卧式釜加压氧化连续制备锰酸钾新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高锰酸钾生产的关键是制备锰酸钾,目前锰酸钾的工业生产方法主要分为固相法和液相法。固相法能耗高,效率低,环境污染严重,已不符合国家的产业政策,因此清洁、高效的液相法是锰酸钾工业生产未来的发展方向。本课题提出将加压湿法冶金技术应用到锰酸钾的制备,使得原有的液相法生产工艺有一个新的飞跃。半工业试验结果表明:开发出的卧式釜加压氧化制备锰酸钾新工艺不仅清洁和高效,而且能适应含MnO2约45%的低品位软锰矿,极大地缓解了我国富矿资源日益匮乏的压力。
     全面叙述了国内外锰资源分布情况以及锰酸钾制备工艺现状,指出目前国内锰矿资源的局限性和现有工艺存在的不足。在总结现有工艺流程的基础上,结合加压湿法冶金的特点,提出“常压配料—常压预热—加压氧化—高温溶解—低温析晶—过滤”初步工艺路线,并根据此工艺路线,以中低品位软锰矿为原料,研究了二氧化锰转化为锰酸钾的转化率随锰矿粉粒径、反应温度、压力、时间、初始氢氧化钾与二氧化锰物质的量之比(简称初始碱锰比)、初始氢氧化钾浓度、氧气浓度和搅拌速率等因素变化的规律,找出了影响转化率的主要因素。得出优化的工艺参数:对于JM-1锰矿粉,锰矿粉粒径<120μm、温度260+5℃、压力0.3MPa、反应时间2h、初始碱锰比12、初始氢氧化钾浓度65%、搅拌速率600rpm;对于JM-2锰矿粉,锰矿粉粒径<120μm、温度260+5℃、压力0.2MPa、反应时间2-2.5h、初始碱锰比15、初始氢氧化钾浓度65%、搅拌速率300rpm。研究结果表明,原料品位越低,则要求初始碱锰比越高,压力也适当降低,反应时间适当延长,其它几种低品位矿的试验结果也符合此规律。析晶试验结果表明,在析晶溶液的比重为1.5302时效果最好。用不同材质的加压釜内胆、搅拌器、冷却盘管进行磨损、腐蚀试验,结果表明磨损、腐蚀主要集中在搅拌器上。
     在确定的试验条件下,用JM-1锰矿粉,对影响反应转化率的主要因素进行了动力学研究。该反应在200~300℃的亚熔盐体系中进行,属于液—固反应,遵循“未反应收缩核模型”。将搅拌速率设定在600rpm以排除外扩散对反应速率的影响,分别得出温度、压力、锰粉粒径与转化率关系的动力学方程。该反应的表观活化能为110.18kJ/mol,反应速率由表面化学反应控制。运用SPSS软件计算出主要因素对转化率的综合影响,得出数学模型:a%=100×{1-[1-1.28×1010×t×p×exp(5.41×10-5/r0)×exp(-13258.35/T)]3}验证试验结果表明,该模型的计算值与实测值基本吻合,该模型可靠性较强。通过动力学模型并结合实际生产得出最优工艺参数为:反应时间2小时(保证氧化时间,若原料或设备条件改变可适当延长或缩短),反应温度260±10℃,初始碱锰比约12(若使用低品位软锰矿则增大到15以上),压力0.3±0.05MPa,锰矿粉粒径小于120μm(在经济和技术条件允许的情况下越细越好),碱初始浓度65%士2%。
     对小型试验工艺进行工业化研究,提出了“卧式釜加压氧化连续制备锰酸钾”工艺流程。该工艺的主要特征在于采用卧式加压釜(简称卧式釜)作为主体反应设备,通过配料、加压氧化和自动控制三大系统地有机结合实现锰酸钾清洁、高效、连续化和自动化地生产。以JM-1和JM-2两种锰粉为原料,遵循先间断后连续的原则,顺利完成半工业试验,收集整理大量基础数据,为工业化奠定坚实的基础。半工业试验结果表明:小型工艺研究得出的参数准确可靠;动力学模型具有较强的指导意义;采用卧式加压釜制备锰酸钾可以很好地实现生产的连续化和自动化,有利于提高反应效率和产品质量;新工艺可适用于含二氧化锰约45%的低品位软锰矿,有效提高资源利用率,对于高锰酸钾工业发展具有重要意义。
Potassium manganate preparation is the key step of potassium permanganate production. There are two methods for potassium manganate industrial preparation: solid-phase method and liquid-phase method. Solid-phase method can not accord with the industrial policies now in China because it has the disadvantages of high energy consumption, low efficiency and environmental pollution, liquid-phase method which is clean and high efficient is the direction of potassium manganate industrial preparation. Pressure hydrometallurgical technology has been applied to potassium manganate preparation to develop the original liquid-phase method. A new process of "continuous preparation of potassium manganate by pressure oxidation in horizontal reactor" was proposed here. The new process is clean and high efficient and it adapts to low grade pyrolusite with MnO2mass fraction of45%.
