胡杨响应盐胁迫与离子平衡调控信号网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化影响全世界的农林业生产,并危及生态环境,尤其是生态脆弱的干旱和半干旱地区。深入认识植物特别是典型植物耐盐生理和分子机制,对指导农林作物的抗逆性遗传改良具有重要意义。胡杨是我国西北干旱盐碱的荒漠和戈壁地带惟一能够形成森林的高大乔木树种,是进行木本植物抗逆性研究的典型材料。该树种具有很强的耐盐性,近年来很多国内外学者将胡杨作为耐盐的木本模式植物,从生理、生化和分子生物学等方面对其耐盐机理进行了较为系统的研究。
     盐渍环境下植物能否维持细胞内的K+/Na+平衡对其适应高盐生境至关重要,而K+/Na+平衡是由一系列复杂的信号网络调控的。胁迫信使如钙(Ca2+)、过氧化氢(H202)和一氧化氮(NO)等都参与调控植物细胞的K+/Na+平衡。最近的研究证明,信号分子胞外ATP(eATP)参与植物的生物胁迫响应,但是,在盐胁迫下eATP是否参与调控植物的离子平衡仍然未知。目前,在生理水平上对胡杨K+/Na+平衡的研究仅仅局限在静态的离子积累和区隔化方面,有关K+/Na+平衡调控的信号网络仍不清楚。
     因此,本论文重点研究胡杨响应盐胁迫的信号网络及离子平衡调控机理。在盐胁迫的适应机制方面,以耐盐的胡杨和不耐盐的群众杨水培苗为材料,利用非损伤微测技术(扫描离子选择性微电极技术,SIET)系统研究了NaCl胁迫下根组织和根细胞离子流(Na+、H+和K+)的动态变化,从动态离子转运的角度揭示了相关离子转运体和通道在胡杨根细胞K+/Na+平衡调控中的作用。在盐胁迫响应方面,(1)以胡杨和群众杨愈伤细胞为材料,利用能谱分析技术(EDAX)和激光共聚焦显微镜技术(Confocal)研究了盐诱导NO和H202在不同杨树细胞耐盐性中的作用;(2)以耐盐的胡杨愈伤细胞为模式系统,利用SIET、Confocal和EDAX等技术手段,并结合系统的药理学实验,探讨了胡杨细胞响应盐胁迫离子效应和渗透效应的信号网络:在离子胁迫响应方面,解析了PM H+-偶联转运体、H202和Ca2+信号在K+/Na+平衡调控中的作用,建立了胡杨细胞响应离子胁迫及K+/Na+平衡调控的信号途径;在渗透胁迫响应方面,发现eATP也参与调控胡杨细胞在盐胁迫下的K+/Na+平衡及抗氧化防御,同时发现胞外高浓度ATP能够诱导胡杨细胞主动程序化死亡(PCD),并提出了eATP诱导PCD的信号途径。本论文建立了胡杨响应NaCl胁迫及防御反应调控的信号网络。主要研究结果如下:
     1.EDAX结果显示,在长期盐胁迫(50 mmol/L NaCl,3周)下胡杨根细胞比群众杨能够更有效地维持K+水平,并且能够限制Na+的积累。动态离子流的结果进一步证明了胡杨根细胞的K+/Na+平衡能力。SIET数据显示,胡杨根在瞬时和长期盐处理下K+外流都较群众杨弱。利用K+通道抑制剂TEA处理两种杨树根系,发现瞬时盐诱导的K+外流受到抑制,而质膜H+-ATPase抑制剂钒酸钠(Vanadate)却促进了盐诱导的K+外流,这表明杨树在盐胁迫下的根系K+外流是由去极化激活的外向K+通道(DA-KORCs)和非选择性阳离子通道(NSCCs)介导的。胡杨根系在长期盐胁迫下外排Na+能力强于群众杨,这源于其较强的质膜Na+/H+逆向运输活性。与群众杨相比,胡杨根尖能够迅速响应盐胁迫,H+外流迅速增强,表明胡杨根尖细胞PM质子泵被NaCl激活:质子泵一方面提供质子动力势来驱动质膜Na+/H+逆向运输;另一方面,降低NaCl诱导的质膜去极化程度,在减少Na+经由NSCCs内流的同时阻止了K+通过去极化激活K+通道的流失。此外,还从K+/Na+离子平衡调控的角度阐明了钙离子提高树木耐盐性的机理。两种杨树在外源Ca2+(10 mmol/L)处理下K+/Na+平衡能力都有所提高,而Ca2+对盐敏感杨树的效果更加明显。实验结果说明,Ca2+离子上调了根细胞质膜的质子泵活性:这不仅能驱动跨膜的Na+/H+逆向转运,同时还能够降低盐处理细胞质膜的去极化程度,限制了经由DA-KORCs和DA-NSCCs的外向K+流,有利于维持胞内的K+/Na+平衡。
     2.在根细胞Na+外排方面,实验结果显示,无论是在短期(50 mmol/L NaCl,24h)还是长期盐胁迫(100 mmol/L NaCl,15天)下,胡杨根尖(0-3000μm)Na+外流和H+内流都显著高于盐敏感的群众杨。从长期盐处理的胡杨和群众杨根系游离出的原生质体也呈现同样的现象,而且,盐处理胡杨根原生质体Na+和H+的逆向流动在酸性环境下(pH 5.5)最为显著。利用质膜H+-ATPase抑制剂(钒酸钠)和Na+/H+逆向转运蛋白抑制剂阿米洛利(Amiloride)处理胡杨根尖和原生质体,发现二者均能同时抑制NaCl诱导的Na+外流和H+内流。这些结果证明了盐胁迫下胡杨根细胞的Na+外排是源于其质膜的Na+/H+逆向运输。与之比较,盐处理群众杨根尖和原生质体细胞的Na+/H+逆向运输能力极弱。实验结果还显示,NaCl所诱导的胡杨根细胞的离子转运具有离子特异性,且有别于渗透效应诱导的离子流。
     3.比较研究了不同耐盐性杨树细胞对盐胁迫初始响应的差异。从胡杨和群众杨茎尖幼嫩组织诱导出愈伤细胞,对其进行NaCl处理,根据细胞活力、电解质外渗率和K+/Na+积累等生理指标判断,胡杨细胞的耐盐性显著强于群众杨,进而又探讨了NO和H202在NaCl胁迫下的产生模式及其与细胞耐盐性的关系。NaCl(150mmol/L)处理能迅速且大幅度地提高胡杨细胞H202和NO的水平,相反,群众杨细胞在初始盐胁迫下则无此响应,只是在胁迫后期H202水平才有所增加。胡杨细胞的抗氧化酶活性(抗坏血酸过氧化物酶/APX,超氧化物岐化酶/SOD,过氧化氢酶/CAT,谷胱甘肽还原酶/GR)在盐胁迫下显著提高,而群众杨细胞抗氧化酶活性却显著下降。在药理学实验中,当盐诱导的H202和NO受到抑制时,胡杨细胞的K+/Na+平衡调控能力和抗氧化酶活性也显著降低。实验结果证明盐诱导产生的NO和H202对胡杨细胞的K+/Na+平衡和抗氧化防御具有正向调控作用。
