东北红豆杉悬浮细胞与内生真菌在紫杉醇合成中相互关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究产紫杉醇内生真菌—美丽镰刀菌(Fusarium mairei)与东北红豆杉(Taxus cuspidata)细胞在合成紫杉醇中的关系。首先,将Fusarium mairei培养在B5培养基中,去菌丝,浓缩滤液至3倍,获得内生真菌培养液(Fungal endophyte culture supernatants, FECS)。将FECS添加到植物细胞悬浮培养物中,以考察内生真菌代谢物对植物细胞生长与紫杉醇合成的影响,并对其活性成分进行了分离鉴定。同样也将植物细胞悬浮培养液加入到内生真菌产紫杉醇培养基中,以考察植物细胞对美丽镰刀菌生长与紫杉醇合成的影响。此外,利用内生真菌与寄主植物在自然界的共生机理,将内生真菌与植物细胞耦合培养在耦合生物反应器中,进一步考察它们的关系以及在紫杉醇生产中的应用。
     系统研究了美丽镰刀菌对东北红豆杉细胞生长与紫杉醇合成的影响。当FECS加入到东北红豆杉悬浮细胞培养物中时,可引起东北红豆杉细胞的防御反应,如:培养基碱化、PAL激活、和酚的积累,并促进紫杉醇的合成。FECS的最佳添加量在6-8% (v/v)。6 mLFECS处理,其紫杉醇含量(6.47 mg/L)是对照(1.97 mg/L)的3.3倍。美丽镰刀菌的培养条件影响其活性成分的产生,从而影响FECS的诱导效益,长时间培养与高溶氧培养条件下的FECS有较好的诱导效应。其中以9天中等溶氧水平培养的FECS效果最好,其紫杉醇含量达8.52 mg/L,是对照的4.3倍。美丽镰刀菌产生的活性物质是赤霉素GA3与一分子量为~2 kD的寡糖。它们协同调节东北红豆杉细胞的生长与紫杉醇合成。
     FECS与茉莉酸甲酯(Methyl jasmonate, MJ)比较,FECS对红豆杉细胞生长与活性的影响小,MJ处理可使东北红豆杉细胞最终的生物量下降44%,而FECS处理仅使东北红豆杉细胞最终生物量下降11%。同时MJ处理对细胞活性的影响也明显高于FECS处理。MJ处理与FECS处理对红东北豆杉细胞生长与活性的差异可能与东北红豆杉细胞内内源脱落酸有关,MJ处理可诱导东北红豆杉细胞内产生较高浓度的脱落酸(3.39μg/g),而FECS处理的脱落酸相对较低(1.28μg/g)。FECS在红豆杉细胞培养早期(5天)添加可获得最佳紫杉醇产量(6.74 mg/L),而MJ处理在红豆杉细胞培养中后期(15天)添加可获得最佳紫杉醇产量(6.23 mg/L),但FECS处理所获得的紫杉醇生产力(0.449 mg/L?d)是MJ处理(0.249 mg/L?d)的双倍。通过与MJ的比较研究发现,美丽镰刀菌对紫杉醇合成的诱导作用的位点可能在10-去乙酰巴卡亭III(10-deacetylbaccatin III ,10-DAB)代谢途径前。
     系统研究了东北红豆杉细胞对美丽镰刀菌生长与紫杉醇合成的影响。实验结果表明,东北红豆杉细胞悬浮培养液添加量在0-50%(v/v)时,对美丽镰刀菌生长有促进作用,而在50-100%(v/v)时,则抑制美丽镰刀菌生长。不同培养阶段的植物细胞悬浮培养液对美丽镰刀菌生长有不一样的影响。10天与15天的植物细胞悬浮培养液对内生真菌的生长有促进作用,而20天的植物细胞悬浮培养液对内生真菌的生长有抑制作用。但植物细胞悬浮培养液对美丽镰刀菌合成紫杉醇没有明显影响。美丽镰刀菌对植物细胞悬浮培养液中的紫杉醇前体物无明显转化作用。
     利用生物耦合反应器,对东北红豆杉细胞与美丽镰刀菌的耦合培养进行了系统研究,并对耦合培养的相关参数进行了优化。结果表明,15天耦合培养中植物细胞紫杉醇的含量(25.63 mg/L)是三角瓶培养(0.96 mg/L)的27倍。B5培养基与MS培养基相比更适合于耦合培养,前者在耦合培养中所得的紫杉醇含量比后者(12.8 mg/L)要高一倍。耦合培养罐的中间隔膜控制植物细胞与内生真菌间的物质交换。亲水膜比油膜更适合于植物细胞的生长与紫杉醇的合成。在耦合培养中,内生真菌培养物的通气条件影响内生真菌活性物质的产生,最佳的通气比为1:0.86。内生真菌接入耦合罐的最佳时间是在植物细胞培养后的第五天。
Fusarium mairei was a paclitaxel-producing fungal endophyte derived from Taxus. The interactions of the endophytic fungi and Taxus cuspidata cells were studied in this work. F. mairei was cultured in B5 medium. Fungal endophyte culture supernatant (FECS) was obtained via removing the mycelia from the fungal cultures and concentrating the filtrates obtained to 3 times. The effects of F. mairei on the growth and paclitaxel accumulation of T. cuspidata cells was investigated by adding the FECS to T. cuspidata cultures, and the active chemicals produced by F. mairei in FECS were separated and identified in this work. Similarly, T. cuspidata suspension cultures were added to the paclitaxel-producing medium of F. mairei for examining the effects of T. cuspidata cells on the growth and the paclitaxel production of F. mairei. Furthermore, based on the principle of the nature endophye-plant symbiosis, F. mairei and T. cuspidata cells were co-cultured in a co-bioreactor for further studying their interactions and the applications in paclitaxel production.
