蒲枝凹顶藻、鸭毛藻及鸭毛藻共生真菌次生代谢产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对蒲枝凹顶藻(Laurencia nidifica)、鸭毛藻(Symphyocladia latiuscula)和鸭毛藻共生真菌哈茨木霉(Trichoderma harzianum EN-85)的次生代谢产物进行了研究。综合利用各种色谱学方法(正相硅胶柱层析、反相硅胶柱层析、凝胶Sephadex LH-20柱层析、半制备HPLC,制备薄层层析等)和波谱学技术(IR、UV、EI-MS、ESI-MS、HR-ESI-MS、1D-NMR、2D-NMR等)共分离、鉴定了55个化合物,发现9个新化合物。
     蒲枝凹顶藻主要分布于夏威夷群岛,我们在开展海藻资源调查时于2008年首次发现其在我国南海海域的分布并对其次生代谢产物进行了研究。从中分离鉴定了21个化合物,其中有4个新化合物,包括1个charmigrane型倍半萜(LS8),2个bisabolane型倍半萜(LS9,LS10)和1个C15多聚乙酰(LS17)。对其中的LS1、LS3、LS6、LS7、LS8、LS12、LS13和LS17进行了抗菌活性测试。发现LS6对白菜黑斑病菌(Alternaria brassicae(berk.) Sace)有一定抑制活性;LS7对大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、白菜黑斑病菌(A. brassicae)和苹果轮纹病菌(Physalospora piricola Nose)均有弱的抑制活性;LS8对金黄色葡萄球菌(S. aureus)有弱的活性;LS12对金黄色葡萄球菌(S. aureus)和苹果轮纹病菌(P. piricola)有弱的活性。
     对采集自山东威海海域的鸭毛藻进行了次生代谢产物研究。从中分离鉴定了13个化合物(9个为溴酚类化合物),其中有1个新化合物(SL1)。对其中的溴酚类化合物进行了抑制蛋白酪氨酸磷酸酯酶(PTP1B)活性筛选,发现化合物SL6、SL7,SL8具有很好的PTP1B抑制活性,IC50分别为3.9, 4.3, 3.5μmol/L,优于阳性对照正钒酸钠(IC50为4.6μmol/L),具有潜在的发展成抗糖尿病药物的研究价值。
     研究了鸭毛藻共生真菌哈茨木霉(Trichoderma harzianum EN-85)的次生代谢产物。共分离鉴定了21个化合物,其中有4个新化合物,分别为两个倍半萜(FS2、FS4),一个二萜(FS14)和一个链状多烯醇类化合物(FS15)。对其粗提物和次生代谢产物进行了活性筛选。发现粗提物对白菜黑斑病菌(A. brassicae)和苹果轮纹病菌(P. piricola)具有一定的抑制作用。对分离得到的化合物FS1、FS3, FS4、FS8-FS10和FS12-FS15进行了抗菌试验。化合物FS3和FS4对苹果轮纹病菌(P.piricola)和棉花枯萎病菌(Fusarium oxysporium)有弱的抑制活性。
     本文通过对蒲枝凹顶藻、鸭毛藻以及鸭毛藻共生真菌的次生代谢产物研究,不仅丰富了海洋天然产物的资源库,同时也发现了一些具有潜在抗糖尿病活性的溴酚物质和一些抗农业病害菌的真菌代谢产物,为海洋生物资源的利用提供了一定的科学依据。
In the present dissertation, the secondary metobolites from the marine red algal Laurencia nidifica and Symphyocladia latiuscula as well as the algal-derived symbiotic Trichoderma harzianum EN-85 were investigated. Repeated column chromatography on silica gel, Rp-18, ploymide, and Sephadex LH-20, prep-TLC, and semi-preparative HPLC were used to separate the compounds. Elucidation of the structures was performed by IR, UV, EI-MS, ESI-MS, HR-ESI-MS, 1D NMR and 2D NMR. A total of 55 compounds were separated and identified, with 9 of them were found as new compounds.
