锌焙砂选择性还原与铁锌分离的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化锌精矿中常伴生有一定含量的铁,因而在传统的“沸腾焙烧-浸出-电解”锌湿法炼锌工艺中不可避免的生成铁酸锌(ZnFe2O4),导致大量的锌以铁酸锌的形式赋存于锌浸出渣中,由于铁酸锌性质稳定,使得铁锌的分离困难。现有的铁锌分离工艺流程复杂、能耗高、污染大,严重制约了锌冶炼的可持续发展。因此,铁酸锌中铁锌的高效分离是实现锌清洁冶炼的关键。本研究拟在弱还原气氛下将锌焙砂中的铁酸锌选择性分解为氧化锌及四氧化三铁,依据二者理化性质的差异,采用弱酸浸出-磁选组合工艺实现铁锌的分离。通过基础实验研究,查明了铁酸锌在弱还原气氛下的分解机制,掌握了铁酸锌在还原过程中的物相转变规律,实现了对铁酸锌还原过程的物相调控。通过对实际锌焙砂还原焙烧及铁锌分离工艺的研究,探明了铁锌分离的过程特征,实现了铁锌的高效分离。研究获得如下创新性结论:
     通过铁酸锌CO还原过程的热力学计算,确定了铁酸锌选择性还原的优势区域,查明了铁酸锌在弱还原气氛下的分解机制。铁酸锌在CO气氛下分解为氧化锌及四氧化三铁的反应可自发进行。铁酸锌选择性分解的优势区域与还原温度及CO/(CO+CO2)有关,当还原温度从700℃上升至900℃时,标准状态下获得氧化锌与四氧化三铁优势区域的CO/(CO+CO2)范围由3.1%-38.5%变为1.7%-30.7%。铁酸锌在弱还原气氛下的分解是通过连续析出氧化锌来实现的,铁酸锌的初始分解温度与其所处的气氛有较大的关系,惰性气氛下铁酸锌的初始分解温度为1020℃左右,CO气氛下铁酸锌的初始分解温度降至约400℃。
     通过对铁酸锌还原过程的失重行为、物相组成以及微观形貌的研究,掌握了铁酸锌在还原过程中的物相转变历程。铁酸锌的分解是一个连续的过程,在还原反应的初始阶段,铁酸锌快速失氧转变为铁锌缺氧体(ZnFe2O4-σ),随着还原反应的进行,铁锌缺氧体进一步失氧并析出氧化锌,铁酸锌的正尖晶石结构逐渐向四氧化三铁的反尖晶石结构转化,形成铁酸锌与四氧化三铁的连续固溶体。当温度达到750℃后,还原过程中容易生成铁锌固溶体(Fe0.85-xZnxO)新相,导致还原产物中氧化锌含量的显著降低。
     通过对铁酸锌还原过程的物相调控,实现了铁酸锌选择性分解为氧化锌及四氧化三铁,并建立了铁酸锌还原的动力学模型。铁酸锌还原过程物相调控的关键在于抑制四氧化三铁和氧化锌的还原以及铁锌固溶体的生成。四氧化三铁的还原可通过控制CO/(CO+CO2)低于30%来抑制,氧化锌的还原和铁锌固溶体的生成可通过控制温度低于750℃来抑制。铁酸锌选择性分解为氧化锌及四氧化三铁的过程符合未反应收缩核模型,反应过程受化学反应控制,表观活化能为29.26kJ/molo铁酸锌晶体内部锌铁离子的长程迁移是导致铁酸锌分解速率较慢的主要原因,铁酸锌还原产物中氧化锌富集于表面。
     研究了锌焙砂选择性还原焙烧工艺,确定了适宜的还原焙烧工艺参数,探明了锌焙砂还原焙烧过程中的工艺矿物学变化特征,显著提高了还原焙砂中可溶性锌的含量。锌焙砂选择性还原的适宜工艺参数如下:CO浓度8%,CO/(CO+CO2)为20%,还原温度750℃,还原时间75min,此条件下还原焙砂中可溶性锌含量达到92.8%,未经过还原焙烧的锌焙砂中可溶性锌含量仅为79%。还原焙砂的主要物相组成为氧化锌、四氧化三铁、硫化锌、单质铅、硅酸锌以及少量未反应的铁酸锌。还原焙砂颗粒呈中空结构,氧化锌处于颗粒的最外层,包裹着硫化锌、四氧化三铁以及未反应的铁酸锌,四氧化三铁颗粒呈球形,与其它物相有明显的界限。还原焙砂中的硫主要以硫化锌的形式存在,是导致可溶性锌含量不高的主要原因。锌焙砂还原焙烧之后,其磁性显著增强,为磁选铁锌分离创造了基本条件。
     开展了还原焙砂的弱酸浸出-磁选组合工艺研究,确定了适宜的铁锌分离工艺流程,实现了铁锌的高效分离。还原焙砂直接磁选铁锌分离结果表明,还原焙砂中由于存在铁、锌物相的机械夹杂及化学包裹,难以达到铁锌分离的效果。采用弱酸浸出处理还原焙砂,其铁锌分离效果较好。适宜酸浸条件为:硫酸酸度90g/L,浸出温度30℃,液固比10:1,浸出时间2min,锌的浸出率达到92.1%,铁的浸出率控制在7%以下,浸出液中铁的浓度仅1.03g/L。浸出渣的主要物相为四氧化三铁、硫化锌、硫酸铅及硫化铅,硫化锌的存在是导致浸出渣锌含量偏高的主要原因。浸出渣经过一次磁选后,铁精矿的品位达到51.3%,铅、铟、银等有价金属均富集于尾矿中。图87幅,表13个,参考文献216篇。
Formation of zinc ferrite (ZnFe2O4) is unavoidable in traditional zinc hydrometallurgical of "roast-leach-electrowin" process due to the presence of iron in zinc sulfide concentrate, which leads to the enrichment of zinc in leaching residue. It's hard to separate zinc and iron because the stable of zinc ferrite. The existing technology for zinc and iron separation is characterized by complex process, high energy consumption and serious environmental pollution, which significantly hampered the sustainable development of zinc production. Thus, the efficient separation of zinc and iron from zinc ferrite is critical for cleaner zinc production. Decomposing zinc ferrite to zinc oxide and ferroferric oxide selectively under reduction atmosphere was proposed, and acid leaching and magnetic separation processes were carried out to separate zinc and iron from reduced zinc calcine according to their characteristic difference. The decomposition mechanism, phase transformation and phase composition during zinc ferrite reduction process were detected. Besides, selective reduction of zinc calcine was carried out and the process features was identified. The main conclusions obtained are as follows:
     The thermodynamic predominace area for selective reduction of zinc ferrite under CO atmosphere was determined after the thermodynamic calculation and study of the decomposition mechanism. Thermodynamics analysis results show that the decomposition of zinc ferrite to zinc oxide and ferroferric oxide occurred spontaneously. The predominace area of CO/(CO+CO2) reduced from3.1%-38.5%to1.7%-30.7%at equilibrium when temperature increased from700to900℃. Zinc ferrite decompostion was a continuous zinc oxide precipitation process. Atmosphere have a great impact on the initial decomposition temperature of zinc ferrite. The zinc ferrite begins to decompose at1020℃and400℃under inert atmosphere and reduction atmosphere, respectively.
