由废铝基催化剂制备高纯超细氧化铝的理论及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废铝基催化剂是一种以氧化铝为载体,富含钒、钼、镍、钴等有价金属的失效催化剂。对废铝基催化剂进行综合利用,不仅可避免有价金属的大量流失,又减轻了对环境的污染,具有重大的经济和环境意义。本文以一种废铝基催化剂为研究对象,在热力学分析基础上,开展了废催化剂中铝和其他金属的提取与分离、以及高品质特种氧化铝的制备研究,提出了由废铝基催化剂制备高纯超细氧化铝的综合利用新技术。论文的主要研究内容与创新点如下:
     1.废铝基催化剂中铝与镍、钴的分离
     热力学计算及分析结果表明,铝、钒、钼在温度大于962.2K后均能与碳酸钠发生反应,生成的钠盐可以离子形态转入碱性介质;镍、钴则不与碳酸钠发生反应,以氧化物或氢氧化物的固体形态存在于碱性介质中。这为废铝基催化剂钠化焙烧—浸出实现铝、钒、钼与镍、钴的分离提供了理论基础。
     在碳酸钠与(Al_2O_3+V_2O_5+MoO_3)的摩尔比为1.1,焙烧温度1000℃,焙烧时间30 min,浸出温度80℃,浸出时间30 min,液固比4:1,搅拌速度400 rpm的焙烧—浸出条件下,废铝基催化剂中铝、钒、钼的浸出率均在96%以上,镍、钴则完全富集在浸出渣中。
     2.碱性介质中铝与钒、钼的分离
     VO_4~(3-)、MoO_4~(2-)、Al(OH)_4~-与钙、钡反应体系的热力学分析结果表明,在铝、钒、钼共存的碱性介质中,钙将优先与VO_4~(3-)发生反应,使钒与铝、钼分离;钡随后与MoO_4~(2-)反应,使钼和铝分离。在此基础上,提出了分步沉淀法从碱性介质中分离铝与钒、钼的新方案:即在铝酸钠溶液中分步加入CaO和BaAl_2O_4,钒、钼的沉淀率可分别达到97%和99%,铝与钒、钼的分离效果好,并使铝酸钠溶液得到深度净化。
     3.高纯超细氧化铝的制备
     碳酸氢钠中和铝酸钠溶液可制备出多晶型的微米级氢氧化铝粉体,铝酸钠溶液碳分法则可制备出单一晶型的纳米级氢氧化铝粉体。铝酸钠溶液碳分过程中,反应温度是影响氢氧化铝粉体粒度的主要因素,降低反应温度可显著减小粉体粒度;反应终点pH对粉体粒度的影响次之;CO_2流量和分散剂PEG-1000用量的影响则不显著。
     氧化铝或氢氧化铝添加试剂焙烧—水洗后,都可使大部分的Na_2O得以脱除。氢氧化铝粉体添加NH_4F的脱钠效果最好,在适宜条件下,可得到纯度99.99%、平均粒径155nm的α相氧化铝粉体。
     4.废渣中钒和镍、钴的利用
     通过碳酸氢钠浸出、浸出液两段净化和铵盐沉钒处理,沉钒渣中92.5%的钒以五氧化二钒形式得到回收,制取的产品纯度达98.25%。
     镍钴渣硫酸浸出实验结果表明,在适宜条件下,镍和钴的浸出率分别达到97.8%和98.6%。对浸出液做进一步处理,可有望得到硫酸镍和草酸钴产品。
     5.由废铝基催化剂制备高纯超细氧化铝的综合利用技术
     在理论分析和实验研究基础上,提出了以制备高纯超细氧化铝为主要目的的废铝基催化剂综合利用工艺流程。该流程可实现废铝基催化剂的综合利用,得到氧化铝、钼酸钡、五氧化二钒和硫酸镍钴混合溶液四种产品,铝、钒、钼、镍、钴的回收率可分别达到83.73%、86.64%、91.8%、95.47%和96.53%。制备的氧化铝为纯度99.99%、平均粒径134nm的高纯超细α-Al_2O_3。
Spent Al_2O_3-based catalyst is a kind of catalyst,using Al_2O_3as the carrier and vanadium,molybdenum,nickel and cobalt as active constitutent,but which can not be regenerated.Comprehensive utilization of spent catalyst shows great economic and environmental significance, not only for avoiding unacceptable drains of valuable metals,but also for alleviating environmental pollution.Aimed at a spent Al_2O_3-based catalyst,on the basis of thermodynamic analyses,the extraction and separation of aluminum and other metals in spent catalyst and the preparation of high purity ultrafineα-Al_2O_3 from purified sodium aluminate solution were studied.A comprehensive utilization technology for preparing high purity ultrafine alumina from spent Al_2O_3-based catalyst was proposed,and good results were achieved by pilot experiments.Main conclusions are obtained as follows:
     1.The separation of Al and Ni,Co in spent Al_2O_3-based catalyst
     According to the thermodynamic calculation and analysis result, alumina,vanadium and molybdenum can react with sodium carbonate when the temperature is above 962.2K,and the sodium salts generated can be converted into respective ionic forms.Having no reaction with sodium carbonate at higher temperature,nickel and cobalt occur in solid forms of oxide or hydroxide in alkali medium.This provides theoretical basis for separation of aluminum,vanadium,molybdenum and nickel, cobalt from spent Al_2O_3-based catalyst.