     General situation of manganese resource and industrial processes of potassium manganate production were introduced in the paper. Limitations of manganese resources and deficiencies of the existing processes were pointed out. A preliminary process route of "atmospheric burden—atmospheric preheating—pressure oxidation—high temperature digestion—low temperature crystallization—filtration" was proposed by summarizing the existing processes and combining with pressure hydrometallurgical technology. According to the preliminary process route, effects of particle size of manganese powders, temperature, oxygen partial pressure, time, initial mole ratio of KOH-to-MnO2, initial mass fraction of KOH, concentration of oxygen and agitation rate on the convention rate of MnO2-to-K2MnO4were studied by using two kinds of manganese powder—JM-1and JM-2. JM-1with MnO2mass fraction of55.54%represented middle grade manganese powders and JM-2with MnO2mass fraction of44.69%represented low grade manganese powders. Main influence factors were foud out. Two sets of optimized process parameters were obtained:for JM-1manganese powders, the particle size of the sample should be<120μm, the temperature maintains at260±5℃, the reaction time is for2hours, KOH initial mass fraction is about65%, oxygen partial pressure holds at0.3MPa, the KOH-to-MnO2initial mole ratio and the agitation rate is12and600rpm, respevtively; for JM-2 manganese powder, the particle size of the sample also shoule be<120um, the temperature needs to maintain at260±5℃, the reaction time can vary from2hours to2.5hours, KOH initial mass fraction should be65%in the solution, oxygen partial pressure must be holded at0.2MPa, the KOH-to-MnO2initial mole ratio and the agitation rate is15and300rpm, respevtively. Comparing the two sets of process parameters, we can draw the conclusion that the lower grade of manganese powder requires the higher initial mole ratio of KOH-to-Mn02, the lower oxygen partial pressure, and the longer reaction time. Results of the tests on the other kinds of low grade manganese powder also accorded with the law. Crystallization measurements showed that best effect was obtained when the proportion of saturated solution is1.5302. The results of tests on inner flask, cooling coil and agitator of pressure reactor using different kinds of material showed that wear and corrosion mainly occurred in agitator.
     Under the determined kinetic conditions, the kinetics of pressure oxidation preparing potassium manganate using JM-1manganese ore powder was studied. The reacton undergoed in sub-molten salt at200~300℃, belonged to liquid-solid reaction and followed the kinetic law of "shrinking of unreacted core". When the agitation rate is up to600rpm, external diffusion can be neglected. Under the experimental conditions, kinetic equations of particle size, temperature, oxygen partial pressure and KOH-to-MnO2mole ratio to the convention rate of MnO2were obtained. The reaction activation energy is110.18kJ/mol. The kinetic mathematical model for pressure oxidation process is obtained by SPSS (Statistical Product and Service Solutions): α%=100×{1-[1-1.28x1010×t×p×exp(5.41x10-5/r0)xexp(-13258.35/T)]3}
     The results of verification tests showed that the calculated values based on the model agreed well with experimental values, indicating that the model had strong reliability, A set of optimum process parameters based on the kinetic mathematical model and practical production was proposed:the particle size of the manganese poeder should be<120μm (the smaller the better under considering of the cost and technique), the temperature should be maintained at260±10℃, oxygen partial pressure should be holded at0.3±0.05MPa, the KOH-to-MnO2initial mole ratio should be12(The value should be more than15while using the low grade pyrolusite.), KOH initial mass fraction should be65%±2%.