     The phase transformation behavior of zinc ferrite was conformed according to the weight loss, change of phase composition and microstructure in reduction process. At the initial stage of the reduction process, the zinc ferrite transformed to oxygen-deficient zinc ferrite by fast lossing oxygen at the crystal surface. As the reaction proceeds, the oxygen-deficient zinc ferrite began to precipitate zinc oxide by further lossing oxygen. The normal spinel structure of zinc ferrite gradually converted to inverse spinel structure of ferroferric oxide, and the continuous solid solution between zinc ferrite and ferroferric oxide was formed. The formation of zinc iron solid solution at750℃lead to the decrease of zinc oxide content in reduced products.
     The zinc ferrite was selectively decomposed to zinc oxide and ferroferric oxide by control of reduction conditions and the kinetic model of zinc ferrite decomposition was established. The key points for selective decomposition of zinc ferrite is to restrain the over reduction of zinc oxide and ferroferric oxide and the formation of zinc iron solid solution. Reduction of ferroferric oxide was restrained by controlling the CO/(CO+CO2) below30%, and the reduction of zinc oxide and the formation of zinc iron solid solution were restrained by controlling temperature below750℃. The unreacted shrinking core model was used to study the reduction kinetics of zinc ferrite, and the results showed that decomposition of zinc ferrite to zinc oxide and ferroferric oxide is controlled by chemical reaction, and the apparent activation energy is29.26kJ/mol. The long-range migration of zinc and iron ions in zinc ferrite crystal during reduction process is the main cause that contributes to the lower decomposition rate, The zinc oxide in reduced zinc ferrite mainly enriches at the surface of the particles.
     The parameters for selective reduction of zinc calcine were optimized, and the mineralogical properties of zinc calcine in reduction process were studied. The soluable zinc content in roasted product reached92.8%after roasting zinc calcine at8%CO with20%CO/(CO+CO2) under750℃for75min. However, the soluable zinc content in unroasted zinc calcine is only79%. The roasted zinc calcine mainly contains zinc oxide, ferroferric oxide, zinc sulfide, lead, zinc silicate and few unreduced zinc ferrite. The roasted zinc calcine particles have hollow structure with zinc oxide exists in the outmost layer, while zinc sulfide, ferroferric oxide and unreacted zinc ferrite particles form a hollow skeleton. The ferroferric oxide particles have clear baundaries with other phases are basically spherical in shape. The sulfur exists in zinc sulfide contributes to the lower soluable zinc content in roasted zinc calcine. The magnetic properties of zinc calcine incresed significantly after reduction roasting, which provide the basic condition for magnetic separation.
     The routes of magnetic separation and acid leaching were proposed to separate zinc and iron on the basis of mineralogical properties of roasted zinc calcine. The study of direct magnetic separation of roasted zinc calcine indicates that the separation efficiency of zinc and iron were limited due to the phase inclusions in the form of chemical and physical states. The acid leaching showed better effect on the separation efficiency of zinc and iron. The appropriate conditions were determined after leaching roasted zinc calcine in90g/L H2SO4at30℃with L/S of10:1for2min. Under these conditions, the zinc leaching rate achieved92%, while iron leaching rate was below7%and the iron concentration in leaching solution was only1.03g/L. The study results of mineralogical properties of leaching residue show that the main phase composition of leaching residue were ferroferric oxide, zinc sulfide, lead sulfate and lead sulfide. The presence of zinc sulfide was the main cause that lead to the high content of zinc in leaching residue. An iron grade of51.3%have been obtained after leaching residue treated by magnetic separation, and the valuable metals such as lead、indium and silver were enriched in magnetic separation tailings. The figures, tables and references are87,13and216, respectively.
引文
[1]彭容秋.重金属冶金学[M].长沙:中南大学出版社,2004.
    [2]Jha M K, Kumar V, Singh R J. Review of hydrometallurgical recovery of zinc from industrial wastes[J]. Resources, Conservation and Recycling,2001,33(1): 1-22.
    [3]奚牲.世界铅锌矿山生产情况及产能变化趋势[J].世界有色金属,2011,(5):9.
    [4]冯君从.锌市场又到寻底时[c].国际锌协会.锌冶炼及回收技术大会论文集.中国青岛,2012:1-9.
    [5]刘三军,欧乐明,中国锌冶炼工业现状[J].矿产保护与利用,2003,(6):36-40.
    [6]蒋继穆.中国铅锌冶炼技术盘点[J].中国有色金属,2012,(3):32-33.
    [7]刘志宏.国内外锌冶炼技术的现状及发展动向[J].世界有色金属,2000,(1):23-26.
    [8]梅光贵,王德润,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001.
    [9]王忠实.锌冶炼技术发展现状综述[C].中国有色金属学会第七届学术年会论文集.北京:冶金工业出版社,2008.
    [10]徐鑫坤,魏旭编.锌冶金学[M].昆明:云南科技出版社,1994.
    [11]张乐如.现代铅锌冶炼技术的应用与特点[J].世界有色金属,2007,(4):20-22.
    [12]未立清,张宇光,肖立新.干粉粘合剂在竖罐炼锌生产中应用的研究[J].矿冶,2000,9(2):63-66.