     After roasting the mixture of Na_2CO_3 and spent catalyst with mol ratio of 1.1 at 1000℃for 30 min,the roast was leached at 80℃for 30 min with liquid to solid ratio 4 and stirring speed 400 rpm.Under this condition,the extractions of Al,V and Mo all could reach above 96%, while Ni and Co were totally enriched in leaching residue.
     2.The separation of Al and V,Mo in alkali medium
     The thermodynamic analyses for reaction systems of VO_4~(3-),MoO_4~(2-) and Al(OH)_4~- with calcium and barium indicate that,in the alkali medium containing Al,V and Mo,calcium will be inclined to react with VO_4~(3-) firstly,thus V is separated from Al and Mo;barium will react with MoO_4~(2-) successively,and Mo is separated from Al.Based on this result,a new technique to separate Al and V,Mo in alkali medium by step precipitation is proposed.By adding CaO and BaAl_2O_4 successively in sodium aluminate solution,Al is considerably sperated from V and Mo. Under optimum condition,the precipitation rate of V and Mo reaches 97%and 99%,respectively,moreover,the sodium aluminate solution is highly purified.
     3.The preparation of high purity ultrafine alumina from purified sodium aluminate solution
     The neutralization process of sodium bicarbonate with sodium aluminate solution can prepare micron spherical Al(OH)_3 particle with multiple crystals;the carbonation decomposition of sodium aluminate solution can prepare well-distributed nano spherical Al(OH)_3 particle with single crystal.In the carbonation decomposition process,temperature is the dominating factor influencing the particle size of Al(OH)_3 powder,the effect of final pH on particle size is secondary,while CO_2 flow velocity and PEG-1000 dosage have no remarkable effect.
     By roasting alumina particle or aluminum hydroxide particle with reagent and water-washing roasted product,most Na_2O can be removed. The Na_2O removal effect of Al(OH)_3 particle roasting with NH_4F is the best,under proper condition,fineα-Al_2O_3 particle with purity near 99.99%and average diameter of 155nm can be obtained.
     4.Recovery of V and Ni,Co from residue V-bearing residue is treated by sodium bicarbonate leaching, purification of leach liquor and vanadium precipitation with ammonium salt,92.5%vanadium in V-bearing residue can be recycled in the form of V_2O_5 with purity of 98.25%.
     Sulfuric acid leaching Ni-Co residue indicates that,under suitable condition,97.8%nickel and 98.6%cobalt can be leached.Nickel sulfate and cobalt oxalate may be obtained with the further treatment of leach liquor.
     5.Research on the comprehensive utilization technology for preparing high purity ultrafine alumina from spent Al_2O_3-based catalyst
     Based on theoretical analyses and experimental research,a comprehensive utilization technology for preparing high purity ultrafine alumina from spent Al_2O_3-based catalyst was proposed and pilot experiment in terms of lkg spent catalyst was carried out.The results show that,by this technology,spent Al_2O_3-based catalyst can be comprehensively utilized,and four kinds of products including Al_2O_3, BaMoO_4,V_2O_5 and Ni-Co sulfate solution can be obtained.The integrated recovery of Al,V,Mo,Ni and Co is 83.73%,86.64%,91.8%, 95.47%and 96.53%,respectively.The preparedα-Al_2O_3 particle with purity of 99.99%and average diameter of 134nm has a higher added value.