     A new complete process of "continuous preparation of potassium manganate by pressure oxidation in horizontal reactor" was proposed by detailing the preliminary one. The main characteristic of the new process is using a horizontal pressure reactor as the main reaction equipment. The organic combination of burden, pressure oxidation and automatic control systems realized clean, high efficiency, continuous and automatic potassium manganate preparation. Pilot test successfully complited according to the rule of discontinuous first and continous second. The two kinds of manganese powders JM-1and JM-2were used in the pilot test. Mass data was collected and laid a solid foundation for the industrialization. The results of pilot tests showed that the two sets of optimized process parameters obtained in small experiments are accurate and reliable; the kinetic mathematical model has guiding significance to practical production; continuous and automatic potassium manganate preparation can be realized by using the horizontal pressure reactor which is beneficial to improving production efficiency and product quality. The new process adapts to low grade pyrolusite with MnO2mass fraction of45%, effectively improves resource utilization efficiency, and has important significance to potassium permanganate industry.
引文
[1]谭柱中,梅光贵,李维健等.锰冶金学[M].长沙:中南大学出版社,2004
    [2]吴荣庆.国外锰矿资源及主要资源国投资环境[J].中国金属通报,2010,(2):36-39
    [3]严旺生,高海亮.世界锰矿资源及锰矿业发展[J].中国锰业,2009,27(3):6-11
    [4]张青莲.无机化学丛书(第9卷)[M].北京:科学出版社,1982
    [5]李同庆.低品位软锰矿还原工艺技术与研究进展[J].中国锰业,2008,26(2):4-26
    [6]贺周初,彭爱国,郑贤福等.两矿法浸出低品位软锰矿的工艺研究[J].中国锰业,2004,22(2):35-37
    [7]田宗平,朱介忠,王雄英等.两矿加酸法生产硫酸锰的工艺研究与应用[J].中国锰业,2005,23(4):4-26
    [8]袁明亮,梅贤功,陈工,等.两矿法浸出软锰矿的工艺与理论[J].中南工业大学报,1997,28(4):329-332
    [9]袁明亮,梅贤功,邱冠周等.两矿法浸出软锰矿时元素硫的生成及其对浸出过程的影响[J].化工冶金,1998,19(19):161-164
    [10]卢宗柳,都安治.两矿法浸出氧化锰矿的几个工艺问题[J].中国锰业,2006,24(1):39-42
    [11]张昭,刘立泉,彭少方.二氧化硫浸出软锰矿[J].化工冶金,2000,21(1):103-107
    [12]Miller J D, Wan R Y. Reaction Kinetics for the leaching of MnO2 by Sulfur Dioxide[J]. Hydrometallurgy,1983,10 (2):219-242
    [13]Senanayake, Gamini. A mixed surface reaction kinetic model for the reductive leaching of manganese dioxide with acidic sulfur dioxide [J]. Hydrometallurgy, 2004,73(3):215-224
    [14]R. N. Sahoo, P. K. Naik, S. C. Das. Leaching of Manganese from Low-Grade Manganese Ore using Oxalic Acid as Reductant in Sulphuric Acid Solution[J]. Hydrometallurgy,2001,62 (3):157-163
    [15]F. Momade, Z. Momade. Reductive Leaching of Manganese Oxide Ore in Aqueous Methanol-Sulphuric Acid Medium[J]. Hydrometallurgy,1999,51 (1):103-113
    [16]粟海锋,孙英云,文衍宣等.废糖蜜还原浸出低品位软锰矿[J].过程工程学报,2007,7(6):1089-1093
    [17]武汉大学,吉林大学.无机化学[M].北京:高等教育出版社,1994
    [18]Gamal A. Ahmed, Ahmed Fawzy, Refat M. Hassan. Spectrophotometric evidence for the formation of short-lived hypomanganate(V) and manganate(VI) transient species during the oxidation of K-carrageenan by alkaline permanganate [J] Carbohydrate Research,2007,342 (10):1382-1386