     4.论文探讨了胡杨细胞对离子胁迫的响应机制。采用耐盐的胡杨愈伤细胞,研究了NaCl诱导的H2O2和Ca2+信号在K+/Na+平衡调控中的作用。SIET结果显示,NaCl处理后胡杨细胞呈现出较强的Na+/H+逆向转运活性,同时,盐胁迫也造成细胞质膜去极化和K+外流。当盐诱导产生的H202被抑制时,胡杨细胞的N+/H+逆向转运速率下降而K+的外流却明显增强。对于第二信使Ca2+,NaCl能够迅速诱导胞外Ca2+内流并使细胞质内自由Ca2+浓度增加。药理学实验证明,NaCl诱导的Ca2+信号参与了H202对胡杨细胞K+/Na+平衡的调控。NaCl、Cl-(choline Cl)、Na+(Na2SO4)等离子能够诱发H+的迅速内流,我们推断H+内流对胁迫信使的产生具有重要作用,这是由于钒酸钠(质膜H+-ATPase的抑制剂)和阿米洛利(Amiloride)(Na+/H+逆向转运蛋白的抑制剂)在抑制盐诱导H+内流的同时也限制了H202和Ca2+信号的产生,并且,盐处理胡杨细胞的K+/Na+平衡也不能维持。根据上述结果,我们推测胡杨细胞质膜H+偶联的转运蛋白能够响应离子胁迫而造成H+内流,H+内流导致了pH变化,从而激发了下游H202和Ca2+信号的产生,质膜质子泵和Na+/H+逆向转运蛋白随之被进一步激活,细胞内K+/Na+平衡得以维持。
     5.研究了胡杨细胞对盐胁迫渗透效应的响应机制,建立了胡杨的eATP信号途径。eATP在动物系统中被证明是一种作用广泛的生理调节信号分子。在植物系统中,eATP已被证实能够调控植物生长、发育和生物胁迫响应,但对其在植物细胞盐胁迫响应过程中的作用属于未知。我们对胡杨细胞进行渗透胁迫处理,发现NaCl和等渗甘露醇处理都能够提高细胞外基质中的ATP浓度([eATP]),但[eATP]在20 min后即恢复至对照水平。己糖激酶和葡萄糖系统(H-G system)能够消耗胞外的ATP,因而阻止了NaCl和甘露醇诱导的eATP水平的增加。药理学的实验结果表明,eATP在调控胡杨细胞耐盐性方面具有重要作用:(1)动物细胞质膜P2受体的拮抗剂(suramin)和H-G system显著降低了胡杨细胞在NaCl胁迫(200 mmol/L 24h)和渗透胁迫(340mmol/L甘露醇24h)下的细胞活力,并显著增强了H202的积累;(2)在盐胁迫下,suramin和H-G system处理还明显提高了Na+在胡杨细胞质中的浓度,同时降低了Na+在液泡中的积累;(3)抑制剂处理的胡杨细胞在盐处理后,质膜去极化程度加剧,且K+外流幅度也有所增强。实验还发现,在渗透胁迫(NaCl和甘露醇)下,P2受体的拮抗剂和H-G system虽然明显限制了H202和Ca2+信使的产生,却没有改变H+的跨膜运输。所以,我们的实验结果表明,细胞内ATP向胞外释放是由NaCl的渗透效应导致,而非离子效应,eATP经质膜P2受体感知后,激发下游H202和Ca2+信号的产生,从而进一步调控K+、Na+转运体和抗氧化防御,使盐处理细胞的K+/Na+平衡和活性氧平衡得以维持。
     6.研究了eATP诱导胡杨细胞程序化死亡(PCD)的生理机制。作为信号信使,eATP在胡杨响应初始盐胁迫过程中至关重要。但我们发现,NaCl诱导的eATP水平升高仅仅维持了20min。在动物中,高水平的eATP能够诱发PCD。因此,我们认为持续高水平的eATP可能会对胡杨细胞的生理状态产生负面影响。我们的研究发现,高浓度eATP(0.5-2.0 mmol/L)促进了胡杨细胞的凋亡,且凋亡率依赖于ATP处理的浓度和时间。特别是发现凋亡细胞呈现出PCD的标志性事件,如细胞质收缩、染色质浓缩、DNA片段化等。通过药理学实验,我们发现eATP诱导的PCD主要包括了一系列信号事件:如质膜嘌呤受体的激活、胞外Ca2+内流、液泡Ca2+释放、线粒体Ca2+吸收、线粒体H202爆发、线粒体超级化等,而诱发PCD的重要因素,如细胞色素c释放、内源ATP含量的增加和类凋亡酶活性的提高都依赖于上述信号事件。值得注意的是,eATP处理明显增加了内源ATP的含量和类凋亡酶活性,还促进了不依赖于mPTP(线粒体膜转换孔)的细胞色素c释放。研究还发现,eATP处理能够显著增强细胞内源的NO水平,但NO为冗余信号,并不参与eATP-PCD过程。综上,我们提出了eATP诱导胡杨细胞发生PCD的信号途径。
     总之,实验结果进一步证实,胡杨细胞和组织具有很强的K+/Na+平衡调控能力。其中,Na+平衡的维持在很大程度上源自排Na+能力,这种排盐能力依赖于胡杨质膜较强的质子泵和Na+/H+逆向运输活性。胡杨根细胞的这种排盐能力使Na+在根中的径向运输和根冠纵向运输下降。胡杨细胞K+平衡的维持也与其较强的质膜质子泵活性有关,胡杨质膜H+-ATPase能在盐胁迫下降低质膜的去极化程度,减少了K+通过去极化激活K+通道的流失。在细胞对盐胁迫的响应上,发现eATP和质膜H+偶联转运体分别感知渗透胁迫效应和离子胁迫效应,通过各自的信号转导途径激活下游H2O2和Ca2+信号, H2O2和Ca2+进一步调控质膜或液泡膜K+、Na+相关转运体或通道来维持合适的K+/Na+平衡。在长期胁迫下,由于胞外三磷酸核苷酸水解酶(Apyrase)的水解作用,胡杨能维持eATP在合理水平,从而避免了PCD的发生,使胡杨细胞能适应长期盐胁迫环境。
Soil salinity causes increasingly agricultural and environmental problems on a worldwide scale, especially in arid areas. Understanding physiological and molecular mechanisms of salt tolerance is important for the improvement of plant productivity under salinity conditions. Populus euphratica Oliv. (P. euphratica) is a valuable tree species used for afforestation on saline and alkaline desert sits, and plays very important roles in stabilizing sand dunes, and in agriculture shelter belt construction in north-west China. P. euphratica has a higher capacity to tolerate salinity, and in recent years it has been widely considered as a model woody plant to address tree-specific questions—especially physiological, biochemical and molecular mechanisms in salt tolerance.