     The marine red algal Laurencia nidifica was discovered for the first time in South China Sea. A total of 21 compounds were separated and identified from this species, including four new structures (one charmigrane sesquiterpene LS8, two bisabolene sesquiterpenes LS9 and LS10, and one C15-acetogein LS17). Compounds LS1, LS3, LS6, LS7, LS8, LS12, LS13, and LS17 were tested for the antimicrobial activity. Among them, compounds LS6 and LS7 exhibited weak inhibition against Alternaria brassicae (berk.) Sace and against Escherichia coli, Staphylococcus aureus, A. brassicae and Physalospora piricola Nose, respectively, while LS8 and LS12 exhibited weak inhibition against S. aureus and against S. aureus and P. piricola, respectively.
     Another marine red algal Symphyocladia latiuscula was collected at the coast of Weihai in Shandong province. A total of 13 compounds were isolated and identified from the species including one new compound (SL1). Compounds SL2-SL9 were evaluated the activity against the protein tyrosine phosphatase 1B (PTP1B). Bromophenols SL6, SL7, and SL8 displayed potent activity with IC50 values 3.9, 4.3, and 3.5μmol/L, respectively, which might be used as a potential source for developing anti-diabetes drug.
     The fungus Trichoderma harzianum EN-85 was isolated from the marine red algal Symphyocladia latiuscula and was identified by molecular biology methods. A total of 21 compounds were isolated and indentified from this fungal stain including 4 new compounds (two sesquiterpenes FS2 and FS4, one diterpene FS14, and one other compound FS15). The antimicrobial activity was evaluated. The inhibition on the A. brassicae and P. piricola were observed. Compounds FS1, FS3, FS4, FS8-FS10, and FS12-FS15 were tested the antimicrobial activity, and FS3 and FS4 exhibited weak inhibition against P. piricola and Fusarium oxysporium.
     In conclusion, phytochemical examination of the marine red algal L. nidifica, S. latiuscula and from the symbiotic fungus T. harzianum EN-85 led to the identification of 9 new compounds, which enriched the marine natural products library. Some compounds with PTP1B inhibitory activity and with anti-microbial activity were discovered.
引文
[1]邓松之.海洋天然产物的分离纯化与结构鉴定[M].北京:化学工业出版社, 2007.
    [2]易杨华,焦炳华.现代海洋药物学[M].北京:科学出版社, 2006.
    [3]张朝晖.海洋药物研究与开发[M].北京:人民卫生出版社, 2003.
    [4]李八方.海洋生物活性物质[M].青岛:中国海洋大学出版社, 2007.
    [5]卢艳华.中药有效成分提取分离技术(第二版) [M].北京:化学工业出版社, 2008.
    [6]吴立军.天然药物化学[M].北京:人民卫生出版社, 2007.
    [7]易杨华,李玲,汤海峰.海洋药物研究进展[J].上海医药, 2004, 24(2): 75-78.
    [8]林文翰.中国海洋药物研究的进展和展望(上)[J].中药现代化, 2001, 3(6): 20-25.
    [9]王淑民,管华诗.海洋药物的研究进展[J].中国海洋药物, 2006, 26(5): 56-61.
    [10]姚新生.海洋抗肿瘤药物研究进展[J].第二军医大学学报, 2002, 23(3): 233-239.
    [11] BEIJNEN J H, SCHELLENS J H M. Et-743 - a viewpoint[J]. Drugs, 2002, 62(8): 1193-1194.
    [12] YOVINE A, RIOFRIO M, BLAY J Y, et al. Phase II study ofecteinascidin-743 in advanced pretreated soft tissue sarcoma patients[J]. Journal of Clinical Oncology, 2004, 22(5): 890-899.
    [13] KINDLER H L, TOTHY P K, WOLFF R, et al. Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers[J]. Investigational New Drugs, 2005, 23(5): 489-493.
    [14] PEREZ E A, HILLMAN D W, FISHKIN P A, et al. Phase II trial of dolastatin-10 in patients with advanced breast cancer[J]. Investigational New Drugs, 2005, 23(3): 257-261.
    [15] NAPOLITANO A, BRUNO I, RICCIO R, et al. Synthesis, structure, and biological aspects of cyclopeptides related to marine phakellistatins 7-9[J]. Tetrahedron, 2005, 61(28): 6808-6815.
    [16] CLAMP A, JAYSON G C. The clinical development of the bryostatins[J]. Anti-Cancer Drugs, 2002, 13(7): 673-683.
    [17] WARASZKIEWICZ S M, ERICKSON K L. Halogenated sesquiterpenoids from Hawaiian marine alga laurencia nidifica nidificene and nidifidiene[J]. Tetrahedron Letters, 1974, 15(23): 2003-2006.