    [19]Ishaq A. Zaafarany, Abd Alla S.N. AlArifi, Ahmed Fawzy, etal. Further evidence for detection of short-lived transient hypomanganate(V) and manganate(VI) intermediates during oxidation of some sulfated polysaccharides by alkaline permanganate using conventional spectrophotometric techniques[J] Carbohydrate Research,2010,345 (11):1588-1593
    [20]R.M. Hassan, A. Fawzy, A. Alarifi, etal. Base-catalyzed oxidation of some sulfated macromolecules:Kinetics and mechanism of formation of intermediate complexes of short-lived manganate (VI) and/or hypomanganate (V) during oxidation of iota-and lambda-carrageenan polysaccharides by alkaline permanganate [J] Journal of Molecular Catalysis A:Chemical,2011,335 (1-2): 38-45
    [21]Ali M. Shaker. Novel Carboxymethyl Cellulose Ionotropic Gels:II. Kinetics of Decomposition of the Manganate(VI) Intermediate-Novel Spectrophotometric Tracer of the Preformed Short Lived Hypomanganate(V) Coordination Polymer Sol[J] Journal of Colloid and Interface Science,2001,244 (2):254-261
    [22]Miklos Jaky, Zoltan Szeverenyi, Lazlo I. Simandi. Formation of manganate(V) in oxidations by permanganate ion in strongly alkaline solutions[J] Inorganica Chimica Acta,1991,186 (1):33-37
    [23]Rush J. D., Bielski B. H. J. Studies of Manganate(Ⅴ),-(Ⅵ), and-(Ⅶ) Tetraoxyanions by Pulse Radiolysis. Optical Spectra of Protonated Forms, Inorg. [J] Chem..1995,34(23):5832-5838
    [24]Fuwang Zhao, Xing Li, Nigel Graham. Treatment of a model HA compound (resorcinol) by potassium manganate [J] Separation and Purification Technology,2012,91:52-58
    [25]曹锡章,宋天佑,王杏乔.无机化学下册(第三版)[M].北京:高等教育出版社,1994
    [26]Xiaoguo Chen, Bangding Xiao, Jiantong Liu, etal. Kinetics of the oxidation of MCRR by potassium permanganate [J]. Toxicon,2005,45(7):911-917
    [27]Xiang-Rong Xu, Hua-Bin Li, Wen-Hua Wang, etal. Decolorization of dyes and textile wastewater by potassium permanganate [J] Chemosphere,2005, 59(6)Pages:893-898
    [28]Tamer Y.A. Fahmy, Fardous Mobarak, Nesrine Kassem, etal. New^approach for upgrading pulp & paper quality:Mild potassium permanganate treatment of already bleached pulps[J] Carbohydrate Polymers,2008,74(4):892-894
    [29]Sakchai Satienperakul, Pornthana Phongdong, Saisunee Liawruangrath. Pervaporation flow injection analysis for the determination of sulphite in food samples utilising potassium permanganate-rhodamine B chemiluminescence detection[J] Food Chemistry,2010,121(3):893-898
    [30]John S Gifford, Dennis B George, V.Dean Adams. Synergistic effects of potassium permanganate and PAC in direct filtration systems for THM precursor removal [J] Water Research,1989,23(10):1305-1312
    [31]A. Aleboyeh, M.E. Olya, H. Aleboyeh. Oxidative treatment of azo dyes in aqueous solution by potassium permanganate [J] Journal of Hazardous Materials, 2009,162(2-3):1530-1535