     Maintenance of intracellular K+/Na+ homeostasis is crucial for plants to adapt to saline environments. The regulation of K+/Na+ homeostasis is complicated by a complex signaling network. For instance, numerous signaling molecules, such as Ca2+, hydrogen peroxide (H2O2) and nitric oxide (NO), play a regulating role in K+/Na+ homeostasis in model plants. Recently, a novel signaling molecule, extracellular ATP (eATP), has been reported to be involved in the responses of plant cells to biotic stress. However, the roles of eATP in mediating plant salt tolerance and K+/Na+ homeostasis are largely unknown. At present, many investigations related to steady ion relations always focus on salt accumulation and cellular ion compartmentation, however, the signaling network in the mediation of K+/Na+homeostasis in P. euphratica is still unclear.
     In this study, we attempt to elucidate the signaling network in the perception of salt stress and K+/Na+ homeostasis regulation in P. euphratica. Using hydroponic seedlings of salt-resistant P. euphratica and salt-sensitive P. popularis 35-44 (P. popularis), we investigated the NaCl-induced alterations of cellular and tissue ion fluxes in roots (Na+, H+ and K+) by means of scanning ion-selective micro-electrode technique (SIET). We explored the contributions of plasma membrane (PM) H+-coupled transporters and channels to the K+/Na+ homeostasis mediation in P. euphratica. Callus cells were initiated from P. euphratica and P. popularis shoots and used to address the perception of poplar to salt stress. The contributions of H2O2 and NO to K+/Na+ homeostasis and antioxidant defense were elucidated in the two contrasting poplars by means of EDAX (energy dispersive X-ray analysis) and Confocal laser scanning microscopy. Using EDAX, confocal and SIET, we designed a variety of pharmacological experiments to clarify the differential response of P. euphratica to osmotic and ion-specific effects of NaCl. We confirmed the involvement of PM H+-coupled transporters, H2O2 and Ca2+ in the mediation of K+/Na+ homeostasis in P. euphratica cells, and a cellular signaling model upon ion specific effect was proposed. The role of salt-induced eATP (extracellular ATP) signaling in K+/Na+ homeostasis control and antioxidant defence were also explored in NaCl-stressed P. euphratica cells. Finally, we found that an excess eATP induced PCD (programmed cell death) in P. euphratica cells and a signaling pathway of eATP-PCD was proposed. Taken together, we proposed a signaling network to elucidate the perception and defense when P. euphratica cells were subjected to NaCl salinity.