    [18] WARASZKIEWICZ S M, ERICKSON K L. Halogenated sesquiterpenoids from Hawaiian marine alga laurencia nidifica .2. nidifidienol[J]. Tetrahedron Letters, 1975, 16(4): 281-284.
    [19] SUN H H, WARASZKIEWICZ S M, ERICKSON K L. Sesquiterpenoid alcohols from Hawaiian marine alga laurencia nidifica .3[J]. Tetrahedron Letters, 1976, 17(8): 585-588.
    [20] SUN H H, WARASZKIEWICZ S M, ERICKSON K L. C15-halogenated compounds from Hawaiian marine alga laurencia nidifica .6. isomaneonenes[J]. Tetrahedron Letters, 1976, 17(47): 4227-4230.
    [21] WARASZKIEWICZ S M, ERICKSON K L. Halogenated sesquiterpenoids from Hawaiian marine alga laurencia nidifica .4. nidifocene[J]. Tetrahedron Letters, 1976, 17(18): 1443-1444.
    [22] WARASZKIEWICZ S M, SUN H H, ERICKSON K L. C15-halogenated compounds from Hawaiian marine alga laurencia nidifica .5. maneonenes[J]. TetrahedronLetters, 1976, 17(35): 3021-3024.
    [23] WARASZKIEWICZ S M, SUN H H, ERICKSON K L, et al. C15 halogenated compounds from Hawaiian marine alga laurencia nidifica maneonenes and isomaneonenes[J]. Journal of Organic Chemistry, 1978, 43(16): 3194-3204.
    [24] SUN H H, ERICKSON K L. Sesquiterpenoids from Hawaiian marine alga laurencia nidifica .7. (+)-selin-4,7(11)-diene[J]. Journal of Organic Chemistry, 1978, 43(8): 1613-1614.
    [25] SHIZURI Y, YAMADA A, YAMADA K. Laurequinone, a cyclolaurane sesquiterpene from the red alga laurencia nidifica[J]. Phytochemistry, 1984, 23(11): 2672-2673.
    [26] SHIZURI Y, YAMADA K. Laurebiphenyl, a dimeric sesquiterpene of the cyclolaurane-type from the red alga laurencia-nidifica[J]. Phytochemistry, 1985, 24(6): 1385-1386.
    [27] KIMURA J, KAMADA N, TSUJIMOTO Y. Fourteen chamigrane derivatives from a red alga, Laurencia nidifica[J]. Bulletin of the Chemical Society of Japan, 1999, 72(2): 289-292.
    [28] KURATA K, AMIYA T. Disodium 2,3,6-tribromo-5-hydroxybenzyl 1',4-disulfate, a new bromophenol from the red alga, Symphyocladia latiuscula[J]. Chemistry Letters, 1980, 9(3): 279-280.
    [29] KURATA K, AMIYA T. Bis(2,3,6-tribromo-4,5-dihydroxybenzyl) ether from the red alga, Symphyocladia latiuscula[J]. Phytochemistry, 1980, 19(1): 141-142.
    [30] CHOI J S, PARK H J, JUNG H A, et al. A cyclohexanonyl bromophenol from the red alga Symphyocladia latiuscula[J]. Journal of Natural Products, 2000, 63(12): 1705-1706.
    [31] WANG W, OKADA Y, SHI H B, et al. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula[J]. Journal of Natural Products, 2005, 68(4): 620-622.
    [32] PARK H J, KUROKAWA M, SHIRAKI K, et al. Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice[J]. Biological & PharmaceuticalBulletin, 2005, 28(12): 2258-2262.
    [33] DUAN X J, LI X M, WANG B G. Highly brominated mono- and bis-phenols from the marine red alga Symphyocladia latiuscula with radical-scavenging activity[J]. Journal of Natural Products, 2007, 70(7): 1210-1213.
    [34] JIN H J, OH M Y, JIN D H, et al. Identification of a Taq DNA polymerase inhibitor from the red seaweed Symphyocladia latiuscula[J]. Journal of Environmental Biology, 2008, 29(4): 475-478.
    [35] XU X L, SONG F H, FAN X, et al. A novel bromophenol from marine red alga Symphyocladia latiuscula[J]. Chemistry of Natural Compounds, 2009, 45(6): 811-813.