     The effects of F. mairei on the growth and paclitaxel accumulation of T. cuspidata cells were systemically studied in this work. When FECS was added to the suspension cultures of T. cuspidata cell, it induced the defense responses of T. cuspidata cells, such as medium alkalization, activation of phenylalanine ammonium-lyase (PAL) and phenolics accumulation etc. Meanwhile, FECS increased the paclitaxel yield in T. cuspidata cell cultures. The optimal FECS addition amount was 6-8% (v/v). The palitaxel yield of T. cuspidata cultures treated with 6 mL FECS (6.47 mg/L) was 3.3-fold than control cells (1.97 mg/L). The culture conditions of F. mairei affected the active chemicals in FECS, and which would affect the eliciting efficiencies of FECS. When F. mairei was cultured under higher dissolved oxygen or with longer periods, the FECS obtained had higher eliciting efficiencies. FECS cultured for 9 days with middle dissolved oxygen had the highest eliciting efficiency and resulted in a maximum paclitaxel yield of 8.52 mg/L. The active chemicals in FECS produced by F. mairei were gibberllic acid (GA3) and an oligosaccharide of around 2 kD, they co-mediated the growth and paclitaxel synthesis of T. cuspidata cells.
     Compared to MJ, FECS treatment caused less negative effects on the growth and viability of T. cuspidata cells. MJ treatment decreased the biomass of T. cuspidata cells by 44%, but only 11% decrease in FECS treatment. Likewise, the viability of T. cuspidata cells treated by FECS was obviously higher than from MJ treatment. The differences of their effects on the cell growth and cell viability of T. cuspidata were likely contributed to the endogenous abscisic acid in T. cuspidata cells. Compared to MJ treatment (3.39μg/g), FECS treatment caused much lower the endogenous abscisic acid (1.28μg/g) of T. cuspidata cells. FECS treatment at day 5 resulted in the maximum paclitaxel yield (6.74 mg/L), while the cultures treated with MJ at day 15 produced the maximum paclitaxel yield (6.23 mg/L), but the paclitaxel productivity by FECS treatment (0.449 mg/L?d) was double that by MJ treatment (0.249 mg/L?d). According to the comparative studies between FECS treatment and MJ treatment, it may be inferred that the induced site by F. mairei to paclitaxel synthesis possibly located prior to 10-deacetylbaccatin III (10-DAB).
     The effects of T. cuspidata cells on the growth and paclitaxel formation of F. mairei were investigated also in this work. The results show that T. cuspidata culture suspensions of 0-50% (v/v) the addition amount enhanced the growth of F. mairei, but 50-100% (v/v) the addition amount inhibited the growth of F. mairei. The effects of T. cuspidata culture suspensions were different with its culture stages. T. cuspidata culture suspensions of days 10 and 15 enhanced the growth of F. mairei, but T. cuspidata culture suspensions of day 20 inhibited the growth of F. mairei. Furthermore, T. cuspidata culture suspensions had no significant effects on the paclitaxel accumulation in F. mairei, and F. mairei had no significant functions to converte the precursors of paclitaxel in T. cuspidata cultures to paclitaxel.
     The co-culture of T. cuspidata cells and F. mairei in a co-bioreactor was investigated and the co-culture parameters were optimized. The results show that the yield of paclitaxel by co-culture (25.63 mg/L) was 27-fold that by flask-culture (0.96 mg/L) during 15 days. The paclitaxel yield by co-culture using B5 medium was 2-fold higher than that using MS medium (12.8 mg/L), thus the B5 medium was more conformable in co-culture compared to MS medium. The separate membrane in the center of the co-bioreactor controls the exchange of chemicals between Taxus cultures and fungal cultures. The results indicate that hydrophilic pyroxylin filter was more suitable for the cell growth and the paclitaxel accumulation of Taxus cultures than lipophilic filter. In co-culture, the aeration of fungal cultures affected the production of its active chemicals, and the optimal ventilation ratio was 1:0.86. Additionally, the optimal inoculation time of fungus was at day 5 after culturing Taxus cells.