引文
[1]黄茜蕊,黄仲权.我国铝资源、铝工业现状、问题与发展.矿产保护与利用,2007,(3):10-15
    [2]刘中凡.世界铝土矿资源综述.轻金属,2001,(5):7-12
    [3]国土资源部矿产开发管理司编.中国矿产资源主要矿种开发利用水平与政策建议.2002,(9):183-189
    [4]钮因健.对我国铝土矿资源和氧化铝工业发展的认识.轻金属,2003,(3):3-8
    [5]方启学,黄国智.我国铝土矿资源特征及其选矿脱硅技术.国外金属矿选矿,2000,37(5):11-16
    [6]刘兴利.原生、再生有色金属利用程度的比较研究.再生资源与循环经济,2008,1(1):27-32
    [7]曹异生.中国有色金属二次资源再生利用.世界有色金属,2005,(6):12-17
    [8]廖世明,柏谈论.国外钒冶金.北京:冶金工业出版社,1985.45-60
    [9]Moskalyk R R,Alfantazi A M.Processing of vanadium:a review.Minerals Engineering,2003,16(9):793-805
    [10]文友.钒的资源、应用、开发与展望.稀有金属与硬质合金,1996,24(1):51-55
    [11]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展.湖南有色金属,2006,22(6):17-20
    [12]傅文章.攀西钒钛磁铁矿资源特征及综合利用问题的基本分析.矿产综合利用,1996,(1):27-34
    [13]胡克俊.国外钒的应用现状及攀钢钒产品的开发建议.钢铁钒钛,2000,21(1):64-69
    [14]He D S,Feng Q M,Zhang G F,et al.An environmentally friendly technology of vanadium extraction from stone coal.Minerals Engineering,2007,20(12):1184-1186
    [15]Wang Mingyu,Xiang Xiaoyan,Zhang Liping,et al.Effect of vanadium occurrence state on the choice of extracting vanadium technology from stone coal.Rare Metals,2008,27(2):112-115
    [16]刘早春.石煤的综合利用.化学世界,1994,35(4):213-214
    [17]钱强.石煤钒矿提取五氧化二钒的技术现状.中国资源综合利用,2008,26(3):13-14
    [18]肖文丁.广西上林石煤的矿物学和湿法提钒研究.有色金属(季刊),2007, 59(3):85-91
    [19]蔡晋强.石煤提钒生产新工艺.无机盐工业,2001,33(5):37-39
    [20]齐小鸣.钒消费前景看好—国内外钒的资源、生产和市场预测.世界有色金属,2008,(5):38-41
    [21]王忠,王军.国内外五氧化二钒市场状况与分析.矿冶,2007,16(2):47-51
    [22]向铁根.钼冶金.长沙:中南大学出版社,2002.1-15
    [23]许洁瑜,杨刘晓,王俊龙.中国钼资源利用与可持续发展战略研究.中国钼业,2005,29(4):3-9
    [24]张文钲,徐秋生.我国钼资源开发现状与发展趋势.矿业快报,2006,22(9):1-4
    [25]罗振中,杨晓青,廖利波.国内钼冶炼及加工技术最新进展.中国钼业,2008,32(1):14-18
    [26]彭涛,彭如清.中国钼工业现状及发展战略.有色金属工业,1998,(10):14-17
    [27]陈云,冯其明,张国范,等.废铝基催化剂综合回收现状与发展前景.金属矿山,2005,(7):55-58
    [28]Al-Sheeha H,Marafi M,Stanislaus A.Reclamation of alumina as boehmite from an alumina-supported spent catalyst.International Journal of Mineral Processing,2008,88(3-4):59-64
    [29]Forzatti P.Catalyst deactivation.Catalysis Today,1999,52(2-3):165-181
    [30]Nishijima A.Catalyst deactivation during hydrotreating of coal-derived liquid and catalyst design for long life catalyst.Journal of the Fuel Society of Japan,1988,67(4):210-220
    [31]Tsuneki H,Ariyoshi K.Deactivation and regeneration of ethylenimine production catalyst.Applied Catalysis A:General,2007,331(1):95-99
    [32]Meng Xianghai,Xu Chunming,Gao Jinsen.Coking behavior and catalyst deactivation for catalytic pyrolysis of heavy oil.Fuel,2007,86(12-13):1720-1726
    [33]Moulijn J A,Van Diepen A E,Kapteijn F.Catalyst deactivation:Is it predictable?What to do?.Applied Catalysis A:General,2001,212(1-2):3-16
    [34]梁相程,王继锋,喻正南,等.几种加氢裂化催化剂的失活与再生研究.石油化工高等学校学报,2002,15(4):29-33
    [35]李小定.钴-钼-钾系催化剂失活研究.湖北化工,1992,9(4):11-15
    [36]张香平.钴钼催化剂中钼的流失研究.工业催化,1999,7(4):32-37
    [37]刘焕群.国外废催化剂回收利用.中国资源综合利用,2000,18(12):35-37
    [38]Rapaport D.Are spent hydrocracking catalysts listed hazardous wastes?.Hydrocarbon Processing,2000,79(7):49-50,53
    [39]Dufresne P.Hydroprocessing catalysts regeneration and recycling.Applied catalysis A:General,2007,322(suppl):67-75
    [40]Marafi M,Stanislaus A.Options and processes for spent catalyst handling and utilization.Journal of Hazardous Materials,2003,101(2):123-132