     The main experimental results and conclusions are as follows:
     1. Compared to P. popularis, P. euphratica roots exhibited a greater capacity to retain K+ and to restrict Na+ accumulation after exposure to a long-term (LT) salinity (50 mM NaCl,3 weeks) by means of EDAX and ion-flux measurements. Our SIET data show that P. euphratica roots retained a lesser K+ efflux under both a short-and long-term of salt stress, as compared to P. popularis. Salt shock (SS)-induced K+ efflux in the two species was markedly restricted by K+ channels blocker, TEA (tetraethylammonium chloride), but enhanced by sodium orthovanadate, the inhibitor of plasma membrane (PM) H+-ATPase, suggesting that the K+ efflux is mediated by depolarization-activated channels, e.g. KORCs (outwarding rectifying K+ channels), and NSCCs (non-selective cation channels). P. euphratica roots were more effectively to exclude Na+ than P. popularis in a LT experiment, resulting from the Na+/H+ antiport across the PM. Moreover, pharmacological evidence implies that the greater ability to control K+/Na+ homeostasis in salinised P. euphratica roots is associated with the higher H+ pumping activity, which provides an electrochemical H+ gradient for Na+/H+ exchange, and simultaneously decreases the NaCl-induced depolarization of PM, thus reducing Na+ influx via NSCCs and K+ efflux through DA-KORCs and DA-NSCCs. Exogenously applied Ca2+ was favorable for poplar roots to maintain K+/Na+ homeostasis and the effect was more pronounced in the salt-sensitive species. Ca2+ application markedly limited salt-induced K+ efflux but enhanced the apparent Na+ efflux, thus enables the two species, especially the salt-sensitive poplar, to retain K+/Na+ homeostasis in roots exposed to prolonged NaCl treatment.
     2. Compared to P. popularis, P. euphratica roots (0-3000μm from the apex) exhibited a higher capacity to extrude Na+ after a short-term exposure to 50mM NaCl (24h) and a long term in a saline environment of 100mM NaCl(15 d). Root protoplasts, isolated from the long-term-stressed P. euphratica roots, had an enhanced Na+ efflux and a correspondingly increased H+ influx, especially at an acidic pH of 5.5. However, the NaCl-induced Na+/H+ exchange in root tissues and cells was inhibited by amiloride (a Na+/H+ antiporter inhibitor) or sodium orthovanadate (a plasma membrane H+ -ATPase inhibitor). These results indicate that the Na+ extrusion in stressed P. euphratica roots is the result of an active Na+/H+ antiport across the plasma membrane. In comparison, the Na+/H+ antiport system in salt-stressed P. popularis roots was insufficient to exclude Na+ at both the tissue and cellular levels. The pattern of NaCl-induced fluxes of H+ and Na+ differs from that caused by isomotic mannitol in P. euphratica roots, suggesting that NaCl-induced alternations of root ion fluxes are mainly the result of ion-specific effects.
     3. We found the species difference in the cellular response to NaCl treatment. Using callus cells of a salt-tolerant P. euphratica and a salt-sensitive P. popularis, the effects of NaCl stress on hydrogen peroxide (H2O2) and nitric oxide (NO) production and the relevance to ionic homeostasis and antioxidant defense were investigated. Results show that P. euphratica exhibited a greater capacity to tolerate NaCl stress in terms of cell viability, membrane permeability and K+/Na+ relations. NaCl salinity (150mM) caused a rapid increase of H2O2 and NO in P. euphratica cells. Moreover, salinised P. euphratica cells retained a high and stable level of H2O2 and NO during the period of 24-h salt stress. However, there were no evident increase of H2O2 and NO in P. popularis after the onset of salinity and an increase of H2O2 was only seen after a prolonged period of salt treatment. Noteworthy, P. eupratica cells increased activities of superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase under salinity stress, but these antioxidant enzymes were significantly inhibited by the salt treatment in P. popularis cells. Pharmacological experiments proved that the NaCl-induced H2O2 and NO was interdependent and contributed to the mediation of K+/Na+ homeostasis and antioxidant defense in P. euphratica cells. Given these results, we conclude that the increased H2O2 and NO enable P. euphratica cells to regulate ionic and ROS (reactive oxygen species) homeostasis under salinity stress in the longer term.
     4. With regard to the cellular response to ion-specific effects, we investigated the signalling of H2O2, cytosolic Ca2+([Ca2+]cyt) and the PM H+-coupled transport system in K+/Na+ homeostasis control in NaCl-stressed calluses of P. euphratica. SIET data showed an obvious Na+/H+ antiport in salinized cells; Meanwhile, NaCl stress caused a net K+ efflux, because of the salt-induced membrane depolarization. H2O2 levels, upwards regulated by salinity, contributed to ionic homeostasis, because H2O2 restrictions by DPI or DMTU caused an enhanced K+ efflux and decreased Na+/H+ antiport activity. NaCl induced a net Ca2+ influx and a subsequent rise of free Ca2+ in the cytosol ([Ca2+]cyt), which is involved in H2O2-mediated K+/Na+ homeostasis in salinized P. euphratica cells. NaCl, Cl- (choline Cl) and Na+(Na2SO4) caused a net H+ influx, which was presumably able to trigger the production of stress signals. When callus cells were pretreated with inhibitors of the Na+/H+ antiport system, the NaCl-induced elevation of H2O2 and [Ca+]cyt was correspondingly restricted, leading to a greater K+ efflux and a more pronounced reduction in Na+/H+ antiport activity. Results suggest that the PM H+-coupled transport system mediated H+ translocation upon salt treatment and brought about an alternation of pH. The pH variation triggers the stress signalling of H2O2 and Ca2+, which results in a K+/Na+ homeostasis via mediations of K+ channels and the Na+/H+ antiport system in the PM of NaCl-stressed cells. Accordingly, a signalling pathway in the response of P. euphratica cells to ion-specific effects is proposed.