引文
[1] Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents VI. The Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from Taxus brevifolia[J]. J Am Chem Soc, 1971, 93:23–25
    [2] Schiff PB, Fant J, Horwitz SB. Production of microtubule assembly in vivo by taxol[J]. Nature, 1979, 277:9479–9490
    [3] Moons PJ, Fitzpatrick FA. Taxane-mediated gene induction is independent of microtubule stabilization : Induction of transcription regulators and enzymes that modulate inflammation and apoptosis[J]. Proc Natl Acad Sci USA, 1998, 95:3896-3901
    [4]沈征武,吴莲芬.紫杉醇研究进展[J].化学进展, 1997, 9(1):1–11
    [5] CusidóRM, Palazón J, Bonfill M, et al. Source of isopentenyl diphosphate for taxol and baccatin III biosynthesis in cell cultures of Taxus baccata[J]. Biochem Eng J, 2007, 33:159–167
    [6] Long RM, Croteau R. Preliminary assessment of the C13-side chain 2’-hydroxylase involved in Taxol biosynthesis[J]. Biochem Biophys Res Commun, 2005, 338: 410–417
    [7] Ketchum REB, Rithner CD, Qiu DY, et al. Taxus metabolomics: methyl jasmonate preferentially induces production of taxoids oxygenated at C-13 in Taxus x media cell cultures[J]. Phytochem, 2003, 62:901–909
    [8] Holton RA, Somoza C, Kim HB, et al. First total synthesis of Taxol[J]. J Am Chem Soc, 1994, 116:1597–1598
    [9] Nicolaou KC, Yang Z, Liu JJ et al. Total synthesis of Taxol[J]. Nature, 1994, 367:630-634
    [10] Danishefsky SJ, Masters JJ, Young WB, et al. Total synthesis of BaccatinⅢand Taxol[J]. J Am Chem Soc, 1996, 118:2843–2859
    [11] Lundberg BB, Risovic V, Ramaswamy M, et al. A lipophilic paclitaxel derivative incorporated in a lipid emulsion for parenteral administration[J]. J Controlled Release, 2003, 86:93–100
    [12]赵春芳,余龙江,刘智等.中国红豆杉中主要紫杉烷类物质的分布研究[J].林产化学与工业, 2005, 25(1):89–93
    [13] Commercn A, Bourzat JD, Didier E, et al. Practical semisynthesi and antimitotic activity of docetaxel and side-chain analogs[J]. ACS Symp Ser, 1995, 583:233–246
    [14] Gibson DM, Ketchum REB, Vance NC, et al. Intiation and growth of cell lines of Taxus brevifolia[J]. Plant Cell Rep, 1993, 12:479–482
    [15] Zhao J, Davis LC, Verpoorte C. Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnol Adv, 2005, 23:283–333
    [16] Lee JC, Yang XS, Schwartz M, et al. The relationship between an endangered North American tree and an endophytic fungus[J] . Chem Biology, 1995, 2:721-727
    [17] Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science, 1993, 260: 214–216
    [18] Strobel GA , Stierle A , Stierle D, et al. Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew[J]. Mycotaxon, 1993, 117: 71–78.