    [41]Yoo J S.Metal recovery and rejuvenation of metal-loaded spent catalysts.Catalysis Today,1998,44(1):27-46
    [42]Wu Kunying,Amanda.Process to recover valuable metal in spent catalyst.Precious Metals,1993,14(3):25-29
    [43]Ralph L,Meitz.A novel process for recovering metal in waste catalyst.EP Patent,512959,1992-08-06
    [44]Gaballah,Djona.Recovery of Co,Ni,Mo,and V from unroasted spent hydrorefining catalysts by selective chlorination.Metallurgical Materials Transaction,1995,26(3):41-50
    [45]Hyatt,David E.Value recovery from spent alumina-base catalyst.US Patent,4657745,1987-04-14
    [46]Llanos Z R,Deering W G.Processing for the recovery of metals from spent hydroprocessing catalysts.In:Queneau P B,Peterson R D,eds.Third international symposium recycling of metals & engineered materials.Warrendale:The Minerals,Metals & Materials Society,1995.425-447
    [47]Case A,Garretson C,Wiewiorowski E.Ten years of catalyst recycling—A step to the future.In:Queneau P B,Peterson R D,eds.Third international symposium recycling of metals & engineered materials.Warrendale:The Minerals,Metals & Materials Society,1995.449-466
    [48]Marafi M,Stanislaus A.Studies on rejuvenation of spent residue hydroprocessing catalysts by leaching of metal foulants.Journal of Molecular Catalysis A:Chemical,2003,202(3):117-125
    [49]Jin S Y.Metal recovery and rejuvenation of metal-loaded spent catalysts.Catalysis Today,1998,44(1-4):27-46
    [50]Chang T.Reclamation and landfill processes are alternatives to regeneration.Oil and Gas Journal,1998,96(42):79-84
    [51]Edward F.Spent refinery catalysts:Environment,safety and utilization.Catalysis Today,1996,30(4):223-286
    [52]Trimm D L.The regeneration or disposal of deactivated heterogeneous catalysts.Applied Catalysis A:General,2001,212(1-2):153-160
    [53]Barakat M A,Mahmoud M H H.Recovery of platinum from spent catalyst.Hydrometallurgy,2004,72(3-4):179-184
    [54]De Sa Pinheiro A A,De Lima T S,Campos P C,et al.Recovery of platinum from spent catalysts in a fluoride-containing medium.Hydrometallurgy,2004,74(1-2):77-84
    [55]Jafarifar D,Daryanavard M R,Sheibani S.Ultra fast microwave-assisted leaching for recovery of platinum from spent catalyst.Hydrometallurgy,2005,78(3-4):166-171
    [56]Barakat M A,Mahmoud M H H,Mahrous Y S.Recovery and separation of palladium from spent catalyst.Applied Catalysis A:General,2006,301(2):182-186
    [57]Shams K,Goodarzi F.Improved and selective platinum recovery from spent α-alumina supported catalysts using pretreated anionic ion exchange resin.Journal of Hazardous Materials,2006,131(1-3):229-237
    [58]Grumett Piers.Precious metal recovery from spent catalysts.Platinum Metals Review,2003,47(4):163-166
    [59]钟点益.从石油化学工业产生的废催化剂中回收贵金属.有色冶炼,1998,27(1):35-40
    [60]吴冠民,周正根.从废催化剂回收铂的方法.中国发明专利,91104386.1,1993-01-13
    [61]高立钧.废铂催化剂的综合回收利用研究.全国贵金属二次资源综合回收学术研讨会论文集.昆明:昆明贵金属研究所,1992.25-31
    [62]黄又明.废银催化剂的回收工艺.现代化工,2001,21(4):36-38
    [63]孙锦宜.废银催化剂的再生及回收利用.化工时刊,1994,8(4):14-16
    [64]吴国元,戴永年.失效贵金属催化剂中贵金属的富集.稀有金属,2002,26(3):231-234
    [65]张骥,吴贤.废催化剂中铂族金属的回收.贵金属,1998,19(1):39-42
    [66]Al-Mansi N M,Abdel Monem N M.Recovery of nickel oxide from spent catalyst.Waste Management,2002,22(1):85-90