    [13]陈志强.论降低长沙锌厂竖罐渣含锌的主要途径[J].湖南有色金属,1999,15(1):26-29.
    [14]傅志华,蒋绍坚,周乃君.竖罐蒸馏炼锌的节能技术[J].冶金能源,1995,14(2):32-36.
    [15]王振岭.电炉炼锌[M].北京:冶金工业出版社,2001.
    [16]李夏林.韶冶铅锌密闭鼓风炉I系统技术改造实践[J].有色冶炼,2001,(5):12-15.
    [17]Sasaoka H, Tatsuta N, Kadoya H. Recent operational improvements in the ISF plant[J]. Metallurgical Review of Mining and Metallurgical Institute of Japan, 1996,13(1):154-165.
    [18]Masakazu M. Zinc-lead smelting at Hachinohe Smelter[J]. Metallurgical Review of Mining and Metallurgical Institute of Japan,1995,12(1):39-50.
    [19]Harutosh T M K. Zinc-lead smelting and refuting at Sumitomo Harima Works[J]. Metallurgical Review of Mining and Metallurgical Institute of Japan,1995,12(1): 77-95.
    [20]王志刚.密闭鼓风炉炼铅锌技术改进与展望[J].湖南有色金属,2003,19(6):19-22.
    [21]Chen T T, Dutrizac J E. Mineralogical changes occurring during the fluid-bed roasting of zinc sulfide concentrates [J]. JOM Journal of the Minerals, Metals and Materials Society,2004,56:46-51.
    [22]Kaskiala T. Determination of mass transfer between gas and liquid in atmospheric leaching ofsulphidic zinc concentrates[J]. Minerals Engineering,2005,18(12): 1200-1207.
    [23]Ozberk E. Challdey M E, Collins M J, et al. Commercial applications of the Sherritt zinc pressure leach process and iron disposal[J]. Mineral Processing and Extractive Metallurgy Review,1995,15(1-4):115-133.
    [24]Martin M T, Jankola W A. Cominco'S trail zinc pressure leaching operation[J]. CIM Bulletin,1985,78(876):77-81.
    [25]Filippou D. Innovative hydrometallurgical processes for the primary processing of zinc[J]. Mineral Processing and Extractive Metallurgy Review,2004,25(3): 205-252.
    [26]Collins M J, Masters I M, Ozberk E, et al. Deportment of selected minor elements at the HBMS zinc pressure leach plant[J]. CIM Bulletin,1995,88(986):62-67.
    [27]Chalkley M E, Ozberk E, Vardill W D. Treatment of bulk concentrates by the Sherritt zinc pressure leach process[J]. Minerals Engineering,1993,6(8-10): 937-948.
    [28]Buban K R, Collins M J, Masters I M, et al. Comparison of direct pressure leaching with atmospheric leaching of zinc concentrates[C], Proceedings of the TMS Fall Extraction and Processing Conference, Warrendale PA,2000:727-738.
    [29]Buban K R, Collins M J, Masters I M. Iron control in zinc pressure leach processes[J]. JOM Journal of the Minerals, Metals and Materials Society,1999, 51(12):23-25.
    [30]Bjorling G, Kolta G A. Oxidizing leach of sulfide concentrates and other materials catalyzed by nitric acid[C].7th International Minerai Processing Congress, New-York,1964:127-138.
    [31]周廷熙,王吉坤.高铁硫化锌精矿冶炼工艺研究进展[J].中国有色冶金,2006,(1):13-17.
    [32]Harvey T Q. The hydrometallurgical extraction of zinc by ammonium carbonate:A review of the Schnabel Process [J]. Mineral Processing and Extractive Metallurgy Review,2006,27(4):231-279.
    [33]Moghaddam J, Sarraf-Mamoory R, Yamini Y, et al. Determination of the optimum conditions for the leaching of nonsulfide zinc ores (high-SiO2) in ammonium carbonate media[J]. Industrial and Engineering Chemistry Research,2005,44(24): 8952-8958.
    [34]Meng X H, Han K N. Principles and applications of ammonia leaching of metals-a review[J]. Mineral Processing and Extractive Metallurgy Review,1996,16(1): 23-61.
    [35]Rabah M A, El-Sayed A S. Recovery of zinc and some of its valuable salts from secondary resources and wastes[J]. Hydrometallurgy,1995,37(1):23-32.
    [36]张元福,梁杰,李谦,等.铵盐法处理氧化锌矿的研究[J].贵州工业大学学报(自然科学版),2002,31(1):37-40.
    [37]刘晓丹,张元福.铵盐浸出氧化锌矿动力学研究[J].贵州工业大学学报(自然科学版),2004,33(2):82-84.
    [38]张保平,唐谟堂,杨声海.锌氨配合体系电积锌研究[J].湿法冶金,2001,20(4):175-178.
    [39]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报,2003,34(6):619-623.
    [40]张保平,唐谟堂.NH4C1-NH3-H2O体系浸出氧化锌矿[J].中南工业大学学报,2001,32(5):483-486.
    [41]Yang S H, Tang M T. Thermodynamics of Zn(Ⅱ)-NH3-NH4CI-H2O system[J]. Transaction of Nonferrous Metal Science of China,2000,10(6):830-832.
    [42]Ju S H, Tang M T, Yang S H, Li Y N. Dissolution kinetics of smithsonite ore in ammonium chloride solution[J]. Hydrometallurgy,2005,80(1-2):67-74.
    [43]Kim M S, Lee J C, Kim B S, et al. Electrochemical recovery of zinc from NH4C1 leaching solution of ZnO[C]. Global Symposium on Recycling, Waste Treatment and Clean Technology-Proceedings, Madrid,2005:1893-1899.
    [44]Lozano B L J, Meseguer Z V F, De-Juan G D. Statistical analysis of laboratory results of Zn wastes leaching[J]. Hydrometallurgy,1999,54(1):41-48.
    [45]Nyirenda R L, Lugtmeijer A D. Ammonium carbonate leaching of carbon stcclmaking dust-Detoxification potential and economic feasibility of a conceptual process[J]. Minerals Engineering,1993,6(7):785-797.