    [32]Y.Eugene Yan, Frank W. Schwartz. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate [J] Journal of Contaminant Hydrology,1999,37(3-4):343-365
    [33]C.M. Kao, K.D. Huang, J.Y. Wang, etal. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater:A laboratory and kinetics study [J] Journal of Hazardous Materials,2008,153(3):919-927
    [34]彭东,王吉坤,马进等.国内外高锰酸钾制备方法概述[J].中国锰业,2011,(3):10-12
    [35]广州红卫电化厂.“一步法”生产锰酸钾新工艺[J].天津化工,1974,(5):19-21
    [36]李守昌,何天民.我国对高锰酸钾生产工艺改革的历程[C].中国:中国化工学会无机酸碱盐专业委员会,1999年无机盐学组年会论文汇编,北京:中国化工学会,1999:61-63
    [37]化工部天津化工研究院情报室.国外高锰酸钾工业概况[J].无机盐工业,1979,(5):36-43
    [38]Milton B.Carus, ArnoH.Reidies, La Salle, III. Production of potassium manganates. [P].US Patent,2940823.1960-06-14
    [39]Milton B.Carus, ArnoH.Reidies, La Salle, III. Production of K2MnO4. [P].US Patent,2940821.1960-06-14
    [40]Milton B.Carus, ArnoH.Reidies, La Salle, III. Production of potassium manganates. [P].US Patent,2940822.1960-06-14
    [41]Milton B.Carus, La Salle, III. Production of potassium manganates [P].US Patent 2843537.1958-07-15
    [42]Milton B.Carus, La Salle, III. Production of potassium manganates [P]. US Patent,2908620.1959-10-13
    [43]胡日勤,卢沛光,张宝荣.流化床连续制备锰酸钾新技术.[J].无机盐工业,1991(02):15-26
    [44]何洁冰.三相流化床技术在锰酸钾生产中的应用.[J].无机盐工业,2003(03):44-46
    [45]胡日勤.液相氧化法生产锰酸钾[J].无机盐工业,1980,(4):12-17
    [46]重庆嘉陵化工厂.三相加压连续氧化制备锰酸钾[P]CN Patent,1070167. 1993-03-24
    [47]重庆昌元化工有限公司.一种安全生产锰酸钾的装置[P].CNPatent,201620041U.2010-11-03
    [48]重庆昌元化工有限公司.一种锰酸钾生产工艺的加热系统[P].CN Patent, 201620039U.2010-11-03
    [49]何天民,李守昌.我国高锰酸钾生产现状及有关问题的探讨[J].无机盐工业,1998,30(1):20-26
    [50]徐肇锡.高锰酸钾生产现状及发展前景[J].中国锰业,1991,9(1):50-55
    [51]王吉坤,周廷熙,硫化锌精矿加压酸浸技术及产业化[M].北京:冶金工业出版社,2005
    [52]宋复伦,宁模功摘译,张丽霞校.加压湿法冶金的过去-现在和未来[J]湿法冶金,2001,20(3):165-166
    [53]汪镜亮摘译,黄正生校.加压湿法冶金的研究和发展前景[J].四川有色金属,1992,(1):19-20
    [54]M.J.Collins and V.G.Papangelakis. Pressure Hydrometallurgy 2004 [C]. Banff, Alberta,Canada:The Canadian Institute of Mining, Metallurgy and petroleum. 2004.3-20
    [55]Dreisinger, D.R&D Opportunities for pressure hydrometallurgy. JOM 1991, February.
    [56]Habashi, F. Recent advances in pressure leaching technology. Proc XX IMPC, Aachen, September,1997,129-139
    [57]柯家骏.湿法冶金中加压浸出过程的进展[J].湿法冶金,1996,58(2):1-6
    [58]邓彤.钴镍的加压氧化浸出[J].湿法冶金,1994,50(2):1-6
    [59]王吉坤,周廷熙,吴锦梅.高铁闪锌精矿加压酸浸新工艺研究[J].有色金属(冶炼部分),2004,(1):5-8
    [60]邱定蕃.加压湿法冶金过程化学与工业实践[J].矿冶,1994,3(4):55-67
    [61]Mike Anthony & Doug Flett. Pressure hydrometallurgy:A review.[M].England. Mineral Industrial Research Organization. September 2000
    [62]彭东,王吉坤.三相加压连续氧化制备锰酸钾[J].有色金属(冶炼部分),2009,(5):36-39
    [63]彭东,王吉坤,马进,等.低品位软锰矿三相加压制备锰酸钾[J].湿法冶金,2011,30(04):281-283
    [64]徐静,王吉坤,彭东.低压制备锰酸钾的正交试验研究[J].矿冶,2010,(04):68-71;
    [65]云南建水锰矿有限责任公司.一种液相法制备锰酸钾的热液分离除杂装置[P].CN Patent,102367522A.2012-03-07
    [66]云南建水锰矿有限责任公司.连续式液相法制备锰酸钾加压釜的加热装置[P].CN Patent,201437083U.2010-04-14
    [67]云南建水锰矿有限责任公司.一种液相法制备锰酸钾的热液分离除杂装置[P].CN Patent,202297172U.2012-07-04
    [68]云南建水锰矿有限责任公司.一种液相法制备锰酸钾的热液分离除杂装置[P].CN Patent,202297171U.2012-07-04.