    [67]Sahu K K,Aqarwal A,Pandey B D.Nickel recovery from spent nickel catalyst.Waste Management and Research,2005,23(2):148-154
    [68]Chen Yun,Feng Qiming,Zhang Guofan,et al.Study on the recycling of valuable metals in spent Al_2O_3-based catalyst.Minerals and Metallurgical Processing,2007,24(1):30-34
    [69]Rane M V,Bafna V H,Sadanandam R,et al.Recovery of high purity cobalt from spent ammonia cracker catalyst.Hydrometallurgy,2005,77(3-4):247-251
    [70]Feng Qiming,Chen Yun,Shao Yanhai,et al.New technique of comprehensive utilization of spent Al_2O_3-based catalyst.Journal of Central South University of Technology,2006,13(2):151-155
    [71]Raisoni P R,Dixit S G.Leaching of cobalt and molybdenum from a Co-Mo/γ-Al_2O_3 hydrodesulphurization catalyst waste with aqueous solutions of sulphur dioxide.Minerals Engineering,1988,1(3):225-234
    [72]崔燕,胡宝兰,王雄,等.钴—钼废催化剂综合利用研究.无机盐工业,2002,34(1):36-39
    [73]周长祥,张荣斌.废镍触媒的综合利用工艺研究.山东化工,2001,30(6):12-14
    [74]喻正军.从镍转炉渣中回收钴镍铜的理论与技术研究:[博士学位论文].长沙:中南大学,2007
    [75]任世伟,谷裕,殷恒波.以镍铝失活催化剂生产硫酸镍.辽宁化工,1996,25(4):41-43
    [76]汪夏燕,易雯.废触媒回收钴生产氧化钴工艺的研究.无机盐工业,1998,30(5):33-34
    [77]林河成.用含钴催化剂废料制取氧化钴的研究.江西有色金属,2000,14(3):20-22
    [78]王犇,孟韵,段春生.废钴钼系催化剂中金属的全回收新工艺研究.现代化工,2005,25(zl):204-206
    [79]秦玉楠.利用废钴催化剂生产环烷酸钴新工艺.中国钼业,2000,24(5):30-32
    [80]Chaudhary A J,Donaldson J D,Boddington S C,et al.Heavy metals in the environment.Part Ⅱ:a hydrochloric acid leaching process for the recovery of nickel value from a spent catalyst.Hydrometallurgy,1993,34(2):137-150
    [81]Jackson E,Lloyd K J.Enhanced hydrochloric acid leaching of cobalt.Minerals Engineering,1999,12(10):1201-1212
    [82]马成兵,王淑芳,袁应斌.含钼、镍、铋、钴废催化剂综合回收的实验研究.中国钼业,2007,31(5):23-25
    [83]Lai Y D,Liu J C.Leaching behaviors of Ni and V from spent catalyst.Journal of Hazardous Materials,1997,53(1-3):213-224
    [84]Abdel-Aal E A,Rashad M M.Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid.Hydrometallurgy,2004,74(3):189-194
    [85]Mulak W,Miazga B,Szymczycha A.Kinetics of nickel leaching from spent catalyst in sulphuric acid solution.International Journal of Mineral Processing,2005,77(4):231-235
    [86]Deng C H,Feng Q M,Chen Y.Studies on the leaching kinetics of cobalt from spent catalyst with sulphuric acid.Mineral Processing and Extractive Metallurgy,2007,116(3):159-162
    [87]李建军,李小云,刘润静,等.废钴钼低变催化剂中回收钴的一种新工艺.矿产综合利用,2001,(1):41-43
    [88]Mishra D,Kim D J,Ralph D E,et al.Bioleaching of vanadium rich spent refinery catalyst using sulfur oxidizing lithotrophs.Hydrometallurgy,2007,88(1-4):202-209
    [89]胡建锋,朱云,胡汉.从废催化剂中综合提取钒和钼.稀有金属,2006,30(5):711-714
    [90]王谨,程岩.从481-2B型废催化剂中回收钼工艺评述.辽宁化工,1997,26(4):224-225
    [91]徐劼.废催化剂中稀有金属钼、钒回收工艺评述.嘉兴学院学报,2005,17(3):66-49
    [92]蒋馥华,张萍.用天然碱浸法从废钒催化剂中回收五氧化二钒的试验.硫酸工业,2000,(4):28-30
    [93]施友富,黄宪法.加压浸出-萃取法从钼钴废催化剂中回收钼.中国钼业,2006,30(3):21-23
    [94]Park K H,Mohapatra D,Nam C W.Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant,Cyanex 272.Journal of Hazardous Materials,2007,148(2):287-295
    [95]许碧琼.从废钒触媒中回收钒氧化物.化工进展,2002,21(3):200-202
    [96]许多丰,王开群,赵宏.钼钴废催化剂回收利用的研究.中国有色冶金,2005,(3):45-47
    [97]张晓东.利用含钼废催化剂生产钼铁.中国资源综合利用,2000,18(7):12-13
    [98]阮志农,陈加山,傅晓桦,等.从废催化剂中湿法回收钼和钴的工艺研究. 有色金属再生与利用,2006,(1):18-19
    [99]Chen Y,Feng Q,Shao Y,et al.Investigation on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst.International Journal of Mineral Processing,2006,79(1):42-48