    [46]唐谟堂,鲁君乐,袁延胜,等.Zn(II)-NH3-(NH4)2SO4-H2O系的氨络合平衡[J].中南矿冶学院学报,1994,25(6):701-705.
    [47]唐谟堂,欧阳民.硫铵法制取等级氧化锌[J].中国有色金属学报,1998,8(1):118-121.
    [48]唐谟堂,张鹏,何静,等.Zn(II)-(NH4)2SO4-H2O体系浸出锌烟尘[J].中南大学学报(自然科学版),2007,18(5):867-871.
    [49]Moustafa S A. Extraction of zinc from Egyptian zinc Ore with (NH4)2SO4[J]. World of Metallurgy-ERZMETALL,2005,58(1):21-26.
    [50]Saleh H I, Hassan K M. Extraction of zinc from blast-furnace dust using ammonium sulfate[J]. Journal of Chemical Technology and Biotechnology,2004, 79(4):397-402.
    [51]胡云,朱云.难选氧化锌矿氨浸的热力学[J].云南冶金,2004,33(1):28-31.
    [52]朱云,胡汉,苏云生,等.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,2(1):81-85.
    [53]窦明民.锌冶金中铁酸锌生成及离解机理研究[J].云南冶金,2003,32(10):63-65.
    [54]解立群,施哲,胡汉,等.铁酸锌还原焙烧试验研究[J].矿冶,2011,(3):76-78.
    [55]陈少纯,周令治,邹家炎,等.铁酸锌的还原分解和其中锗的行为研究[J].广东有色金属学报,1991,1(1):26-31.
    [56]Peng N. Peng B, Chai L Y, et al. Recovery of iron from zinc calcines by reduction roasting and magnetic separation[J]. Minerals Engineering,2012,35:57-60.
    [57]包崇军,吴红林.压密锌渣烟化炉连续吹炼的工业试验[J].云南冶金,2007,(2):62-65.
    [58]Cruells M, Roca A, Nunez C. Electric arc furnace flue dusts:characterization and leaching with sulphuric acid[J]. Hydrometallurgy,1992,31(3):213-231.
    [59]Havlik T, Turzakova M, Stopic S, et al. Atmospheric leaching of EAF dust with diluted sulphuric acid[J]. Hydrometallurgy,2005,77(1):41-50.
    [60]Havlik T, Friedrich B, Stopic S. Pressure leaching of EAF dust with sulphuric acid[J]. Erzmetall,2004,57(2):83-90.
    [61]Kelebek S, Yoruk S, Davis B. Characterization of basic oxygen furnace dust and zinc removal by acid leaching[J]. Minerals Engineering,2004,17(2):285-291.
    [62]Palmer D A, Anovitz L M. Solubility of Zinc Silicate and Zinc Ferrite in Aqueous Solution to High Temperatures[J]. Journal of solution chemistry,2009,38(7): 869-892.
    [63]Matsumoto K, Taniguchi S, Kikuchi A. Acid leaching behavior of zinc ferrite in an agitated vessel[J]. Journal of the Japan institute of metals,1999,63(3):345-351.
    [64]Karavasteva M. The effect of certain surfactants on the acid and neutral leaching of zinc calcine obtained by roasting of sphalerite concentrates[J]. Hydrometallurgy, 2001,62(3):151-156.
    [65]Karavasteva M. Effect of certain surfactants on the leaching and precipitation processes in zinc ferrite residue treatment[J]. Mineral Processing & Extractive Metallurgy Review,2009,30(2):122-135.
    [66]Langova S, Riplova J, Vallova S. Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution[J]. Hydrometallurgy,2007,87(3):157-162.
    [67]Zhang Y J, Li X H, Pan L P, et al. Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite[J]. Hydrometallurgy,2010,100(3-4): 172-176.
    [68]Zhang Y, Li X, Pan L, et al. Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite [J]. Hydrometallurgy,2010, 102(1):95-100.
    [69]Kul M, Topkaya Y. Recovery of germanium and other valuable metals from zinc plant residues[J]. Hydrometallurgy,2008,92(3):87-94.
    [70]LI C X, WEI C, FAN G,et al. Pressure acid leaching of high silicon zinc oxide ore [J]. The Chinese Journal of Nonferrous Metals,2009,9:26.
    [71]Langova S, Lesko J, Matysek D. Selective leaching of zinc from zinc ferrite with hydrochloric acid[J]. Hydrometallurgy,2009,95(3-4):179-182.
    [72]Nunez C, Vinals J. Kinetics of leaching of zinc ferrite in aqueous hydrochloric acid solutions[J]. Metallurgical and Materials Transactions B,1984,15(2): 221-228.
    [73]Baik D S, Fray D J. Recovery of zinc from electric-are furnace dust by leaching with aqueous hydrochloric acid, plating of zinc and regeneration of electrolyte [J]. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy,2000,109:121-128.
    [74]Baik D S, Fray D J. Recovery of zinc from electric-arc furnace dust by leaching with aqueous hydrochloric acid, plating of zinc and regeneration of electrolyte [J]. Mineral Processing and Extractive Metallurgy,2000,109(3):121-128.
    [75]Leclerc N, Meux E, Lecuire J M. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride[J]. Journal of Hazardous Materials,2002,91(1):257-270.
    [76]Bahram B, Javad M. Chloride leaching of lead and silver from refractory zinc plant residue[J]. Research journal of chemistry and environment,2011,15(2): 473-480.
    [77]Nagib S, Inoue K. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching[J]. Hydrometallurgy,2000,56(3):269-292.
    [78]Dutra A J B, Paiva P R P, Tavares L M. Alkaline leaching of zinc from electric arc furnace steel dust[J]. Minerals Engineering,2006,19(5):478-485.
    [79]Orhan G. Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium[J]. Hydrometallurgy,2005,78(3):236-245.
    [80]Xia D K, Pickles C A. Kinetics of zinc ferrite leaching in caustic media in the deceleratory period [J]. Minerals Engineering,1999,12(6):693-700.
    [81]Xia D K, Pickles C A. Microwave caustic leaching of electric arc furnace dust[J]. Minerals Engineering,2000,13(1):79-94.
    [82]Youcai Z, Stanforth R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium[J]. Journal of Hazardous Materials,2000,80(1):223-240.