    [36]李敏,杨谦,王疏, et al.哈茨木霉与多菌灵复合使用对水稻苗期立枯病的防治[J].浙江大学学报(农业与生命科学版), 2009, 35(1): 65-70.
    [37] KUCUK C, KIVANC M, KINACI E, et al. Efficacy of Trichoderma harzianum (Rifaii) on inhibition of ascochyta blight disease of chickpea[J]. Annals of Microbiology, 2007, 57(4): 665-668.
    [38] ELAD Y, DAVID D R, LEVI T, et al. Trichoderma harzianum T39 - Mechanisms of biocontrol of foliar pathogens[J]. Modern Fungicides and Antifungal Compounds, 1999, 459-467.
    [39]姚彬,王傲雪,李景富.哈茨木霉对4种番茄病原真菌抑制作用的研究[J].东北农业大学学报, 2009, 40(5): 26-31.
    [40]魏林,梁志怀,曹福祥, et al.哈茨木霉T_(2-16)代谢产物对花生种子活力和抗黄曲霉菌侵染能力的影响[J].中国油料作物学报, 2009, 31(3): 370-373.
    [41] VAZQUEZ GARCIDUENAS S, LEAL MORALES C A, HERRERA ESTRELLA A. Analysis of the beta-1,2-glucanolytic system of the biocontrol agent Trichoderma harzianum[J]. Applied and Environmental Microbiology, 1998, 64(4): 1442-1446.
    [42] EL-KATANY M H, SOMITSCH W, ROBRA K H, et al. beta-1,3-glucanase and chitinase from Trichoderma harzianum rifai.[J]. Biochemistry, 2000, 39(6): 1564-1564.
    [43] AIT-LAHSEN H, SOLER A, REY M, et al. An antifungalexo-alpha-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum[J]. Applied and Environmental Microbiology, 2001, 67(12): 5833-5839.
    [44] YUN S I, JEONG C S, CHUNG D K, et al. Purification and some properties of a beta-glucosidase from Trichoderma harzianum type C-4[J]. Bioscience Biotechnology and Biochemistry, 2001, 65(9): 2028-2032.
    [45] GOHL M, SRINIVAS R, DAMMERTZ W, et al. Localization of beta-1,3-glucanase in Trichoderma harzianum[J]. Bioprocess Engineering, 1998, 19(3): 237-241.
    [46] ELKATANY M H, SOMITSCH W, ROBRA K H, et al. Beta-1,3-glucanase and chitinase from Trichoderma harzianum rifai.[J]. Biochemistry, 2000, 39(6): 1564-1564.
    [47] AHMED S, JABEEN A, JAMIL A. Xylanase from Trichoderma harzianum: Enzyme characterization and gene isolation[J]. Journal of the Chemical Society of Pakistan, 2007, 29(2): 176-182.
    [48] BRANTS A, BROWN C R, EARLE E D. Trichoderma harzianum endochitinase does not provide resistance to meloidogyne hapla in transgenic tobacco[J]. Journal of Nematology, 2000, 32(3): 289-296.
    [49] SUAREZ B, REY M, CASTILLO P, et al. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity[J]. Applied Microbiology and Biotechnology, 2004, 65(1): 46-55.
    [50] DEANE E E, WHIPPS J M, LYNCH J M, et al. The purification and characterization of a Trichoderma harzianum exochitinase[J]. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1998, 1383(1): 101-110.
    [51] GOLDMAN M H S, GOLDMAN G H. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions[J]. Genetics and Molecular Biology, 1998, 21(3): 329-333.
    [52] KAPAT A, ZIMAND G, ELAD Y. Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea[J]. Physiological and Molecular Plant Pathology, 1998, 52(2): 127-137.
    [53] DE LA CRUZ J, LLOBELL A. Purification and properties of a basic endo-beta-1,6-glucanase (BGN16.1) from the antagonistic fungus Trichoderma harzianum[J]. European Journal of Biochemistry, 1999, 265(1): 145-151.
    [54] ELAD Y, KAPAT A. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea[J]. European Journal of Plant Pathology, 1999, 105(2): 177-189.
    [55] WIATER A, SZCZODRAK J, PLESZCZYNSKA M, et al. Production and use of mutanase from Trichoderma harzianum for effective degradation of streptococcal mutans[J]. Brazilian Journal of Microbiology, 2005, 36(2): 137-146.