    [69]云南建水锰矿有限责任公司.一种液相法制备锰酸钾的热液分离除杂装置[P].CN Patent,202226684U.2012-05-23
    [70]昆明冶金研究院.三相加压连续氧化制备锰酸钾的方法[P].CNPatent,101439879.2009-05-27
    [71]云南建水锰矿有限责任公司.液相法制备锰酸钾的工艺[P].CN Patent, 102367181A.2012-03-07
    [72]张再喜影响锰酸钾氧化反应的主要因素[J].无机盐工业,2001(05):31-32
    [73]李守昌,陈维举,何天民等三相加压连续氧化制锰酸钾新技术[J].无机盐工业,1995(2):9-11
    [74]宋紫微.亚熔盐法钒渣多元体系分离基础研究[硕士学位论文].天津:天津大学,2010.
    [75]ZHANG Y, LI Z, QI T, et al. Green chemistry of chromate cleaner production[J]. Chinese Journal of Chemistry,1999,17(3):258-266.
    [76]郑诗礼.铬盐清洁生产工艺液相氧化过程的基础研究与优化[D].北京:中国科学院过程工程研究所,2000.
    [77]于洪浩,贺燕,薛向欣,等.NaOH-NaNO3熔盐法分解铁尾矿的动力学[J].中国有色金属学报,2011,21(11):2958-2963.
    [78]孙旺,郑诗礼,张亦飞,等.NaOH亚熔盐法处理拜尔法赤泥的铝硅行为[J]. 过程工程学报,2008,8(6):1148-1152.
    [79]周宏明,郑诗礼,张懿.Nb205在KOH亚熔盐体系中的溶解行为[J].中国有色金属学报,2004,14(2):306-309.
    [80]陈利斌,张亦飞,张懿.亚熔盐法处理铝土矿工艺的赤泥常压脱碱[J].过程工程学报,2010,10(3):470-475.
    [81]王少娜,郑诗礼,张懿.亚熔盐溶出一水硬铝石型铝土矿过程中赤泥的铝硅行为[J].过程工程学报,2007,7(5):967-972.
    [82]周宏明,易丹青,郑诗礼.铌钽铁矿KOH亚熔盐浸出过程Fe的转化行为[J].稀有金属,2006,30(3):363-368.
    [83]钟莉,张亦飞.亚熔盐法回收赤泥[J].中国有色金属学报,2008,18(1):70-73.
    [84]曹来宗,刘代俊,高丽花,等.亚熔盐法浸取钒的实验研究[J].钢铁钒钛,2008,29(2):14.
    [85]高明磊, 陈东辉,李兰杰,等.含钒钢渣中钒在KOH亚熔盐介质中溶出行为[J].过程工程学报,2011,11(5):761-766.
    [86]李兰杰,陈东辉,白瑞国,等.含钒尾矿渣NaOH亚熔盐浸出提钒[J].过程工程学报,2011,11(5):747-754.
    [87]杨波,王京刚,张亦飞,等.常压下高浓度NaOH浸取铝土矿预脱硅[J].过程工程学报.2007,7(5),922-927.
    [88]赵昌明,翟玉春.硅酸镁在氢氧化钠亚熔盐体系中的溶解行为[J].分子科学学报,2009,25(5):322-326.
    [89]赵昌明,翟玉春,刘岩,等.红土镍矿在NaOH亚熔盐体系中预脱硅[J].中国有色金属学报,2009,19(5):949-954.
    [90]魏成广,等.中国钾盐工业概览[M].上海:上海交通大学出版社,2009
    [91]刘玉民,齐涛,王丽娜,等.KOH亚熔盐法分解钛铁矿[J].过程工程学报,2009,9(2):319-23
    [92]刘玉民,吕华,齐涛,等.氢氧化钾亚熔盐法合成钛酸钾的研究[J].人工晶体学报,2009,38(1):235-239.