    [83]Zhao Y C, Stanforth R. Extraction of zinc from zinc ferrites by fusion with caustic soda[J]. Minerals Engineering,2000,13(13):1417-1421.
    [84]Zhao Y C, Stanforth R. Extraction of zinc from electric arc furnace dust by alkaline leaching followed by fusion of the leaching residue with caustic soda[J]. Chinese Journal of Chemical Engineering,2004,12(2):174-178.
    [85]Alizadeh R, Rashchi F, Vahidi E. Recovery of zinc from leach residues with minimum iron dissolution using oxidative leaching[J]. Waste management and research,2011,29(2):165-171.
    [86]刘中清,潘方杰.硫化锌精矿还原浸出高浸渣中锗的研究[J].有色金属(冶炼部分),2004,4:20-25.
    [87]Achimovicova M, Balaz P. Influence of mechanical activation on selectivity of acid leaching of arsenopyrite[J]. Hydrometallurgy,2005,77(1):3-7.
    [88]黄云峰,钱鑫.机械化学及其在矿物加工中的应用[J].金属矿山,1999,(5):17-20.
    [89]张燕娟,黎铉海,潘柳萍,等.机械活化对铟铁酸锌溶解动力学及物化性质的 影响[J].中国有色金属学报,2012,22(1):315-323.
    [90]Balaz P. Mechanical activation in hydrometallurgy[J]. International Journal of Mineral Processing,2003,72(1):341-354.
    [91]Li C, Liang B, Guo L. Effect of mechanical activation on the dissolution of Panzhihua ilmenite[J]. Minerals Engineering,2006,19(14):1430-1438.
    [92]Wei L, Hu H, Chen Q, et al. Effects of mechanical activation on the HC1 leaching behavior of plagioclase, ilmenite and their mixtures[J]. Hydrometallurgy,2009, 99(1):39-44.
    [93]黎铉海.机械活化强化含砷金精矿浸出的工艺及机理研究[D].中南大学,2002.
    [94]Yao J, Li X, Li Y. Study on indium leaching from mechanically activated hard zinc residue[J]. Journal of Mining and Metallurgy, Section B:Metallurgy,2011,47(1): 63-72.
    [95]Tkacova K, Sepelak V, Stevulova N, et al. Structure-reactivity study of mechanically activated zinc ferrite[J]. Journal of Solid State Chemistry,1996, 123(1):100-108.
    [96]Zhang Y J, Li X H, Pan L P, et al. Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite[J]. Hydrometallurgy,2010, 102(1-4):95-100.
    [97]张凡,马启坤.中浸渣的机械活化浸出工艺研究[J].云南冶金,2002,31(4):33-37.
    [98]Elgersma F, Witkamp G J, Van Rosmalen G. Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite[J]. Hydrometallurgy,1993,34(1): 23-47.
    [99]Dutrizac J E. Effectiveness of jarosite species for precipitating sodium jarosite[J]. JOM Journal of the Minerals, Metals and Materials Society,1999,51(12):30-32.
    [100]Chen T, Dutrizac J. Jarofix:Addressing iron disposal in the zinc industry[J]. JOM Journal of the Minerals, Metals and Materials Society,2001,53(12):32-25.
    [101]Dutrizae J E. Effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite [J]. Hydrometallurgy,1996,42(3):293-312.
    [102]Elgersma F, Witkamp G J, Van Rosmalen G M. Incorporation of zinc in continuous jarosite precipitation[J]. Hydrometallurgy,1993,33(3):313-339.
    [103]Wang Q K, Ma R J, Tan Z Z. Jarosite process-Kinetic study[J]. Mining & Metallurgical Inst of Japan,1985,33(4):675-690.
    [104]Ghodsi M, Detournay J, Marion A M. Influence of the neutralizing agent on jarosite precipitation[J]. Journal of Chemical Technology and Biotechnology,1982, 32(10):953-958.
    [105]Wood J, Haigh C. Jarosite process boosts zinc recovery in eleetrolutic plants[J]. World Mining,1972,25(10):34-38.
    [106]马荣骏.湿法冶金原理[M].北京:冶金工业出版社,2007.
    [107]钟竹前,梅光贵,李云瑶,等.高温锌焙砂热酸浸出-亚硫酸锌还原-针铁矿法试验研究[J].有色金属,1981,(1):82-87.
    [108]林书英.针铁矿法在温州冶炼厂锌技改工程中的应用[J].有色金属(冶炼部分),1996,(5):4-6.
    [109]张元福,陈家蓉,黄光裕,等.针铁矿法从氧化锌烟尘浸出液中除氟氯的研究[J].湿法冶金,1999,(2):36-40.
    [110]Claassen J O, Meyer E H O, Rennie J, et al. Iron precipitation from zinc-rich solutions:Defining the Zincor Process[J]. Hydrometallurgy,2002,67(1-3): 87-108.
    [111]Claassen J O, Meyer E H O, Rennie J, et al. Iron precipitation from zinc-rich solutions:Optimizing the Zincor Process [J]. Journal of the south african institute of mining and metallurgy,2003,103(4):253-263.
    [112]Loan M, Newman O M G, Cooper R M G, et al. Defining the Paragoethite process for iron removal in zinc hydrometallurgy [J]. Hydrometallurgy,2006,81(2): 104-129.
    [113]Cheng T C, Demopoulos G P, Shibachi Y, et al. The precipitation chemistry and performance of the Akita Hematite Process-An integrated laboratory and industrial scale study[C]. Proceedings of the TMS Fall Extraction and Processing Conference, Vancouver BC,2003,1657-1674.
    [114]Van Niekerk, Christoffel J. Thermal precipitation of iron from sulphate solutions[J]. Mining & Metallurgical Inst of Japan,1985,33(10):691-706.
    [115]Xia D K, Pickles C A. Caustic roasting and leaching of electric arc furnace dust[J]. Canadian metallurgical quarterly,1999,38(3):175-186.
    [116]Morsi M B, Nasr M M, Abdalla F H. Soda ash roasting of electric-arc steelmaking dust[J]. Transactions of the indian institute of metals,1998,51(4):193-200.
    [117]Holloway P C, Etsell T H, Murland A L. Roasting of La Oroya zinc ferrite with Na2CO3[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2007,38(5):781-791.