    [19] Wang JW, Li GL, Lu HY, et al. Taxol from Tubercularia sp. Strain TF5, an endophytic fungi of Taxus mairei[J] . FEMS Microbiol Lett, 2000, 193:249–253
    [20]徐峰.产紫杉醇内生真菌Fusarium mairei的菌种改良与发酵优化研究[D]:[硕士学位论文].无锡:江南大学生物工程学院,2006
    [21]陈永勤,朱蔚华.前体物和化学诱导子对云南红豆杉细胞生长和产紫杉醇的影响[J].湖北大学学报(自然科学版), 2000, 22(1):91–94
    [22] Fett Neto A G ,Stewart J M ,Nicholson S A, et a1.Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of Taxus cuspidata[J]. Biotechnol Bioeng, 1994, 44:967–971
    [23]周忠强,梅兴国.红豆杉细胞培养生长紫杉醇的研究进展[J].中南民族大学学报(自然科学版), 2004, 23(1):21–25
    [24]苗志奇,未作君,元英进.紫杉醇合成中甲基茉莉酮酸作用位点与配伍特性研究[J].生物物理学报, 2000, 16(2):204–212
    [25] Ketchum REB, Rithner CD, Qiu DY, et al. Taxus metabolomics: methyl jasmonate preferentially induces production of taxoids oxygenated at C-13 in Taxus x media cell cultures[J]. Phytochem, 2003, 62:901–909
    [26] Yukihito Y, Yasuhiro H, Emi N, et a1. The configuration of methyl jasmonate affects paclitaxel and baccatin production in Taxus cells[J]. Phytochem, 2000, 54:l3–17
    [27] Ketchum REB, Gibson DM, Croteau RB, et al. The Kinetics of Taxoid accumulation in cell Suspension cultures of Taxus following elicitation with methyl jasmonate[J]. Biotechnol Bioeng, 1999, 62:97–105
    [28]兰文智,余龙江,李为等.促进紫杉醇合成真菌诱导物制备方法的选择及组分的分离[J].武汉植物学研究, 2002, 20(1):66–70
    [29]鲁明波,苏湘鄂,梅兴国.真菌诱导物对红豆杉细胞的影响[J].华中理工大学学报, 1998, 26(7):107–109
    [30]张长平,李春,元英进.真菌诱导子对悬浮培养南方红豆杉细胞次生代谢的影响[J].化工学报, 2002, 53(5):498–502
    [31]兰文智,余龙江,吴元喜.水杨酸对真菌诱导子诱导红豆杉悬浮细胞膜脂过氧化和紫杉醇生物合成的影响[J].西北植物学报, 2002, 22(1):78–83
    [32]苗志奇,未作君,元英进.水杨酸在紫杉醇生物合成中诱导作用的研究[J].生物工程学, 2000, 16(4):509–513
    [33] Wang YD, Yuan YJ, Wu JC. Induction studies of methyl jasmonate and salicylic acid on taxane production in suspension cultures of Taxus chinensis var.mairei[J]. Biochem Eng J, 2004, 19:259–265
    [34]李家儒,刘曼西,曹孟德等. Cu2+对红豆杉培养细胞中紫杉醇形成的影响[J].华中农业大学学报, 1999, 18(2):117–120
    [35] Wu JY, Wang CG, Mei XG. Stimulation of taxol production and excretion in Taxus spp. cell cultures by rare earth chemical lanthanum[J]. J Biotechnol, 2001, 85:67–73
    [36]胡国武,元英进.硝酸铈对红豆杉细胞培养及紫杉醇合成的影响[J].稀土, 2000,21(2):49–51
    [37]李景川,马忠海,元英进等.铈对悬浮培养南方红豆杉细胞可溶性蛋白和紫杉醇合成动态的影响[J].中国稀土学报, 2001, 19(2):162–166
    [38] Zhang CH, Mei XG, Liu L, et al. Enhanced paclitaxel production induced by the combination of elicitors in cell suspension cultures of Taxus chinensis[J]. Biotechnol Lett, 2000, 22:1561–1564
    [39] Wang ZY, Zhong JJ. Repeated elicitation enhances taxane production in suspension cultures of Taxus chinensis in bioreactors[J]. Biotechnol Lett, 2002, 24:445–448
    [40] Wang CG, Wu JY, Mei XG. Enhancement of Taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal[J]. Appl MicrobiolBiotechnol, 2001, 55:404–410
    [41]梅兴国,董妍玲,潘学武.红豆杉细胞继代培养防褐变措施的研究[J].天然产物研究与开发, 2001, 13(4):8–11
    [42]甘烦远,郑光植,彭丽萍等.云南红豆杉细胞的悬浮培养[J].植物生理学报, l997, 23:43–46
    [43]郭志刚,冯莹,刘瑞芝.生长调节物质对紫杉醇和紫杉烷类化合物合成的调控作用[J].天然产物研究与开发, 2000, 1 2(3):22–26
    [44]张妹,余斐,王传贵等.超声波对红豆杉悬浮细胞生长及紫杉醇释放的研究[J].生物技术, 2001, 11(2):14–17
    [45] Wu J, Lin L. Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound, methyl jasmonate and in situ solvent extraction. Appl Micobiol Biotechnol, 2003, 62:151–155.
    [46]陈永勤,朱蔚华,吴蕴祺等.组培条件对云南红豆杉愈伤组织生长与形成紫杉醇的影响[J].中国中药杂志, 2000, 25(5):269–273
    [47] Fett-Neto AG, Penning JJ, Dicosmo F. Effect of white light on taxol and baccatinⅢaccumulation in cell cultures of Taxus cuspidata Sieb and Zucc[J]. J Plant Physiol, 1995, 146:584–588
    [48] Choi H K, Kim SI, Son JS, et a1. Enhancement of paclitaxel production by temperature shift in cell suspension cultures of Taxus chinensis[J]. Enzyme Microbial Technol, 2000, 27:593–598
    [49]盛长忠,王淑芳,王勇等. pH对红豆杉愈伤组织生长、PAL活性和紫杉醇含量的影响[J].中草药, 2001, 32(10):929–931
    [50] Harrop AJ, Woodley JM, Lilly MD. Production of naphthalene-cisglycol by Pseudomonas putida in the presence of organic solvents[J]. Enzyme Microbiol Technol, 1992, 14:725–730
    [51] Xu QM, Cheng JS, Ge ZQ, et al. Effects of organic solvents on membrane of Taxus cuspidata cells in two-liquid-phase cultures[J]. Plant Cell, Tiss Org Cult, 2004, 79:63–69.