    [93]刘玉民,齐涛,张懿.钛酸钾材料的制备及其性能[J].化工进展,2008,27(12):1982-1985.
    [94]张再喜.三相氧化法制锰酸钾工艺探讨[C].中国:中国化工学会无机酸碱专业委员会,2003年无机盐学术年会论文汇编,北京:中国化工学会,2003:154-155
    [95]Fathi Habash. Principles of Extractive Metallurgy:Hydrometallurgy[M]. New York:Gordon and Breach,1969
    [96]谢克强.高铁硫化锌精矿和多金属复杂硫化矿加压浸出工艺及理论研究[博士学位论文],中国博士学位论文全文数据库,昆明理工大学,2006
    [97]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998
    [98]薛薇.SPSS统计分析方法及应用[M].北京:电子工业出版社,2004
    [99]刘振航.数学建模[M].北京:中国人民大学出版社,2004
    [100]张懿,范秀英,张徽.环保产业与高新技术[M].北京:中国科学技术出版社,2001
    [101]ZHANG Yi, LI Zuo-hu, QI Tao, WANG Zhi-kuan, ZHENG Shi-li. Green chemistry of chromate cleaner production[J]. Chinese Journal of Chemistry, 1999,17(3):258-266
    [102]XU H B, ZHENG S L, ZHANG Y, LI Z H, WANG Z K. Oxidative leaching of a Vietnamese chromite ore in highly concentrated potassium hydroxide aqueous solution at 300℃ and atmospheric pressure [J]. Minerals Engineering,2005,18: 527-535.
    [103]ZHOU Hong-ming, ZHENG Shi-li, ZHANG Yi. Kinetics investigations on the leaching of niobium from a low-grade niobium-tantalum ore by concentrated KOH solution[J]. Chinese Journal of Chemical Engineering,2004,12(2): 202-207.
    [104]张洋,孙峙,郑诗礼,等.KOH-KNO3二元亚熔盐分解铬铁矿的实验研究[J].化工进展,2008,27(7):1042-1047.
    [105]张懿,李佐虎,王志宽,等.绿色化学与铬盐工业的新一代革命[J].化学进展,1998,10(2):172-178.
    [106]张懿,陈家镛,刘会洲.新一代资源回收-循环集成技术与生态化产业体系[J].化工进展,2000,19(2):10-12.
    [107]重庆昌元化工有限公司.一种安全生产锰酸钾的装置[P].CNPatent,201620041U.2010-11-03
    [108]王运正.中国高锰酸钾生产工艺现状及展望[J].中国锰业,2012,30(2):1-4
    [109]郭雅洁.亚熔盐法铬盐清洁生产工艺多元电解质水溶液基础物性研究[硕士学位论文].北京化工大学,2010.
    [110]周宏明,郑诗礼,张懿.KOH亚熔盐浸出低品位难分解钽铌矿的实验[J].过程工程学报,2003,3(5):459-463
    [111]刘玉民,齐涛,张懿.KOH亚熔盐法分解钛铁矿的动力学分析[J].中国有色金属学报,2009,19(6):1142-1147
    [112]鞠花,陈刚,李国栋.静水中气泡上升运动特性的数值模拟研究[J].西安理工大学学报,2011,27(3):344-349
    [113]徐麦荣,刘成云.水中浮升气泡半径与速度的变化[J].大学物理,2008,27(11):14-17
    [114]桂夏辉,刘炯天,曹亦俊,等.气泡发生器结构性能的研究与进展[J].选煤技术,2009,(2):66-70
    [115]谭天恩,窦梅,周明华,等.化工原理[M].北京:化学工业出版社,2006
    [116]朵军,李广驰,王晓民,等.搅拌条件对气泡微细化影响研究[J].青海师范大学学报(自然科学版),2011,(3):31-36
    [117]刘燕,张延安,杜靖尧,等.流体中气泡微细化与分散过程的数值模拟[J].过程工程学报,2009,9(1):400-404
    [118]庞占喜,刘慧卿,刘喜林.多孔介质中气泡的生成机理及流动特性研究[J].应用力学学报,2009,26(2):207-211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700