    [118]Holloway P C, Etsell T H, Murland A L. Use of secondary additives to control the dissolution of iron during Na2CO3 roasting of La Oroya zinc ferrite[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2007,38(5):793-808.
    [119]Zhang Y L, Yu X J, Li X B. Zinc recovery from franklinite by sulphation roasting[J]. Hydrometallurgy,2011,109(3-4):211-214.
    [120]Turan M D, Altundogan H S, Tumen F. Recovery of zinc and lead from zinc plant residue[J]. Hydrometallurgy,2004,75(1-4):169-176.
    [121]Leclerc N, Meux E, Lecuire J M. Hydrometallurgical extraction of zinc from zinc ferrites[J]. Hydrometallurgy,2003,70(1-3):175-183.
    [122]Itoh S, Tsubonie A, Matsubae-Yokoyama K, et al. New EAF Dust Treatment Process with the Aid of Strong Magnetic Field[J]. Isij International,2008,48(10): 1339-1344.
    [123]Carrera J, Bringas E, Roman M S, et al. Selective membrane alternative to the recovery of zinc from hot-dip galvanizing effluents [J]. Journal of Membrane Science,2009,326(2):672-680.
    [124]Agrawal A, Kumari S, Sahu K. Iron and copper recovery/removal from industrial wastes:a review[J]. Industrial & Engineering Chemistry Research,2009,48(13): 6145-6161.
    [125]Gouvea L R, Morais C A. Development of a process for the separation of zinc and copper from sulfuric liquor obtained from the leaching of an industrial residue by solvent extraction[J]. Minerals Engineering,2010,23(6):492-497.
    [126]Mansur M B, Rocha S D F, Magalhaes F S, et al. Selective extraction of zinc (II) over iron (II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction[J]. Journal of Hazardous Materials,2008,150(3):669-678.
    [127]Fouad E, Bart H J. Separation of Zinc by a Non-dispersion Solvent Extraction Process in a Hollow Fiber Contactor [J]. Solvent Extraction and Ion Exchange, 2007,25(6):857-877.
    [128]陈家镛,于淑秋,伍志春.湿法冶金中铁的分离与利用[M].北京:冶金工业出版社,1991.
    [129]邹兴,朱旺喜,朱荣,等.低品位硫化锌矿生物浸出液中锌的富集和铁的去除[J].北京科技大学学报,2003,25(1):30-33.
    [130]Vahidi E, Rashchi F, Moradkhani D. Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA[J]. Minerals Engineering,2009, 22(2):204-206.
    [131]Ortiz I, Bringas E, San Roman M F, et al. Selective separation of zinc and iron from spent pickling solutions by membrane-based solvent extraction:process viability[J]. Separation Science and Technology,2005,39(10):2441-2455.
    [132]Zhivkova S, Dimitrov K, Kyuchoukov G, et al. Separation of zinc and iron by pertraction in rotating film contactor with Kelex 100 as a carrier[J]. Separation and purification technology,2004,37(1):9-16.
    [133]Bringas E, San Roman M, Irabien J, et al. An overview of the mathematical modelling of liquid membrane separation processes in hollow fibre contactors[J]. Journal of Chemical Technology and Biotechnology,2009,84(11):1583-1614.
    [134]Hogan C L. Ferrites[J]. Scientific American,1960,202:92-104.
    [135]Mouallem-Bahout M, Bertrand S, Pena O. Synthesis and characterization of ZnNiFe2O4 spinels prepared by a citrate precursor[J]. Journal of Solid State Chemistry,2005,178(4):1080-1086.
    [136]Guigue-Millot N, Begin-Colin S, Champion Y, et al. Control of grain size and morphologies of nanograined ferrites by adaptation of the synthesis route: mechanosynthesis and soft chemistry[J]. Journal of Solid State Chemistry,2003, 170(1):30-38.
    [137]Matz R, Gotsch D, Karmazin R, et al. Low temperature cofirable MnZn ferrite for power electronic applications[J]. Journal of electroceramics,2009,22(1-3): 209-215.
    [138]Syue M R, Wei F J, Chou C S, et al. Magnetic and electrical properties of Mn-Zn ferrites synthesized by combustion method without subsequent heat treatments [J]. Journal of Applied Physics,2011,109:07A324.
    [139]Slatineanu T, Diana E, Nica V, et al. The influence of the chelating/combustion agents on the structure and magnetic properties of zinc ferrite[J]. Central European Journal of Chemistry,2012,10(6):1799-1807.
    [140]Jung C W, Jacobs P. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents:ferumoxides, ferumoxtran, ferumoxsil[J]. Magnetic resonance imaging,1995,13(5):661-674.
    [141]Liu J P, Fullerton E, Gutfleisch O, et al. Nanoscale magnetic materials and applications[M]. Springer,2009.
    [142]Brusentsov N A, Gogosov V, Brusentsova T, et al. Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX 11 sarcoma cells in vitro [J]. Journal of magenetism and magnetic materials, 2001,225(1):113-117.
    [143]Ikenaga N O, Ohgaito Y, Matsushima H, et al. Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning[J]. Fuel,2004, 83(6):661-669.
    [144]Ahmed M, Alonso L, Palacios J, et al. Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization[J]. Solid state ionics,2000, 138(1):51-62.
    [145]Sathitwitayakul T, Kuznetsov M V, Parkin I P, et al. The gas sensing properties of some complex metal oxides prepared by self-propagating high-temperature synthesis[J]. Materials letters,2012,75:36-38.
    [146]Sutka A, Mezinskis G, Lusis A, et al. Influence of iron non-stoichiometry on spinel zinc ferrite gas sensing properties[J]. Sensors and Actuators B-Chemical,2012, 171:204-209.
    [147]Klimkiewicz R, Grabowska H, Mista W, et al, Mg-Zn and Mn-Zn Ferrites Derived from Coil Core Materials as New Phenol Methylation Catalysts[J]. Industrial & Engineering Chemistry Research,2012,51(5):2205-2213.
    [148]Su M H, He C, Sharma V K, et al. Mesoporous zinc ferrite:Synthesis, characterization, and photocatalytic activity with H2O2/visible light[J]. Journal of Hazardous Materials,2012,211:95-103.