    [52] Wu ZL, Yuan YJ, Ma ZH, et al. Kinetics of two-liquid-phase Taxus cuspidata cell culture for production of Taxol[J]. Biochem Engin J, 2000, 5:137–142
    [53] Wang C, Wu J, Mei X. Enhanced taxol production and release in Taxus chinensis cellsuspension cultures with selected organic solvents and sucrose feeding[J]. Biotechnol Prog, 2001, 17:89–94
    [54] Bentebibel S, Moyano T, Palazon J, et al. Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata[J]. Biotechnol Bioeng, 2005, 89:647–655
    [55] Cusido RM, Palazon J, Bontlll M, et al. Improved paclitaxel and baccatin III production in suspension cultures of Taus media[J]. Biotechnol Prog, 2002, l8:418–423
    [56] Son SH, Choi SM, Lee YH, et al. Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese yew) using a novel bioreactor[J]. Plant Cell Rep, 2000, 19:628–633
    [57]鲁明波,余斐,洪琦等.气升式反应器中红豆杉细胞培养动力学的研究[J].华中理工大学学报, 1998, 26(11):110–114
    [58] Chappell J. Biosynthesis and molecular biology of the isoprenoid biosynthetic pathway in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46:521-547
    [58] Hahlbrock K, Bednarek P, Ciolkowski I, et al. Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions[J]. Proc Natl Acad Sci USA, 2003, 100:14569–14576.
    [60] Linden JC, Phisalaphong M. Oligosaccharides potentiate methyl jasmonate-induced production of paclitaxel in Taxus canadensis[J]. Plant Sci, 2000, 158:41–151
    [61] Boller T. Chemoperception of microbial signals in plant cells[J]. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46:189–214
    [62] Sakano K. Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism[J]. Int Rev Cytol, 2001, 206:1–44
    [63] Roos W, Evers S, Hieke M, et al. Shifts of intracellular pH distribution as a part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloid biosynthesis[J]. Plant Physiol, 1998, 118:349–364.
    [64] Roos W, Dordschbal B, Steighardt J, et al. A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholtzia californica[J]. Biochem Biophys Acta, 1999, 1448:390–402.
    [65] Bolwell GP, Wojtaszek P. Mechanism for the generation of reactive oxygen species inplant defense-a broad perspective[J]. Physiol Mol Plant Pathol, 1997, 51:347–366
    [66] Guo Z, Lamb C, Dixon RA. Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors[J]. Plant Physiol, 1998, 118:1487–1494.
    [67] Jabs T, Tschfpe M, Colling C, et al. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley[J]. Proc Natl Acad Sci USA, 1997, 94:4800–4805
    [68] Perrone ST, McDonald KL, Sutherland MW, et al. Superoxide release is necessary for phytoalexin accumulation in Nicotiana tabacum cells during the expression of cultivar-race and non-host resistance towards Phytophthora spp[J]. Physiol Mol Plant Pathol, 2003, 62:127–35
    [69] Yuan YJ, Li C, Hu ZD, et al. A double oxidative burst for taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium oxysprum[J]. Enzyme Microb Technol, 2002, 30:774–778
    [70] Yu LJ, Lan WZ, Qiu WM, et al. High stable production of taxol in elicited synchronous cultures of Taxus chinensis cells[J]. Proc Biochem, 2002, 38:207–210
    [71] Yu LJ, Lan WZ, Chen C, et al. Importance of glucose-6-phosphate dehydrogenase in taxol biosynthesis in Taxus chinensis cultures[J]. Biologia Planta, 2005, 49(2):265–268
    [72] Wu J, Ge X. Oxidative burst, jasmonic acid biosynthesis, and taxol production induced by low-energy ultrasound in Taxus chinensis cell suspension cultures[J]. Biotechnol Bioeng, 2004, 85:714–721
    [73] Trewavas AJ, MalhóR. Ca2+ signalling in plant cells: the big network[J]. Curr Opin Plant Biol, 1998, 1:428–33
    [74] White PJ, Broadley M. Calcium in plants[J]. Ann Bot, 2003, 92:487–511
    [75] Smith CJ. Signal transduction in elicitation of phytoalexin synthesis[J]. Biochem Soc Trans, 1994, 22:414–419
    [76] Keller T, Damude HG, Werner D, et al. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs[J]. Plant Cell, 1998, 10:255– 66.