    [56] VASILEVATONKOVA E S, BEZBORODOVA S I. Purification, physicochemical properties, and specificity of a ribonuclease produced by Trichoderma harzianum[J]. Enzyme and Microbial Technology, 1996, 18(2): 147-152.
    [57] VASILEVATONKOVA E S. Isolation and some properties of extracellular ribonuclease from Trichoderma harzianum[J]. Enzyme and Microbial Technology, 1993, 15(8): 687-690.
    [58] GOKUL B, LEE J H, SONG K B, et al. Characterization and applications of chitinases from Trichoderma harzianum - A review[J]. Bioprocess Engineering, 2000, 23(6): 691-694.
    [59] VIZCAINO J A, CARDOZA R E, HAUSER M, et al. ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum[J]. Fungal Genetics and Biology, 2006, 43(4): 234-246.
    [60] BERROCAL-TITO G, SAMETZ-BARON L, EICHENBERG K, et al. Rapid blue light regulation of a Trichoderma harzianum photolyase gene[J]. Journal of Biological Chemistry, 1999, 274(20): 14288-14294.
    [61] CARSOLIO C, BENHAMOU N, HARAN S, et al. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism[J]. Applied and Environmental Microbiology, 1999, 65(3): 929-935.
    [62] GALLO A, MULE G, FAVILLA M, et al. Isolation and characterisation of a trichodiene synthase homologous gene in Trichoderma harzianum[J]. Physiological and Molecular Plant Pathology, 2004, 65(1): 11-20.
    [63] VIZCAINO J A, SANZ L, CARDOZA R E, et al. Detection of putative peptide synthetase genes in Trichoderma species: Application of this method to the cloning of a gene from T-harzianum CECT 2413[J]. FEMS Microbiology Letters, 2005, 244(1): 139-148.
    [64] BODO B, REBUFFAT S, ELHAJJI M, et al. Structure of trichorzianine-a Iiic, an antifungal peptide from Trichoderma harzianum[J]. Journal of the American Chemical Society, 1985, 107(21): 6011-6017.
    [65] REBUFFAT S, HLIMI S, PRIGENT Y, et al. Isolation and structural elucidation of the 11-residue peptaibol antibiotic, harzianin HK VI[J]. Journal of the Chemical Society-Perkin Transactions 1, 1996, 2021-2027.
    [66] DUVAL D, REBUFFAT S, GOULARD C, et al. Isolation and sequence analysis of the peptide antibiotics trichorzins PA from Trichoderma harzianum[J]. Journal of the Chemical Society-Perkin Transactions 1, 1997, 2147-2153.
    [67] CUTLER H G, COX R H, CRUMLEY F G, et al. 6-pentyl-alpha-pyrone from Trichoderma harzianum - Its plant-growth inhibitory and antimicrobial properties[J]. Agricultural and Biological Chemistry, 1986, 50(11): 2943-2945.
    [68] GHISALBERTI E L, HOCKLESS D C R, ROWLAND C, et al. Harziandione, a new class of diterpene from Trichoderma-harzianum[J]. Journal of Natural Products, 1992, 55(11): 1690-1694.
    [69] GHISALBERTI E L, ROWLAND C Y. Antifungal metabolites from trichoderma-harzianum[J]. Journal of Natural Products, 1993, 56(10): 1799-1804.
    [70] CORLEY D G, MILLERWIDEMAN M, DURLEY R C. Isolation and structure of harzianum-a - a new trichothecene from Trichoderma-harzianum[J]. Journal of Natural Products, 1994, 57(3): 422-425.
    [71] LEE C, CHUNG M, LEE H, et al. MR-93A, a new oxazole from Trichoderma harzianum KCTC 0114BP[J]. Journal of Natural Products, 1995, 58(10): 1605-1607.
    [72] CUTLER H G, CUTLER S J, ROSS S A, et al. Koninginin G, a new metabolite from Trichoderma aureoviride[J]. Journal of Natural Products, 1999, 62(1): 137-139.
    [73] GARO E, STARKS C M, JENSEN P R, et al. Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens[J]. Journal of Natural Products, 2003, 66(3): 423-426.
    [74] VINALE F, FLEMATTI G, SIVASITHAMPARAM K, et al. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum[J]. Journal of Natural Products, 2009, 72(11): 2032-2035.