    [100]Park K H,Reddy B R,Mohapatra D,et al.Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst.International Journal of Mineral Processing,2006,80(2-4):261-265
    [101]Chmielewski A G,Urbanski T S,Migdal W.Separation technologies for metals recovery from industrial wastes.Hydrometallurgy,1997,45(3):333-344
    [102]Kar B B,Datta P,Misra V N.Spent catalyst:secondary source for molybdenum recovery.Hydrometallurgy,2004,72(1-2):87-92
    [103]Kar B B.Carbothermic reduction of hydro-refining spent catalyst to extract molybdenum.International Journal of Mineral processing,2005,75(3-4):249-253
    [104]Kar B B,Murthy B V R,Misra V N.Extraction of molybdenum from spent catalyst by salt-roasting.International Journal of Mineral processing,2005,76(3):143-147
    [105]Chen Yun,Feng Qiming,Shao Yanhai,et al.Research on the recycling of valuable metals in spent Al_2O_3-based catalyst.Minerals Engineering,2006,19(1):94-97
    [106]刘公召,隋智通.从HDS废催化剂中提取钒和钼的研究.矿产综合利用,2002,(2):39-41
    [107]李培佑,张能成,林喜斌.从废催化剂中回收钼的工艺流程研究.中国钼业,1999,23(1):16-21
    [108]肖飞燕.从废催化剂中回收钼的研究.中国钼业,2000,24(2):42-44
    [109]王江胜.废触媒回收钼制取氧化钼试验研究.再生资源研究,1999,(6):25-27
    [110]户田正作,吴继宝.含钼和钒废催化剂的碱性焙烧.钒钛,1990,(1):28-31
    [111]陈兴龙,肖连生,徐劼,等.从废石油催化剂中回收钒和钼的试验研究.矿冶工程,2004,24(3):47-49
    [112]刘波,童庆云,李国良.氧化焙烧法回收废钒触媒中的钒.四川大学学报(工程科学版),2002,34(2):112-115
    [113]朝阳,春晖.从废催化剂中提取钒、钼、镍的试验.铁合金,2001,32(2):29-31
    [114]刘公召,隋智通.萃取法从废催化剂中提取V_2O_5的研究.矿产综合利用,2001,(6):41-44
    [115]Luo L,Miyazaki T,Shibayama A,et al.A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap.Minerals Engineering,2003,16(2):665-670
    [116]Lozano L J,Juan D.Leaching of vanadium from spent sulphuric acid catalysts.Minerals Engineering,2001,14(5):543-546
    [117]Toyabe,Keiji,Kirishima,et al.Process for recovering valuable metal from waste catalyst.US Patent,5431892,1995-07-11
    [118]Zhang P W,Inoue K,Yoshizuka K,et al.Extraction and selective stripping of molybdenum(Ⅵ) and vanadium(Ⅳ) from sulfuric acid solution containing aluminum(Ⅲ),cobalt(Ⅱ),niceel(Ⅱ) and iron(Ⅲ) by LIX63 in Exxsol D80.Hydrometallurgy,1996,41(1):45-53
    [119]Cosar T.Separation of Molybdenum,Vanadium and Nickel by Liquid-Liquid Extraction.Turkish Journal of Chemistry,1998,22(2):379-386
    [120]Saily A,Khurana U,Yadav S K,et al.Thiophosphinic acids as selective extractants for molybdenum recovery from a low grade ore and spent catalysts.Hydrometallurgy,1996,41(1):99-105
    [121]Inoue K,Zhang P,Tsuyama H.Separation and recovery of rare metals from spent hydrodesulfurization catalysts by solvent extraction.In:Queneau P B,Peterson R D,eds.Third international symposium recycling of metals &engineered materials.Warrendale:The Minerals,Metals & Materials Society,1995.393-404
    [122]张登高,孙锦瑞.特种氧化铝的应用领域及市场现状.无机盐工业,2004,36(4):12-15
    [123]侯用兴.特种氧化铝生产技术研究和市场开发.世界有色金属,2001,(10):24-26
    [124]陈胜福,黄坚,李建文.多品种氧化铝开发进展、动向及市场现状.材料导报,2006,20(7):22-26
    [125]任冬梅,李德峰,姜玉敬.关于特种氧化铝发展的探讨.世界有色金属,2001,(11):4-6
    [126]苗建国,李小斌,龚辉辉.多品种氧化铝的研究进展.轻金属,1997,(8):12-16
    [127]任忠胜.超纯氧化铝国内外生产技术及新工艺研究.化工矿物与加工, 2000,29(3):4-6,11
    [128]唐阳清,周馨我.超细高纯氧化铝的制备.材料导报,1995,9(6):39-43
    [129]刘有智,李裕,欧阳朝斌.超细氧化铝的制备及应用研究进展.华北工学院学报,2002,23(5):338-341