    [77]王敬文.植物苯丙氨酸解氨酶的研究[J].植物生理学报, 1983, 7(4) :3732–3801
    [78] Koukol J, Eric EC. Metabolism of aromatic compounds in higher plants IV: Purificationand properties of the phenylalanine deaminase of Honeteum Vulgan[J], Biol Chem, 1961, 23 ( 6):2692–26981
    [79] Zhang CH, Wu JY, He GY. Effects of inoculum size and age on biomass growth and paclitaxel production of elicitor-treated Taxus yunnanensis cell cultures[J]. Appl Microbiol Biotechnol, 2002, 60:396–402
    [80] Wang MW, Wu JY. Nitric oxide is involved in methyl jasmonateinduced defense responses and secondary metabolism activities of Taxus cells[J]. Plant Cell Physiol, 2005, 46:923–930
    [81] Long RM, Croteau R. Preliminary assessment of the C13-side chain 2’- hydroxylase involved in taxol biosynthesis[J]. Biochem Biophys Res Commun, 2005, 338:410–417
    [82] Qian ZG, Zhao ZJ, Xu YF, et al. Novel chemically synthesized hydroxyl-containing jasmonates as powerful inducing signals for plant secondary metabolism[J]. Biotechnol Bioeng, 2004, 86:809–816
    [83] Zhang CH, Fevereiro PS, He GY, et al. Enhanced paclitaxel productivity and release capacity of Taxus chinensis cell suspension cultures adapted to chitosan[J]. Plant Sci, 2007, 72:158–163
    [84] Wang JW, Zheng LP, Wu JY, et al. Involvement of nitric oxide in oxidative burst, phyenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures[J]. Nitric Oxide, 2006, 15:351–358
    [85]臧新,梅兴国,周忠强等.钒酸钠对悬浮培养红豆杉细胞合成紫杉醇的影响[J].华中农业大学学报, 2002, 21(2):179–182
    [86] Kuzniak E, Urbanek H. The involvement of hydrogen peroxide in plant responses to stresses[J]. Acta Physiologiae Palntarum, 2000, 22:195–203
    [87]梅兴国,董妍玲,潘学武.红豆杉细胞继代培养防褐变措施的研究[J].天然产物研究与开发, 2001, 13(4):8–13
    [88] Tamagone L, Merida A, Stacey N, et al. Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphologyn in leaves of tranegenic tobacoo plants[J]. Plant Cell, 1998, 10:1801–1816
    [89] Esteban-Carrasco A, L?pez-SerranoM, Zapata JM, et al. Oxidation of phenolic compounds from Aloe barbadensis by peroxidase activity: Possible involvement indefence reactions[J]. Plant Physiol Biochem, 2001, 39:521–527
    [90]陈超,付春华,姜革民等.红豆杉细胞中的酚类化合物含量与紫杉醇产量之间的关系[J].华中农业大学学报, 2005, 24(1):83–87
    [91] Strobel GA. Endophytes as sources of bioactive products microbes and infection[J]. Microbes Infection, 2003, 5:535-544
    [92] Lee JC, Yang XS, Schwartz M, et al. The relationship between an endangered North American tree and an endoghytic fungus[J]. Chem Biology, 1995, 2:721–727
    [93] Akiyama K, Hayashi H. Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots[J]. Biosci Biotechnol Biochem, 2002, 66:762–769
    [94] Rojas-Andrade R, Cerda-Garcia-Rojas CM, Frias-Hernandez JT, et al. Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase[J]. Mycorrhiza, 2003, 13:49–52
    [95] Barker SJ, Tagu D. The roles of auxins and cytokinins in mycorrhizal symbioses[J]. J Plant Growth Reg, 2000, 19:144–154
    [96] Rosewich UL, Kistler HC. Role of horizontal gene transfer[J]. Annu Rev Phytopathol, 2000, 38:325-363
    [97]兰文智,余龙江,李为等.促进紫杉醇合成真菌诱导物制备方法的选择及组分的分离[J].武汉植物学研究, 2002, 20(1):66–70
    [98] Strobel G, Yang X, Sears J, et al. Hess WM. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana[J]. Microbiol, 1996, 142:435–440
    [99] Li JY, Sidhu RS, Ford EJ, et al. The induction of taxol production in the endophytic fungus—Periconia sp from Torreya grandifolia[J]. J Indust Microbiol Biotechnol, 1998, 20:259–264
    [100] Xu F, Tao WY, Cheng L, et al. Strain improvement and optimization of the media of taxol-producing fungus Fusarium mairei[J]. Biochem Eng J, 2006, 31:67–73
    [101] Ji Y, Bi JN, Yan B, et al. Taxol-producing fungi: a new approach to industrial production of Taxol[J]. Chin J Biotechnol, 2006, 22(1):1–6
    [102] Reddy PV, Lam CK, Belanger FC. Mutualistic fungal endophytes express a proteinase that is homologous to proteases suspected to be important in fungal pathogenicity[J]. Plant Physiol, 1996, 11:1209–1218
    [103] Dodd JC, Dougall TA, Clapp JP, et al. The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK the reclamation platform created during the building of the Channel tunnel between France and the UK[J]. Biodiversity and Conservation, 2002, 11:39 - 58
    [104] Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells[J]. Exp Cell Res 1968, 50:151–158.