    [149]Moreira E, Fraga L A, Mendonca M H, et al. Synthesis, optical, and photocatalytic properties of a new visible-light-active ZnFe2O4-TiO2 nanocomposite material [J]. Journal of nanoparticle research,2012,14(6):1-10.
    [150]Mohapatra S, Rout S R, Maiti S, et al. Monodisperse mesoporous cobalt ferrite nanoparticles:synthesis and application in targeted delivery of antitumor drugs[J]. Journal of Materials Chemistry,2011,21(25):9185-9193.
    [151]Gadkari A B, Shinde T J, Vasambekar P N. Ferrite gas sensors [J]. Sensors Journal, IEEE,2011,11(4):849-861.
    [152]肖康.株冶锌精矿沸腾焙烧炉焙砂可溶锌率下降的原因分析[J].湖南有色金属,2007,23(006):11-13.
    [153]Mohai I, Szepvolgyi J, Bertoti I, et al. Thermal plasma synthesis of zinc ferrite nanopowders[J]. Solid state ionics,2001,141:163-168.
    [154]Sepelak V, Steinike U, Uecker D C, et al. Structural response of nanoscale mechanosynthesized zinc ferrite to changes in temperature[J]. European Powder Diffraction, Pts 1 and 2,2000,321-323:357-362.
    [155]Suman, Sharma N D. Structural and magnetic properties of zinc ferrite aluminates synthesized by ceramic method[J]. Indian Journal of Pure & Applied Physics,2007, 45(6):549-554.
    [156]Bid S, Pradhan S. Characterization of crystalline structure of ball-milled nano-Ni-Zn-ferrite by Rietveld method[J]. Materials chemistry and physics,2004, 84(2):291-301.
    [157]Dutta H, Sinha M, Lee Y C, et al. Microstructure characterization and phase transformation kinetics of ball-mill prepared nanocrystalline Mg-Zn-ferrite by Rietveld's analysis and electron microscopy[J]. Materials chemistry and physics, 2007,105(1):31-37.
    [158]Sinha M, Dutta H, Pradhan S. X-ray characterization and phase transformation kinetics of ball-mill prepared nanocrystalline Mg-Zn-ferrite at elevated temperatures [J]. Physica E:Low-dimensional Systems and Nanostructures,2006, 33(2):367-369.
    [159]Pradhan S, Bid S, Gateshki M, et al. Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling[J]. Materials chemistry and physics,2005,93(1):224-230.
    [160]Yao C, Zeng Q, Goya G, et al. ZnFe2O4 nanocrystals:synthesis and magnetic properties[J]. The Journal of Physical Chemistry C,2007,111(33):12274-12278.
    [161]Luo H, Yue Z, Zhou J. Synthesis and high-frequency magnetic properties of sol-gel derived Ni-Zn ferrite-forsterite composites[J]. Journal of magnetism and magnetic materials,2000,210(1):104-108.
    [162]Sanpo N, Berndt C C, Wang J. Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods[J]. Journal of Applied Physics,2012,112(8):333-339.
    [163]Kundu A, Upadhyay C, Verma H. Magnetic properties of a partially inverted zinc ferrite synthesized by a new coprecipitation technique using urea[J]. Physics letters A,2003,311(4):410-415.
    [164]Raeisi S R, Ebrahimi M, Seyyed E S, et al. Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method [J]. Journal of magnetism and magnetic materials,2012, 234(22):3762-3765.
    [165]Qu Y, Yang H, Yang N, et al. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles[J]. Materials letters,2006,60(29):3548-3552.
    [166]Shahraki R R, Ebrahimi M, Ebrahimi S A S, et al. Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method[J]. Journal of magnetism and magnetic materials,2012, 324(22):3762-3765.
    [167]Hu X, Guan P, Yan X. Hydrothermal synthesis of nano-meter microporous zinc ferrite[J]. China Particuology,2004,2(3):135-137.
    [168]Zhang R, Huang J, Zhao J, et al. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization[J]. Energy & Fuels,2007,21(5): 2682-2687.
    [169]Reddy B R, Sivasankar T, Sivakumar M, et al. Physical facets of ultrasonic cavitational synthesis of zinc ferrite particles[J]. Ultrasonics sonochemistry,2010, 17(2):416-426.
    [170]Choudhury H A, Choudhary A, Sivakumar M, et al. Mechanistic investigation of the sonochemical synthesis of zinc ferrite[J]. Ultrasonics sonochemistry,2013, 20(1):294-302.
    [171]Shafi K V, Gedanken A, Prozorov R, et al. Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles [J]. Chemistry of Materials,1998,10(11):3445-3450.
    [172]王育华.固体化学[M].兰州:兰州大学出版社,2010.
    [173]Sepelak V, Steinike U, Uecker D C, et al. Structural disorder in mechanosynthesized zinc ferrite[J]. Journal of Solid State Chemistry,1998,135(1): 52-58.
    [174]Bid S, Pradhan S. Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld's analysis[J]. Materials chemistry and physics,2003,82(1):27-37.
    [175]Dutta H, Pradhan S, De M. Microstructural evolution on ball-milling elemental blends of Ni, Al and Ti by Rietveld's method[J]. Materials chemistry and physics, 2002,74(2):167-176.
    [176]Dutta H. Pradhan S. Microstructure characterization of high energy ball-milled nanocrystalline V2O5 by Rietveld analysis[J]. Materials chemistry and physics, 2003,77(3):868-877.
    [177]Manik S, Bose P, Pradhan S. Microstructure characterization and phase transformation kinetics of ball-milled prepared nanocrystalline Zn2TiO4 by Rietveld method[J]. Materials chemistry and physics,2003,82(3):837-847.
    [178]Manik S, Pradhan S. Microstructure characterization of ball milled prepared nanocrystalline perovskite CaTiO3 by Rietveld method[J]. Materials chemistry and physics,2004,86(2):284-292.
    [179]Deraz N, Alarifi A. Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system[J]. Journal of Analytical and Applied Pyrolysis,2011,94:41-47.
    [180]Druska P, Steinike U, Sepelak V. Surface structure of mechanically activated and of mechanosynthesized zinc ferrite[J]. Journal of Solid State Chemistry,1999, 146(1):13-21.