    [1] OJIKA M, SHIZURI Y, YAMADA K. A halogenated chamigrane epoxide and 6 related halogen-containing sesquiterpenes from the red alga Laurencia okamurai[J]. Phytochemistry, 1982, 21(9): 2410-2411.
    [2] DENYS R, COLL J C, BOWDEN B F. A new sesquiterpenoid metabolite from the red alga Laurencia marianensis[J]. Australian Journal of Chemistry, 1993, 46(6): 933-937.
    [3] SUZUKI M, FURUSAKI A, KUROSAWA E. The absolute configurations of halogenated chamigrene derivatives from the marine alga, Laurencia glandulifera Kutzing[J]. Tetrahedron, 1979, 35(7): 823-831.
    [4] WRIGHT A D, KONIG G M, STICHER O. New sesquiterpenes and C-15-acetogenins from the marine red alga Laurencia implicata[J]. Journal of Natural Products, 1991, 54(4): 1025-1033.
    [5] MCPHAIL K L, DAVIES-COLEMAN M T, COPLEY R C B, et al. New halogenated sesquiterpenes from South African specimens of the circumtropical sea hare Aplysia dactylomela[J]. Journal of Natural Products, 1999, 62(12): 1618-1623.
    [6] SUZUKI M, SEGAWA M, SUZUKI T, et al. Structures of halogenated chamigrene derivatives, minor constituents from the red alga Laurencia nipponica Yamada[J]. Bulletin of the Chemical Society of Japan, 1983, 56(12): 3824-3826.
    [7] GONZALEZ A G, MARTIN J D, MARTIN V S, et al. C-13 Nmr application to Laurencia polyhalogenated sesquiterpenes[J]. Tetrahedron Letters, 1979, 29): 2719-2722.
    [8] SUZUKI M, KUROSAWA E, FURUSAKI A. The structure and absolute stereochemistry of a halogenated chamigrene derivative from the red alga Laurencia Species[J]. Bulletin of the Chemical Society of Japan, 1988, 61(9): 3371-3373.
    [9] HARROWVEN D C, LUCAS M C, HOWES P D. A diastereoselective radical to polar crossover sequence for the synthesis of the isolaurinterols and aplysins[J]. Tetrahedron Letters, 1999, 40(47): 8271-8272.
    [10] WRIGHT A D, KONIG G M, DENYS R, et al. 7 new metabolites from the marine red alga Laurencia majuscula[J]. Journal of Natural Products, 1993, 56(3): 394-401.
    [11] KLADI M, VAGIAS C, PAPAZAFIRI P, et al. New sesquiterpenes from the red alga Laurencia microcladia[J]. Tetrahedron, 2007, 63(32): 7606-7611.
    [12] APPLETON D R, BABCOCK R C, COPP B R. Novel tryptophan-derived dipeptides and bioactive metabolites from the sea hare Aplysia dactylomela[J]. Tetrahedron, 2001, 57(51): 10181-10189.
    [13] BUSHWELLER J H, ANZALONE L, SPENCER T A. Synthetic of cis- and trans-1-methycyclohexane-1,4-diols and their 4-hemisuccinate esters[J]. Synthetic Communications, 1989, 19(5): 745-754.
    [14] CARTER G T, RINEHART K L, LI L H, et al. Brominated indoles from Laurencia brongniartii[J]. Tetrahedron Letters, 1978, 46): 4479-4482.
    [15] LIU Y B, GRIBBLE G W. Syntheses of polybrominated indoles from the red alga Laurencia brongniartii and the brittle star Ophiocoma erinaceus[J]. Journal of Natural Products, 2002, 65(5): 748-749.
    [16] SUGA T, OHTA S, NAKAI A, et al. Glycinoprenols - novel polyprenols possessing a phytyl residue from the leaves of soybean[J]. Journal of Organic Chemistry, 1989, 54(14): 3390-3393.
    [17] FINDLAY J A, PATIL A D. Antibacterial constituents of the Diatom navicula Delognei[J]. Journal of Natural Products, 1984, 47(5): 815-818.
    [18]钟永利,苏镜娱,曾陇梅, et al.中国南沙群岛卡拉凹顶藻化学成分研究[J].高等学校化学学报, 1996, 17(2): 249–251.
    [19] NOTARO G, PICCIALLI V, SICA D. New steroidal hydroxyketones and closely related diols from the marine sponge Cliona copiosa[J]. Journal of Natural Products, 1992, 55(11): 1588-1594.