    [105] Iborra JL, Guardiola J, Montaner S, et al. 2, 3, 5-triphenyltetrazolium chloride as viability assay for immobilized plant cells[J]. Biotech Tech, 1992, 6:319–322
    [106]李合生,孙群,赵世杰等.植物生理生化实验原理和技术[J].北京:高等教育出版社, 2000, 213–214
    [107]徐秋曼.两相培养中有机相对红豆杉细胞毒性作用的研究[D]:[博士学位论文].天津:天津大学化工学院, 2004
    [108] Yu LJ, Lan WZ, Qin WM, et al. Effects of Salicylic acid on fungal elicitor-induced membrane-lipid peroxidation and taxol production in cell suspension cultures of Taxus chinensis[J]. Proc Biochem, 2001, 37:477–482
    [109] Lindsey K, Yeoman MM. The relationship between growth rate, differentiation and alkaloid accumulation in cell culture[J]. J Exp Bot, 1983, 34:370–379.
    [110] Yu LJ, Lan WZ, Qin WM, et al. Oxidative stress and taxol production induced by fungal elicitor in cell suspension cultures of Taxus chinensis[J]. Biol Plant, 2002, 45:459-461
    [111] Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism[J]. Plant Cell, 1995, 7:1085–1097
    [112] Chong J, Pierrel MA, Atanassova R, et al. Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors[J]. Plant Physiol, 2001, 125:318–328
    [113] Ebel J, Mithofer A. Early events in the elicitation of plant defense[J]. Planta. 1998, 206:335–348
    [114]杨玉敏,元英进,胡宗定.植物细胞胞内产物释放行为研究进展[J].生物工程进展, 1998, 18 (1):17–21
    [115] FornalèS, Esposti DD, Navia-Osorio A, et al. Taxol transport in Taxus baccata cell suspension cultures[J]. Plant Physiol Biochem, 2002, 40:81–88.
    [116]侯丕勇,郭顺星.真菌对植物的诱导作用及其在天然药物研究上的应用[J].中草药,2002, 33(9):855–857.
    [117] Hahlbrock K, Bednarek P, Ciolkowski I, et al. Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions[J]. Proc Natl Acad Sci USA , 2003, 100:14569–14576
    [118] Hayashi H, Huang P, Inoue K. Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra[J]. Plant Cell Physiol, 2003, 44:404–411.
    [119] Morse LJ, Day TA, Farth SH. Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes[J]. Environ Exp Bot, 2002, 48:257–268
    [120] Nassar AH, El-Tarabily KA, Sivasithamparam K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots[J]. Biol Fertil Soils, 2005, 42:97–108
    [121] Staub AM. Removeal of protein—Sevag method[J]. Methods Carbohy Chem, 1965, 5:5–6
    [122]戴军,尹鸿萍,陈尚卫等.杜氏盐藻多糖的高效体积排阻色谱的保留特性及其分析方法的研究[J].色谱, 2006, 24(6):560–565
    [123]周鹏,沈金灿,谢明勇等. GC-MS法分析茶叶中提取物TGP的单糖组成及机理探讨[J].厦门大学学报(自然科学版), 2003, 42(2):213–217
    [124]张有林,党娅,张静等.高效液相色谱法同时测定银凤桃中的赤霉素和脱落酸[J].西北植物学报, 2005, 25(7):1467–1471 125]陈小鹏,王秀峰,孙小镭等.高效液相色谱测定黄瓜瓜条中赤霉素和脱落酸含量[J].山东农业科学, 2005, 1:65–67
    [126] Cheng JS, Yin DM, Li SY. Activation of ERK-like MAP kinase involved in regulating the cellular proliferation and differentiation of immobilized Taxus cuspidata cells[J]. Enzyme Microb Technol, 2006, 39(6):1250–1257
    [127] Thanh NT, Murthy HN, Yu KW, et al. Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors[J]. Appl Microbiol Biotechnol, 2005, 67:197–201
    [128] Sirrenberg A, G?bel C, Grond S, et al. Piriformospora indica affects plant growth by auxin production[J]. Physiologia Plantarum, 2007, 131:581–589
    [129]高微微,郭顺星.三种内生真菌对铁皮石斛、金线莲生长影响的研究[J].中草药,2002, 33(6):543–545
    [130]郭志刚,冯莹,刘瑞芝.生长调节物质对紫杉醇和紫杉烷类化合物合成的调控作[J].天然产物研究与开发, 1999, 12(3):22–26
    [131] Sharp JK, Valent B, Albersheim P. Purification and partial characterization ofβ-glucan fragment that elicits phytoalexin accumulation in soybean[J]. J Biol Chem, 1984, 259:11312–11320.