     5. We investigated the cellular response to osmotic effects and an extracellular ATP (eATP) signaling pathway was established in P. euphratica. It is well known that eATP plays a versatile signaling role in animals, and now emerging evidence shows that it regulates higher plant growth, development and biotic responses. Whether eATP is involved in plant salinity sensing and adaptation is still unknown. Thus, using callus cells of P. euphratica, we attempt to clarify this issue in the present study. NaCl (200 mM) and iso-osmotic mannitol induced a rapid increase of ATP level in extracellular medium within 20 minutes. Hexokinase and glucose system (H-G system) could hydrolysis ATP rapidly and thus blocked the salt-and mannitol-induced elevation of eATP. Pharmacological studies show that eATP plays a regulating role the salt resistance of P. euphratica. Application of antagonists of animal PM P2 receptors and H-G system significantly decreased the cell viability in stressed P. euphratica cells, but enhanced H2O2 accumulation after exposure of 24 h. Under salt stress conditions, the treatment of suramin (P2 receptor antagonist) and H-G system increased Na+ accumulation in the cytoplasma but decreased Na+ compartmentation in the vacuole. Meanwhile, the inhibitors of eATP (suramin, H-G system) enhanced K+ efflux and PM depolarization in salt-stressed P. euphratica cells. After the application of antagonist of animal PM P2 receptors and H-G system, the early responses of H2O2 and Ca2+ induced by NaCl and mannitol were impaired, whereas there were no corresponding changes in H+ fluxes. Therefore, our results suggests that NaCl (osmotic effect) induced a release of endogenous ATP, which is perceive by purinoceptors in the PM, leading to the induction of downstream signals, e.g. H2O2 and cytosolic Ca2+, that are required for the regulation of K+ and Na+ transporters and antioxidant defence. Consequently, K+/Na+ and ROS homeostasis of P. euphratica were maintained during a prolonged period of salt stress.
     6. The physiological mechanism of PCD that induced by eATP was explored.. It has shown that eATP plays a crucial role in mediating the salinity tolerance of P. euphratica cells. However, the NaCl-induced eATP was a transient response and eATP returned to pretreatment levels after 20 min of salt and mannitol treatment. We suppose that eATP may exert adverse effects on the woody species since an excessive eATP induces PCD in animal cells. In our study, exogenously applied ATP (high dose,0.5 to 2 mM) resulted in a dose- and time-dependent reduction of viability and the agonist-treated cells displayed hallmark features indicative of PCD, such as cytoplasmic shrinkage, chromatin condensation and DNA fragmentation. A sequence of events accounting for ATP-induced PCD is proposed as evidenced using a variety of pharmacological agents. Extracellular ATP (eATP) caused an elevation of Ca2+ in the cytosol ([Ca2+]cyt), resulting from a transient influx of Ca2+ across the plasma membrane (PM) and a subsequent release of Ca2+ from the vacuole. The long-term sustained [Ca2+]cyt resulted in an evident Ca2+ uptake in the mitochondria, leading to a H2O2 accumulation therein. Noteworthy is that P. euphratica exhibited an increased mitochondrial transmembrane potential (△Ψm) and the release of cytochrome c took place without the opening of permeability transition pore over the period of ATP stimulation. Moreover, the eATP-induced increase of intracellular ATP, which is essential for the activation of caspase-like proteases and the subsequent PCD execution, was found to be correlated with the increased△Ψm. NO is implicated as a downstream component of [Ca2+]cyt but plays a negligible role in eATP-stimulated cell death. We speculate that ATP is assumed to bind P2-like receptors in the PM, leading to the induction of downstream intermediate signals because the proposed sequence of events in PCD signaling chain were terminated by an animal P2 receptor antagonist suramin.
     In conclusion, at tissue and cellular levels, our data confirmed that the salt tolerance of P. euphratica is partly due to its strong ability on K+/Na+ homeostasis control. The Na+ extrusion is mainly ascribed to the strong activity of PM Na+/H+ antiport system (PM H+-ATPase and Na+/H+ antiporter) and thus, P. euphratica could restrict the radial transport of Na+ and decrease the accumulation of Na+ in the shoots and leaves. The maintenance of K+ homeostasis is mainly due to the higher activity of PM H+-ATPase, which decreased the magnitude of PM depolarization and consequently reduced the K+ loss through depolarization-activated K+ channels. At cellular level, the putative PM ATP receptors and H+-coupled ion transporters could sense osmotic and ionic effects of NaCl, respectively, and then independently activates H2O2 and Ca2+ signaling pathways. H2O2 and Ca2+ contribute to the up-regulation of K+- and Na+-related antiport system and ion channels in the PM and tonoplast, leading to a K+/Na+ homeostasis in salinised cells. In P. euphratica cells, the NaCl-induced release of ATP was hydrolysed by ecto-apyrase and the occurrence of eATP-induced PCD was avoided during a prolonged salt treatment. Finally, P. euphratica cells could survive the saline conditions under a long-term of salt stress.
引文
1. 戴松香,陈少良,Fritz E. Olbrich A, Kettner C, Polle A and Huttermann A.盐胁迫下胡杨和毛白杨叶细胞中的离子区隔化[J]。北京林业大学学报,2006.28(增刊2):1-5.
    2. 谷瑞升,蒋湘宁,郭仲琛.胡杨离体器官发生及试管无性系的建立[J].植物学报.1999,41(1):29-33.
    3. 刘群录,王沙生和蒋湘宁.胡杨耐盐生理机制及分子基础研究[M].中国环境科学出版社.2002,北京
    4. 马焕成,王沙生.盐胁迫下胡杨的离子响应[J].西南林学院学报,1998,18(1):42-47
    5. 王世绩,陈炳浩,李护群.胡杨林[M],北京:中国环境科学出版社,1995.
    6. 魏庆莒.胡杨[M],中国林业出版社,1990.
    7. 武维华.植物生理学[M].科学出版社.2003
    8. 印莉萍,上官宇,许越.非损伤性扫描离子选择电极技术及其在高等植物研究中的应用[J].自然科学进展.2006,16(3):262-266.
    9. 张望东,张绮纹.群众杨悬浮细胞系的建立和耐盐体细胞变异体的初步筛选[J].林业科学.1994,30(5):412-418.