    [181]Ghatak S, Sinha M, Meikap A. Electrical transport behavior of nonstoichiometric magnesium-zinc ferrite[J]. Materials Research Bulletin,2010,45(8):954-960.
    [182]Makovec D, Drofenik M. Non-stoichiometric zinc-ferrite spinel nanoparticles[J]. Journal of nanoparticle research,2008,10:131-141.
    [183]Lee J J, Lin C I, Chen H K. Carbothermal reduction of zinc ferrite[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2001,32(6):1033-1040.
    [184]Tong L F. Reduction mechanisms and behaviour of zinc ferrite-Part 1:pure ZnFe2O4[J]. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy,2001,110:14-24.
    [185]Tong L F. Reduction mechanisms and behaviour of zinc ferrite-Part 2:ZnFe2O4 solid solutions[J]. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy,2001,110:123-132.
    [186]Tong L F, Hayes P. Mechanisms of the reduction of zinc ferrites in H2/N2 gas mixtures[J]. Mineral Processing and Extractive Metallurgy Review,2007,28(2): 127-157.
    [187]Coruh S, Ergun O N. Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste[J]. Journal of Hazardous Materials,2010,173(1-3):468-473.
    [188]Erdem M, Ozverdi A. Environmental risk assessment and stabilization/ solidification of zinc extraction residue:Ⅱ. Stabilization/solidification[J]. Hydrometallurgy,2011,105(3-4):270-276.
    [189]邱电云,马荣骏.热酸浸出湿法炼锌中铁钒渣的处理方法[J].湖南有色金属, 1994,3:158-162.
    [190]Bera S, Prince A, Velmurugan S, et al. Formation of zinc ferrite by solid-state reaction and its characterization by XRD and XPS[J]. Journal of Materials Science, 2001,36(22):5379-5384.
    [191]马如璋,徐英庭.穆斯堡尔谱学[M].北京:科学出版社,1996.
    [192]有色金属工业分析丛书编委会.矿石及工业产品化学物相分析[M],北京:冶金工业出版社,1992.
    [193]孙淑媛,孙龄高,殷齐西,等.矿石及有色金属分析手册[M].北京:冶金工业出版社,1990.
    [194]张悦.现代材料分析方法[M].北京:化学工业出版社,2007.
    [195]李洪桂.冶金原理[M].北京:科学出版社,2005.
    [196]Aniz C, Robinson P, Rashid K A, et al. Correlation between the reduction behavior of ferrospinels synthesized by a soft chemical method and their carbon monoxide oxidation activity[J]. Reaction Kinetics, Mechanisms and Catalysis,2012,107(2): 355-365.
    [197]Lin K S, Adhikari A K, Tsai Z Y, et al. Synthesis and characterization of nickel ferrite nanocatalysts for CO2 decomposition[J]. Catalysis Today,2011,174(1): 88-96.
    [198]Kodama T. Tabata M, Sano T, et al. XRD and Mossbauer studies on oxygen-deficient Ni (Ⅱ)-bearing ferrite with a high reactivity for CO2 decomposition to carbon[J]. Journal of Solid State Chemistry,1995,120(1): 64-69.
    [199]Machado J G M S, Brehm F A, Moraes C A M, et al. Chemical, physical, structural and morphological characterization of the electric arc furnace dust[J]. Journal of Hazardous Materials,2006,136(3):953-960.
    [200]Raghavan V. Fe-O-Zn (Iron-Oxygen-Zinc)[J]. Journal of phase equilibria and diffusion,2010,31(4):373-376.
    [201]杨兵初,钟心刚.固体物理学[M].长沙:中南大学出版社,2002.
    [202]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998.
    [203]Lin K S, Adhikari A K, Dehvari K, et al. Fine Structural Characterization of Zinc and Iron Atoms in Zinc Ferrite Nanocatalysts for CO2 Decomposition Using XANES/EXAFS[J]. Chinese Journal of Physics,2012,50(2):271-282.
    [204]Lin K S, Adhikari A K, Tsai Z Y, et al. Synthesis and characterization of nickel ferrite nanocatalysts for CO2 decomposition[J]. Catalysis Today,2011,174(1): 88-96.
    [205]Nordhei C, Mathisen K, Safonova O, et al. Decomposition of Carbon Dioxide at 500℃ over Reduced Iron, Cobalt, Nickel, and Zinc Ferrites:A Combined XANES-XRD Study[J]. The Journal of Physical Chemistry C,2009,113(45): 19568-19577.
    [206]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987.
    [207]Goldman A. Modern Ferrite Technology[M]. Springer Science, Business Media, 2005.
    [208]Chinnasamy C, Narayanasamy A. Ponpandian N, et al. Magnetic properties of nanostructured ferrimagnetic zinc ferrite[J]. Journal of Physics:Condensed Matter, 2000,12(35):7795.
    [209]Chinnasamy C, Narayanasamy A, Ponpandian N, et al. Grain size effect on the Neel temperature and magnetic properties of nanocrystalline NiFe2O4 spinel[J]. Journal of magnetism and magnetic materials,2002,238(2):281-287.
    [210]Hofmann M, Campbell S, Ehrhardt H, et al. The magnetic behaviour of nanostructured zinc ferrite[J]. Journal of Materials Science,2004,39(16): 5057-5065.
    [211]Widatallah H, Al-Omari I, Sives F, et al. Dynamic magnetic behavior of cluster-glass ZnFe2O4 nanosystem[J]. Journal of magnetism and magnetic materials,2008,320(14):324-326.
    [212]陈镇方,李保卫,赵瑞超,等.超声波辅助高梯度磁选的试验探索[J].内蒙古科技大学学报,2010,29(001):14-18.
    [213]朱德庆,翟勇,潘建,等.煤基直接还原-磁选超微细贫赤铁矿新工艺[J].中南大学学报:自然科学版,2008,39(6):1132-1138.
    [214]张红新,李洪潮,张成强,等.某易泥化褐铁矿选矿试验研究[J].矿产保护与利用,2011,201(3):19-21.
    [215]彭容秋.铅锌冶金学[M].北京:科学出版社,2003.
    [216]Yao C, Zeng Q, Goya G F, et al. ZnFe2O4 Nanocrystals.Synthesis and Magnetic Properties[J]. The Journal of Physical Chemistry C,2007,111(33):12274-12278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700