    [20]李国强,邓志威,管华诗, et al.中国南海软珊瑚Dendronephthya gigantea中的多羟基甾醇成分[J].中国海洋药物, 2004, 23(1): 1-5.
    [21] LIANG Y, LI X M, CUI C M, et al. A new rearranged chamigrane sesquiterpene from Laurencia okamurai[J]. Chinese Chemical Letters, 2009, 20(2): 190-192.
    [22] SUZUKI M, MATSUO Y, MASUDA M. Structures of laurenenyne-a and laurenenyne-b, novel halogenated acetogenins from a species of the red algal Laurencia[J]. Tetrahedron, 1993, 49(10): 2033-2042.
    [23] OHTANI I, KUSUMI T, KASHMAN Y, et al. High-Field Ft Nmr Application of Mosher Method - the Absolute-Configurations of Marine Terpenoids[J]. Journal of the American Chemical Society, 1991, 113(11): 4092-4096.
    [24] CHANG L C, CHAVEZ D, GILLS J J, et al. Rubiasins A-C, new anthracene derivatives from the roots and stems of Rubia cordifolia[J]. Tetrahedron Letters, 2000, 41(37): 7157-7162.
    [1] KATSUI N, SUZUKI Y, KITAMURA S, et al. 5,6-dibromoprotocatechualdehyde and 2,3-dibromo-4,5-dihydroxybenzyl methyl ether - new dibromophenols from Rhodomela Larix[J]. Tetrahedron, 1967, 23(3): 1185-1187.
    [2] KURATA K, TANIGUCHII K, TAKASHIMA K, et al. Feeding-deterrent bromophenols from Odonthalia corymbifera[J]. Phytochemistry, 1997, 45(3): 485-487.
    [3] BAUGHMAN R G, VIRANT M S, JACOBSON R A. Crystal and molecular-structure of herbicides .4. bromoxynil[J]. Journal of Agricultural and Food Chemistry, 1981, 29(5): 989-991.
    [4] WANG W, OKADA Y, SHI H B, et al. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula[J]. Journal of Natural Products, 2005, 68(4): 620-622.
    [5] DUAN X J, LI X M, WANG B G. Highly brominated mono- and bis-phenols from the marine red alga Symphyocladia latiuscula with radical-scavenging activity[J]. Journal of Natural Products, 2007, 70(7): 1210-1213.
    [6] CHOI J S, PARK H J, JUNG H A, et al. A cyclohexanonyl bromophenol from the red alga Symphyocladia latiuscula[J]. Journal of Natural Products, 2000, 63(12): 1705-1706.
    [7] PARK H J, KUROKAWA M, SHIRAKI K, et al. Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice[J]. Biological & Pharmaceutical Bulletin, 2005, 28(12): 2258-2262.
    [8] KIM J K, NOH J H, LEE S, et al. The first total synthesis of 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) and its antioxidant activity[J]. Bulletin of the Korean Chemical Society, 2002, 23(5): 661-662.
    [9] YUNCHOI H S, KIM J H, LEE J R. Potential inhibitors of platelet-aggregation from plant sources .3.[J]. Journal of Natural Products, 1987, 50(6): 1059-1064.
    [10]周淑梅,马伟杰,肖定军, et al.南海海绵Topsentia sp.化学成分的研究[J].中国海洋药物, 2004, 23(5): 18-20.
    [11]钟永利,苏镜娱,曾陇梅, et al.中国南沙群岛卡拉凹顶藻化学成分研究[J].高等学校化学学报, 1996, 17(2): 249–251.
    [12] NOTARO G, PICCIALLI V, SICA D. New steroidal hydroxyketones and closely related diols from the marine sponge Cliona copiosa[J]. Journal of Natural Products, 1992, 55(11): 1588-1594.
    [13]李国强,邓志威,管华诗, et al.中国南海软珊瑚Dendronephthya gigantea中的多羟基甾醇成分[J].中国海洋药物, 2004, 23(1): 1-5.
    [14] MURTHY V S, KULKARNI V M. Molecular modeling of protein tyrosine phosphatase 1B (PTP 1B) inhibitors[J]. Bioorganic & Medicinal Chemistry, 2002, 10(4): 897-906.