    10. Aebi H. Catalase in vitro. Methods Enzymol [J].1984,105:121-126.
    11. Allen GJ, Muir SR, Sanders D. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose [J]. Science.1995,268:735-737.
    12. Apse MP and Blumwald E. Na+ transport in plants [J]. FEBS Lett.2007,581:2247-2254.
    13. Apse MP, Aharon GS, SneddenWA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J]. Science.1999,285:1256-1258.
    14. Arshi A, Abdin MZ and Iqbal M. Ameliorative effects of CaCl2 on growth, ionic relations, and praline content of senna under salinity stress [J]. J. Plant Nutr.2005,28:101-125.
    15. Ayala F, O'Leary JW, Schumaker KS. Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr. in response to NaCl. [J] J Exp Bot.1996,47:25-32.
    16. Ballesterous E, Blumwald E, Donaire J P, et al. Na+/H+ antiport activity in tonoplast vesicles isolated from sunflowers roots induced by NaCl stress [J]. Physiol Plant.1997,99:328-334.
    17. Barrero-Gil J, Rodriguez-Navarro A, Benito B. Cloning of the PpNhaDl transporter of Physcomitrella patens, a chloroplast transporter highly conserved in photosynthetic eukaryotic organisms [J]. J Exp Bot.2007,58:2839-2849.
    18. Batelli G, Verslues PE, Agius F, et al. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity [J]. Mol cell Biol.2007, 27:7781-7790.
    19. Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers [J]. Plant Physiol.2002,129: 1642-1650.
    20. Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants [J]. Annu Rev Plant Biol.2008,59:21-39.
    21. Blume B, Niirnberger T, Nass N, Scheel D. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell.2000,12: 1425-1440.
    22. Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells [J]. Biochim Biophys Acta.2000,1465:140-151.
    23. Bonneau L, Ge Y, Drury GE, Gallois P. What happened to plant caspases?[J] J Exp Bot.2008, 59:491-499.
    24. Bown AW, Nicholls F. An investigation into the role of photosynthesis in regulating ATP levels and rates of H+ effluxes in isolated mesophyll cells [J]. Plant Physiol.1985, 79:928-934.
    25. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem.1976,72:248-254.
    26. Brookes PS, Yoon Y, Robotham JL, Anders MW, and Sheu SS. Calcium, ATP, and ROS:a mitochondrial love-hate triangle [J]. Am J Physiol Cell Physiol.2004,287:C817-C833.
    27. Bulanova E, Budagian V, Orinska Z, Hein M, Petersen F, Thon L, Adam D, Bulfone-Paus S. Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells [J]. J Immunology.2005,174:3880-3890.
    28. Caines AM and Shennan C. Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differing in Ca2+ use effciency [J]. Plant Physiol Biochem.1999, 37:569-576.
    29. Chen CX. PeNhaD1 gene transformation and salt resistance of transgenic Populus tomentosa [M]. Ph.D. Thesis.2007. Beijing Forestry University, Beijing, People's Republic of China (in Chinese).
    30. Chen J, Xiao Q, Wu FH, et al. Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avivennia marina, through increasing the expression of H+ -ATPase and Na+/H+ antiporter under high sanility [J]. Tree Physiol.2010,30:1570-1585.
    31. Chen S, Fritz, E, Wang S, Huttermann A, Liu Q and Jiang X. Cellular distribution of ions in salt-stressed cells of Populus euphratica and P. tomentosa [J]. For Studies China.2000,2(2): 8-16.
    32. Chen S, Li J, Wang S, Huttermann A, Altman A. Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl [J]. Trees.2001,15: 186-194.
    33. Chen S, Li J, Fritz E, Wang S, Huttermann A. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress [J]. For Ecol Manage.2002a, 168:217-230.
    34. Chen S, Li J, Wang T, Wang S, Polle A, Huttermann A. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar [J]. J Plant Growth Regul.2002b,21:224-233.
    35. Chen SL, Li JK, Yin WL, Wang SS, Fritz E, Polle A and Huttermann A. Tissue and cellular K+,Ca2+and Mg2+ of poplar under saline conditions [J]. J Beijing For Univ.2002c,24:84-88 (in Chinese with English abstract).
    36. Chen S, Li J, Wang S, Fritz E, Huttermann A, Altman A. Effects of NaCl on shoot growth, transpiration, ion compartmentation and transport in regenerated plants of Populus euphratica and Populus. tomentosa [J]. Can J For Res.2003a,33:967-975.
    37. Chen S, Bai G, Liu X, Li J, Wang S, Polle A, Huttermann A. Genotypic variation in nutrient selectivity in Populus under NaCl stress [J]. For Studies China.2003b,5(1):1-7.
    38. Chen S, Polle A. Salinity tolerance of Populus [J]. Plant Biol.2010,12:317-333.
    39. Chen Z, Newman I, Zhou M, et al. Screening plants for salt tolerance by measuring K+ flux: a case study for barley [J]. Plant Cell Environ.2005,28:1230-1246.
    40. Chen Z, Pottosin Ⅱ, Cuin TA, et al. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley [J]. Plant Physiol.2007,145:1714-1725.
    41. Chichkova NV, Kim SH, Titova ES, et al. A plant caspase-like protease activated during the hypersensitive response [J]. Plant Cell.2004,16:157-171.
    42. Chivasa S, Ndimba B, Simon W, Lindsey K, Slabas A. Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability [J]. Plant Cell.2005,17: 3019-3034.
    43. Chivasa S, Murphy AM, Hamilton JM, Lindsey K, Carr JP, Slabas AR. Extracellular ATP is a regulator of pathogen defence in plants [J]. Plant J.2009a,60:436-448.
    44. Chivasa S, Tome DFA, Murphy AM, et al. Extracellular ATP:A modulator of cell death and pathogen defense in plants [J]. Plant Signal Behav.2009b,4:1078-1080.
    45. Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H. Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis [J]. Plant J.2008,53:554-565.