    [130]付高峰,毕诗文,孙旭东,等.超细氧化铝粉末制备技术.有色矿冶,2000,16(1):39-41
    [131]孙家跃,肖昂,杜海燕,等.我国超细氧化铝制备工艺10年进展.化工时刊,2003,17(11):1-9
    [132]李慧韫,张天胜,杨南.纳米氧化铝的制备方法及应用.天津轻工业学院学报,2003,18(4):34-37
    [133]吴志鸿.纳米氧化铝的制备及其在催化领域的应用.工业催化,2004,12(2):35-39
    [134]杜淼,孙中溪.纳米氧化铝制备方法研究进展.无机盐工业,2005,37(12):9-12
    [135]韩敏,石伟.多品种氢氧化铝产品的开发和应用.世界有色金属,2001,(12):41-43
    [136]张彩霞,刘维平.搅拌磨湿法制备氧化铝超细粉的研究.化工矿物与加工,2005,34(9):10-13
    [137]Asher Nesin.Method of making crystalling alumina lapping powder.US Patent,3121623,1964-02-18
    [138]Ding J,Tsuzuki T,McCormick P G.Ultrafine alumina particles prepared by mechanochemical thermal processing.Journal of American Ceramic Society,1996,79(11):2956-2958
    [139]Peng T Y,Du P W,Hu B,et al.Preparation of nanoscale alumina powder by heterogeneous azeotropic distillation processing.Journal of Inorganic Materials,2000,15(6):1097-1101
    [140]Zeng W M,Rab(?)lo A A,Tomasi R.Synthesis of α-Al_2O_3 nanopowder by sol-freeze drying method.Key Engineering Materials,2001,89(1):16-21
    [141]Wang H,Gao L,Li W,et al.Preparation of nanoscale α-Al_2O_3 powder by the polyacrylamide gel method.Nanostructured Materials,1999,11(8):1263-1267
    [142]黄传真,张树生,王宝友.溶胶—凝胶法制备纳米氧化铝粉末的研究.金刚石与磨料磨具工程,2002,127(1):22-25
    [143]谢刚,侯怀宇,王达,等.溶胶—凝胶法制备α-Al_2O_3超细粉的研究.昆明理工大学学报,1998,23(3):67-70
    [144]陈巧英,午新威,白永民.中和法制备高纯氧化铝微粉.中国粉体技术,2003,9(4):16-18
    [145]梁春来,李小斌,彭志宏.中和法制备高纯超细氧化铝.轻金属,1999,(8):28-31
    [146]宋希文,安胜利.Sol-Gel法制备氧化铝超细粉末的研究.包头钢铁学院学报,1996,15(4):44-48
    [147]张洁尧,祝丽华,何国新.无机铝盐Sol-gel法制备超细氧化铝粉末.中国陶瓷,1996,32(4):10-13
    [148]朱红,王芳辉.干燥方法对氢氧化铝和氧化铝形貌的影响.北方交通大学学报,2004,28(3):56-59
    [149]唐芳琼,郭广生,侯莉萍.纳米Al_2O_3粒子的制备.感光材料与光化学,2001,19(3):198-202
    [150]余忠清,赵秦生.用乙醇铝制备超细球形γ-Al_2O_3粉末.第三届全国青年冶金学术会议暨国家自然科学基金委员会第二届青年学术研讨会论文集.北京:中国金属学会,1994.351-354
    [151]赵海红,欧阳朝斌,刘有智.超细氧化铝粉体的制备工艺及其应用.化工科技,2003,11(1):45-48
    [152]郝臣,陈彩风,陈志刚,等.化学法合成纳米氧化铝工艺研究.机械工程材料,2002,26(7):25-27
    [153]严泉才,李东红.AACH热解法制取高纯超细氧化铝粉.铝镁通讯,1993,3(12):36-40
    [154]黄栋生,翁履谦,蒋新湘.高纯超细α-Al_2O_3粉体的研制.中南矿冶学院学报,1993,24(5):632-637
    [155]Sharma P K,J ilavi M H,Burgard D,et al.Hydrothermal synthesis of nanosize α-Al_2O_3 from seeded aluminum hydroxide.Journal of American Ceramic Society,1998,81(10):2732-2734
    [156]唐波,葛介超,王春先,等.金属氧化物纳米材料的制备新进展.化工进展,2001,21(10):707-712
    [157]Yasuo Shibasaki,Kiichi Oda,Takeshi Fukuda.Process for producing fine flaky alumina particles and alumina-based plastic material.US Patent,6080380,2000-06-27
    [158]Takeshi Fukuda,Shido Ryuichi.Flake-like alpha-alumina particles and method for producing the same.EP Patent,1148028,2001-10-24
    [159]陈肖虎,秦黎.超微细高纯氧化铝制备.轻金属,2000,(3):29-30
    [160]李太昌.超细氢氧化铝晶种制备技术研究.轻金属,2003,(6):9-11
    [161]权昆,刘亚平,李小斌,等.超细氢氧化铝研制生产.有色矿冶,2004,20(4):48-51
    [162]林齐,张磊.二段种分法生产超细氢氧化铝微粉.轻金属,2002,(10):15-17
    [163]韩敏,石伟.种分分解法生产微粉氢氧化铝.有色金属(冶炼部分),2001,(6):45-47
    [164]卜天梅.碱法高纯氧化铝微粉的制备.轻金属,2004,(1):14-15
    [165]裴秀中.碳分法制取超细氢氧化铝粉体.上海化工,2004,29(2):30-32
    [166]陆胜,方荣利,解晓斌.W/O型微乳液碳化法制备超细氢氧化铝与氧化铝粉体.无机盐工业,2003,35(5):18-20
    [167]张鹏远,公延明,陈建峰.超重力碳分制备纳米氢氧化铝.华北工学院学报,2002,23(4):235-239
    [168]武福运,韩敏.单槽碳分生产非冶金用氢氧化铝的研究.中国非金属矿工业导刊,2003,(1):30-32
    [169]武福运,冯国政.碳分法生产非冶金用氢氧化铝的研究.矿产保护与利用,2002,(6):48-50
    [170]傅崇说.冶金溶液热力学原理与计算.北京:冶金工业出版社,1989.25-50
    [171]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002