    [132] Ito Y, Kahu H, Shibuya N. Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling[J]. Plant J, 1997, 12:347–356
    [133]王云,何华纲,周越等.不同分子量壳聚糖对一些与植物防御反应相关生理生化指标的影响[J].植物生理学通讯,2006, 42(6):1109–1111
    [134] Yukimune Y, Tabata H, Higashi Y, et al. Methyl jasmonate-induced over-production of paclitaxel and baccatin III in Taxus cell suspension cultures[J]. Nat Biotechnol, 1996, 14:1129–1132
    [135] Gundlach H, Muller MJ, Kutchan TM, et al. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures[J]. Proc Natl Acad Sci USA, 1992, 89:2389– 2393
    [136] Menke FLH, Parchmann S, Mueller MJ,et al. Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus[J]. Plant Physiol, 1999, 119:1289–1296
    [137] Brader G, Tas E, Palva ET. Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora[J]. Plant Physiol, 2001,126:849–60
    [138] Zhao J, Zheng SH, Fujita K, et al. Jasmonate and ethylene signaling pathways and their interaction are integral parts of the elicitor signal transduction leading to phytoalexin biosynthesis in Cupressus lusitanica cell culture[J]. J Exp Bot, 2004, 55:1003–1012
    [139]张有林,陈锦屏,王明珍.葡萄贮期脱落酸(ABA)变化的研究[J].西北植物学报, 2000, 20(4):604–609
    [140]全先庆,张渝洁,杨家森等.高等植物脱落酸的代谢及调节机制[J].安徽农业科学, 2006, 34(13):2966–2968
    [141] Wang W, Zhang ZY. Zhong JJ. Enhancement of ginsenoside biosynthesis in high-density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation[J]. Appl Microbiol Biotechnol, 2005, 67:752–758
    [142] Thanh NT, Murthy HN, Yu K W, et al. Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors[J]. Appl Microbiol Biotechnol, 2005, 67:197–201
    [143] Walker K, Croteau R. Taxol biosynthesis:molecular cloning of a 10-deacetylbaccatinⅢ-10-O-acetyl tranaferase cDNA from Taxus and functional expression in Escherichia coli[J]. Proc Natl Acad Sci USA, 2002, 97(2):583–587
    [144]仇燕.南方红豆杉细胞紫杉醇代谢调节的研究[D]. [博士学位论文].石家庄河北师范大学生命科学学院, 2004
    [145]谢丽华,王国红,杨民和.内生真菌及其对宿主植物生态适应性的影响[J].菌物研究, 2006, 4(3):98–106
    [146] Rodriguez RJ , Redman RS , Henson JM. The role of fungal symbioses in the adaptation of plant to high stress environments[J]. Mitigation and Adaptation Strategies for Global Change, 2004, 9(3):261–272
    [147] Li JY, Sidhu RS, Art Bollon, et al. Stimulation of taxol production in liquid cultures of Pestalotiopsis microspore[J]. Micol Res, 1998, 102:461–464
    [148]苏湘鄂,梅兴国,龚伟等.茉莉酸甲酯与真菌诱导物、水杨酸组合对红豆杉细胞中紫杉醇含量的影响[J].生物技术, 2001, 11(1):10–13
    [149]张长平,李春,元英进.真菌诱导子对悬浮培养南方红豆杉细胞次生代谢的影响[J].化工学报, 2002, 53(5):498–502
    [150]张长平,李春,元英进,等.真菌诱导子对悬浮培养南方红豆杉细胞态势及紫杉醇合成的影响[J].生物工程学报, 2001, 17(4):436–400
    [151] Seki M, Ohzora C, Takeda M, Furusaki S. Taxol (Paclitaxel) production using free and immobilized cells of Taxus cuspidata[J]. Biotechnol Bioeng, 1997, 53:214–219
    [152] Alvarez MM, Guzmán A, Elías M. Experimental visualization of mixing pathologies in laminar stirred tank bioreactors[J]. Chem Eng Sci, 2005, 60:2449–2457
    [153]李冬杰,张进献,魏景芳等.培养基和培养条件与红豆杉细胞培养中褐化的关系[J].植物生理学通讯, 2005, 41(1):95–98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700