    46. Clark G and Roux SJ. Extracellular nucleotides:ancient signaling molecules [J]. Plant Sci. 2009,177:239-244.
    47. Clark G, Torres J, Finlayson S, et al. Apyrase (NTPDase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules [J]. Plant Physiol.2010,152:1073-1083.
    48. Collins TJ, Lipp P, Berridge MJ, Bootman MD. Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals [J]. J Biol Chem.2001,276: 26411-26420.
    49. Cosentino C, Fischer-Schliebs E, Bertl A, Thiel G, Homann U. Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum [J]. New Phytol.2010,186:669-680.
    50. Cuin TA, Miller AJ, Laurie SA, Leigh RA. Potassium activities in cell compartments of salt-grown barley leaves [J]. J Exp Bot.2003,54:657-661.
    51. Cuin T A, Shabala S. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots [J]. Plant Cell Physiol.2005,46(12): 1924-1933.
    52. Cuin T A, Shabala S. Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots [J]. Plant Cell Environ.2007,30:875-885.
    53. Cuin TA, Betts SA, Chalmandrier R and Shabala S. A root's ability to retain K+ correlates with salt tolerance in wheat [J]. J Exp Bot.2008,59:2697-2706.
    54. Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco [J]. Plant J.2003,33:621-632.
    55. Davenport RJ, Tester M. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat [J]. Plant Physiol.2000,122:823-834.
    56. De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, di Toppi LS, Lo Schiavo F. Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures [J]. Plant Physiol.2009,150:217-228.
    57. Demidchik V, Tester M. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots [J]. Plant Physiol.2002,128:379-387.
    58. Demidchik V, Davenport RJ and Tester M. Nonselective cation channels in plants [J]. Annu. Rev. Plant Biol.2002,53:67-107.
    59. Demidchik V, Nichols C, Oliynyk M, Dark A, Glover BJ, Davies JM. Is ATP a signaling agent in plants? [J]. Plant Physiol.2003,133:456-461.
    60. Demidchik V, Maathuis FJM. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development [J]. New Phytol.2007,175:387-404.
    61. Demidchik V, Shabala S, Davies J. Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels [J]. Plant J.2007,49: 377-386.
    62. Demidchik V, Shang Z, Shin R, et al. Plant extracellular ATP signalling by plasma membrane NADPH oxidaseand Ca2+ channels [J]. Plant J.2009,58:903-913.
    63. Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals:single-channel properties, genetic basis and involvement in stress-induced cell death [J]. J Cell Sci.2010, 123:1468-1479.
    64. Ding M, Hou P, Shen X, et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species [J]. Plant Mol Biol. 2010,73:251-269.
    65. Dodd AN, Kudla J, Sanders D. The Language of Calcium Signaling [J]. Annu Rev Plant Biol. 2010,61:593-620.
    66. Escalante-Perez M, Lautner S, Nehls U et al. Salt stress affects xylem differentiation of grey poplar (Populus - canescens) [J]. Planta.2009,229:299-309.
    67. FelleH, Waller F, MolitorA and Kogel KH. Themycorrhiza fungus Piriformospora indica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection [J]. Mol Plant Microbe Interact.2009,22:1179-1185.
    68. Foreman J, Demidchik V, Bothwell JH, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth [J]. Nature.2003,422:442-446.
    69. Foresi NP, Laxalt AM, Tonon CV, Casalongue CA, Lamattina L. Extracellular ATP induces nitric oxide production in tomato cell suspensions [J]. Plant Physiol.2007,145:589-592.
    70. Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses [J]. Plant Cell.2005,17:1866-1875.
    71. Fraile-Escanciano A, Kamisugi Y, Cuming AC, Rodriguez-Navarro A and Benito B. The SOS1 transporter of Physcomitrella patens mediates sodium efflux in planta [J]. New Phytol. 2010,188:750-761.
    72. Fuglsang AT, Guo Y, Cuin TA, et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein [J]. Plant Cell,2007,19: 1617-1634.
    73. Fukuda A, Nakamura A, Tagiri A, et al. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+antiporter from rice [J]. Plant Cell Physiol. 2004,45:146-159.
    74. Gaymard F, Pilot G, Lacombe B, et al. Identification and disruption of a plant shaker-likeoutward channel involved in K+ release into the xylem sap [J]. Cell.1998,94: 647-655.
    75. Gevaudant F, Duby G, Stedingk EV, Zhao R, Morsomme P, Boutry M. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance [J]. Plant Physiol.2007,144:1763-1776.
    76. Gong D, Guo Y, Schumaker KS and Zhu JK. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis [J]. Plant Physiol.2004,134:919-926.
    77. Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death [J]. Plant J.2000,23:441-450.
    78. Green DR, Reed JC. Mitochondria and apoptosis [J]. Science.1998,281:1309-1312.
    79. Green DR. Apoptotic pathways:The roads to ruin [J]. Cell.1998,94:695-698.
    80. Greenberg JT. Programmed cell death:A way of life for plants [J]. Proc Natl Acad Sci USA. 1996,93:12094-12097.
    81. Greenway H and Munns R. Mechanisms of salt tolerance in nonhalophytes [J]. Annu Rev Plant Physiol.1980,31:149-190.
    82. Gu R, Fonseca S, Puskas LG, Hackler L Jr, Zvara A, Dudits D, Pais MS. Transcript identification and profiling during salt stress and recovery of Populus euphratica [J]. Tree Physiol.2004,24:265-276.
    83. Guo FQ, Crawford NM. Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence [J]. Plant Cell.2005, 17:3436-3450.
    84. Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z. The cyclic nucleotide-gated channel, AtCNGCIO, influences salt tolerance in Arabidopsis [J]. Physiol Plant.2008,134: 499-507.