    [15] ALONSO A, SASIN J, BOTTINI N, et al. Protein tyrosine phosphatases in the human genome[J]. Cell, 2004, 117(6): 699-711.
    [16] TAYLOR S D, HILL B. Recent advances in protein tyrosine phosphatase 1B inhibitors[J]. Expert Opinion on Investigational Drugs, 2004, 13(3): 199-214.
    [17] ZHANG W, HONG D, ZHOU Y, et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake[J]. Biochimica Et Biophysica Acta-General Subjects, 2006, 1760(10): 1505-1512.
    [1] CHAVEZ D, ACEVEDO L A, MATA R. Tryptamine derived amides and acetogenins from the seeds of Rollinia mucosa[J]. Journal of Natural Products, 1999, 62(8): 1119-1122.
    [2] CUTLER H G, JACYNO J M, PHILLIPS R S, et al. Cyclonerodiol from a novel source, Trichoderma koningii - plant-growth regulatory activity[J]. Agricultural and Biological Chemistry, 1991, 55(1): 243-244.
    [3]荣国斌.波谱数据表[M].上海;华东理工大学出版社. 2002: 155.
    [4] LALONDE R T, WONG C, TSAI A I M. Polyglucosidic metabolites of oleaceae -chain sequence of oleoside aglucon, tyrosol, and glucose units in 3 metabolites from Fraxinus americana[J]. Journal of the American Chemical Society, 1976, 98(10): 3007-3013.
    [5]周淑梅,马伟杰,肖定军, et al.南海海绵Topsentia sp.化学成分的研究[J].中国海洋药物, 2004, 23(5): 18-20.
    [6] ZIELKE H, SONNENBICHLER J. Natural occurrence of 3,3',4,4'-tetramethoxy-1,1'-biphenyl in leaves of stressed european beech[J]. Naturwissenschaften, 1990, 77(8): 384-385.
    [7] KIRBY G W, RAO G V, ROBINS D J. New co-metabolites ofgliotoxin in Gliocladium virens[J]. Journal of the Chemical Society-Perkin Transactions 1, 1988, 2(1): 301-304.
    [8] USAMI Y, AOKI S, HARA T, et al. New dioxopiperazine metabolites from a Fusarium species separated from a marine alga[J]. Journal of Antibiotics, 2002, 55(7): 655-659.
    [9]刘净,谢韬,魏秀丽, et al.冬凌草化学成分的研究[J].中国天然药物, 2004, 2(5):
    [10] ZHAN Z J, SUN H D, WU H M, et al. Chemical components from the fungus Engleromyces goetzei[J]. Acta Botanica Sinica, 2003, 45(2): 248-252.
    [11] PATTERSO.GW, THOMPSON M J, DUTKY S R. 2 new sterols from Chlorella ellipsoidea[J]. Phytochemistry, 1974, 13(1): 191-194.
    [12]于德泉,杨峻山.分析化学手册第七分册:核磁共振波谱分析[M].北京;化学工业出版社,. 1999: 898.
    [13] CAFIERI F, FATTORUSSO E, GAVAGNIN M, et al. 3-beta,5-alpha,6-beta-trihydroxysterols from the mediterranean bryozoan Myriapora truncata[J]. Journal of Natural Products, 1985, 48(6): 944-947.
    [14] KAWAGISHI H, KATSUMI R, SAZAWA T, et al. Cytotoxic steroids from themushroom Agaricus blazei[J]. Phytochemistry, 1988, 27(9): 2777-2779.
    [15] YUE J M, CHEN S N, LIN Z W, et al. Sterols from the fungus Lactarium volemus[J]. Phytochemistry, 2001, 56(8): 801-806.
    [16] TAKANO D, NAGAMITSU T, UI H, et al. Total synthesis of nafuredin, a selective NADH-fumarate reductase inhibitor[J]. Organic Letters, 2001, 3(15): 2289-2291.
    [17] SUN H H, ERICKSON K L. Sesquiterpenoids from Hawaiian marine alga laurencia nidifica .7. (+)-selin-4,7(11)-diene[J]. Journal of Organic Chemistry, 1978, 43(8): 1613-1614.
    [18] GHISALBERTI E L, HOCKLESS D C R, ROWLAND C, et al. Harziandione, a new class of diterpene from Trichoderma-harzianum[J]. Journal of Natural Products, 1992, 55(11): 1690-1694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700