报,1992,6(3):66~71
    [78]王浩,孙维莹,庄汉锐,等.稀土复相Sialon中的相组成规律研究.科学通报,1994,39(6):521~523
    [79]马宗义,吴胜进,宁小光,等.弥散质点和SiC颗粒复合强化Al基复合材料II:性能和断裂特征.金属学报,1994,30(1):27~32
    [80]樊建中,姚忠凯,李义春,等.颗粒增强铝基复合材料研究进展.材料导报,1997,11(3):48~51
    [81]陈剑锋,武高辉,孙东立,等.金属基复合材料的强化机制.航空材料学报,2002,22(2):49~53
    [82]张力宁,王俊.颗粒增强金属基复合材料强化机制的探讨.东南大学学报,1995,25(4):77~82
    [83]武万良,王振廷,孙俭峰.钛基复合材料激光熔覆层显微组织及其强化机制.中国表面工程,2005,18(4):9~11
    [84]毛小南,周廉,曾泉浦,等. TiCp颗粒增强钛基复合材料的强化机理研究.稀有金属材料与工程,2000,29(6):378-381
    [85]张维平,刘硕,马玉涛.激光熔覆颗粒增强金属基复合材料涂层强化机制.材料热处理学报,2005,26(1):70~73
    [86]闫焉服,陈拂晓,朱锦洪,等. Ag颗粒含量对SnCu基复合钎料性能的影响.材料研究学报,2007,21(1):102~106
    [87]崔华,郝斌,张济山.金属基复合材料制备中有害界面反应的控制和润湿性的改善工艺.铸造,2006,55(8):817~820
    [88]马晓春,吴锦波. Al-SiC系润湿性与界面现象的研究.材料科学与工程,1994,12(1):37~41
    [89]张永俐,D.L.米留斯,I.A.阿克萨. Si对SiC-Al系统浸润行为的研究.材料科学与工程,1994,12(2):16~23
    [90] J.C. Lee, J.P. Ahn, J.H. Shim, et al. Control of the interface in SiC/Al composites. Scripta Materialia, 1999, 41(8): 895~900
    [91]周智华,张宝法,洪锐荣,等.抗压强度自动测试系统对人造金刚石选型质量进行定量评价的可行性研究.金刚石与磨料磨具工程,2007,4:36~38
    [92]周智华,张宝法,洪锐荣.人造金刚石单颗粒抗压强度测试仪对比分析.金刚石与磨料磨具工程,2006,5:100~102
    [93]刘敏,何文明,康晓俐.影响人造金刚石单颗粒抗压强度检测结果因素的探讨.金刚石与磨料磨具工程,1998,5:39~42
    [94]中国机械工业标准汇,磨料磨具卷(下).北京,中国标准出版社,2001
    [95]丁文锋,徐九华,傅玉灿,等.单层钎焊立方氮化硼砂轮工作面磨粒包埋深度的确定.中国有色金属学报,2007,17(3):441~445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700