    [172]陆九芳,李总成,包铁竹.分离过程化学.北京:清华大学出版社,1993.1-13
    [173]Zeng W M,Chen N Y.Potential-pH diagrams of Al-H_2O system.Transactions of Nonferrous Metals Society of China,1997,7(2):34-37
    [174]Gamelins Handbuck der Anorganischen Chemie.Gmbh:Verlag Chemie,1967.138-195
    [175]Pourbaix M.Atlas of Electrochemical Equilibria in Aqueous Solution.London:Oxford Pergamon Press.1966.46-85
    [176]李自强,何良惠.水溶液化学位图及其应用.成都:成都科技大学出版社,1991
    [177]杨重愚.氧化铝生产工艺学(修订版).北京:冶金工业出版社,1993
    [178]傅绍漯.从铝酸盐溶液中析出钒化合物.轻金属,1980,(4):31-34
    [179]Wilson.Preparation of vanadium.US Patent,3876386,1975-04-08
    [180]Nasyrov,Gakif Zakirovich.Method of preparing vanadium pentoxide.US Patent,4039582,1977-08-02
    [181]Takayuki Hirai,Isao Komasawa.Electro-reductive stripping of vanadium in solvent extraction process for separation of vanadium and molybdenum using tri-n-octylmethylammonium chloride.Hydrometallurgy,1993,33(1-2):73-82
    [182]Marchese J.Transport of molybdenum with Alamine 336 using supported liquid membrane.Hydrometallurgy,2004,72(3-4):309-317
    [183]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用.长沙:中南工业大学出版社,1986
    [184]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册.北京:科学出版社,1985
    [185]迪安JA.兰氏化学手册(第15版).北京:北京科学出版社,2003
    [186]李文化.净化铝酸钠溶液法生产高纯纳米氧化铝试验研究.甘肃冶金,2006,28(3):8-10
    [187]李有恒,王雅静,刘禄勉.铝酸钠溶液氧化钙脱硅过程研究.沈阳化工学院学报,2007,21(4):244-247
    [188]刘连利,翟玉春,田彦文,等.铝酸钠溶液添加氯化钙脱硅的研究.有色金属(季刊),2003,55(4):79-81
    [189]潘泽琳.制取低钠Al_2O_3的新方法及其理论探讨.轻金属,1984,(8):6-9
    [190]廿国辉(译),唐学鸿(校).氢氧化铝分解时控制吸收钠的技术.轻金属,1986,(11):12-20
    [191]Enbo W,Jingyang N,Lin X.Study on thermal property of heteropolyacids with keggin structure.Acta Chimica Sinica,1995,53(8):757-764
    [192]Stratful I,Scrimshaw M D,Lester J N.Conditions influencing the precipitation of magnesium ammonium phosphate.Water Research,2001,35(17):4191-4199
    [193]Battistoni P,Fava G,Pavan P,et al.Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals:preliminary results.Water Research,1997,31(11):2925-2929
    [194]Kelmers A D.A portion of the system NH_3-V_2O_5 - H_2O at 30℃.Journal of Inorganic and Nuclear Chemistry,1961,17(2):168-173
    [195]Luo Lin,Wei Jianhong,Wu Genyi,et al.Extraction studies of cobalt(Ⅱ) and nickel(Ⅱ) from chloride solution using PC88A.Transactions of Nonferrous Metals Society of China,2006,16(3):687-692
    [196]Tsakiridis P E,Agatzini S L.Process for the recovery of cobalt and nickel in the presence of magnesium and calcium from sulphate solutions by Versatic 10 and Cyanex 272.Minerals Engineering,2004,17(4):535-543
    [197]Miehael J N,Zaimawati Z.The development of a resin-in-pulp pocess for the recovery of niekel and cobalt from laterite leach slurries mineral processing.Hydrometallurgy,2003,72(4):407-415
    [198]Sukla L B,Panda S C,Jena P K.Recovery of cobalt,nickel and coppper from converter slag through roasting with ammonium sulfate and acid.Hydrometallury,1986,16(2):153-312
    [199]Tzanetakis N,Scott K.Recycling of nickel-metal hydride batteries.Ⅱ:Electrochemical deposition of cobalt and nickel.Journal of Chemical Technology and Biotechnology,2004,79(9):927-934
    [200]朱屯.钴镍萃取分离的化学及其应用.有色金属(冶炼部分),1986,(4):28-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700