    85. Guo KM, Babourina O, Rengel Z. Na+/H+ antiporter activity of the SOS1 gene:lifetime imaging analysis and electro-physiological studies on Arabidopsis seedlings [J]. Physiol Plant.2009,137,155-165.
    86. Guo Y, Halfter U, Ishitani M, et al. Molecular Characterization of Functional Domains in the Protein Kinase SOS2 that is Required for Plant Salt Tolerance [J]. Plant Cell.2001,13:1383-1400.
    87. Halfter U, Ishitani M, ZHU JK. The Arabidopsis SOS2 Protein Kinase Physically Interacts with and is Activated by the Calcium binding Protein SOS3 [J]. Proc Natl Acad Sci USA. 2000,97(7):3735-3740.
    88. Hasegawa PM, Bressan RA, Zhu JK and Bohnert JH. Plant cellular and molecular responses to high salinity [J]. Annu Rev Plant Physiol Plant Mol Biol.2000,51:463-499.
    89. Hengartner MO. The biochemistry of apoptosis [J]. Nature.2000,407:770-776.
    90. Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots [J]. J Exp Bot,2010,61:521-535.
    91. Hu X, Jiang M, Zhang J, Zhang A, Lin F and Tan M. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants [J]. New Phytol.2007,173:27-38.
    92. Ishitani M, Liu J, Halfter U, et al. SOS3 Function in Plant Salt Tolerance Requires N-myristoylation and Calcium Binding [J]. Plant Cell.2000,12:1667-1677.
    93. Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R. K+ channel profile and electrical properties of Arabidopsis root hairs [J]. FEBS Lett.2000,508:463-469.
    94. Jeter CR, Tang W, Henaff E, Butterfield T, Roux SJ. Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis [J]. Plant Cell. 2004,16:2652-2664.
    95. Jiang M, Zhang J. Involvement of plasma membrane NADPH oxidase in abscisic acid and water stress-induced antioxidant defense in leaves of maize seedlings [J]. Planta.2002, 215:1022-1033.
    96. Jiang M and Zhang J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic-induced antioxidant defense in leaves of maize seedlings [J]. Plant Cell Environ.2003,26:929-939.
    97. Kader MA, Seidel T, Golldack D, Lindberg S. Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerantrice (Oryza sativa L.) cultivars [J]. J Exp Bot.2006,57:4257-4268.
    98. Kiegle E, Gilliham M, Haselhoff J, Tester M. Hyperpolarization calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots [J]. Plant J.2000,21, 225-229.
    99. Kim SH, Yang SH, Kim TJ, Han JS, Suh JW. Hypertonic stress increased extracellular ATP levels and the expression of stress-responsible genes in Arabidopsis thaliana seedlings [J]. Biosci Biotechnol Biochem 73:1252-1256.
    100. Kim SY, Sivaguru M, Stacey G. Extracellular ATP in plants:visualization, localization, and analysis of physiological significance in growth and signaling [J]. Plant Physiol.2006,142: 984-992.
    101. Kobayashi M, Ohura L, Kawakita K, et al. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase [J]. Plant Cell.2007,19: 1065-1080.
    102. Kochian LV, Shaff JE, Kuhtreiber WM, Jaffe LF and Lucas WJ. Use of an extracellular, ion-selective, vibrating microelectrode system for the quantification of K+, H+ and Ca2+ fluxes in maize roots and maize suspension cells [J]. Planta.1992,188:601-610.
    103. Konrad KR, Hedrich R. The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells [J]. Plant J. 2008,55,161-173.
    104. Kronzucker HJ and Britto DT. Sodium transport in plants:a critical review [J]. New Phytol. 2011,189:54-81.
    105. Kuhtreiber WM, Jaffe LF. Detection of extracellular calcium gradients with a calcium-specific vibrating electrode [J]. J Cell Biol.1990,110:1565-1573.
    106. Kunkel JG, Lin LY, Xu Y, Prado AMM, Feijo JA, Hwang PP. Heper PK. The strategic use of good buffers to measure proton gradients about growing pollen tubes.Cell Biology of Plant and Fungal Tip Growth [M]. Amherst:IOS Press.2001,81-94.
    107. Kwak JM, Mori IC, Pei ZM, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis [J]. EMBO J.2003,22:2623-2633.
    108. Lachaud C, Silva DD, Cotelle V, Thuleau P, Xiong TC, Jauneau A, Briere C, Graziana A, Bellec Y, Faure JD, Ranjeva R, Mazars C. Nuclear calcium controls the apoptotic-like cell death induced by D-erythro-sphinganine in tobacco cell [J]. Cell Calcium.2010,47:92-100.
    109. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA. A role for HKT1 in sodium uptake by wheat roots [J]. Plant J.2002,32:139-149.
    110. Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM. Abscissic acid induced stomatal closure mediated by cyclic ADP-ribose [J]. Proc Natl Acad Sci USA.1998,95: 15837-15842.
    111.Leidi EO, Barragan V, Rubio L, et al. The AtNHXl exchanger mediates potassium compartmentation in vacuoles of transgenic tomato [J]. Plant J.2010,61:495-506.
    112. Leshem Y, Melamed-Book N, Cagnac O, et al. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance [J]. Proc Natl Acad Sci USA.2006,103:18008-18013.
    113. Leshem Y, Seri L, Levine A. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance [J]. Plant J.2007,51,185-197.
    114. Lew RR, Dearnaley JDW. Extracellular nucleotide effects on the electrical properties of growing Arabidopsis thaliana root hairs [J]. Plant Sci.2000,153:1-6.
    115. Li J, Chen G, Wang X, Zhang Y, Jia H, Bi Y. Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii [J]. Physiol Plant. 2011,141:239-250.
    116. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade [J]. Cell.1997,91:479-489.
    117. Li PF, Dietz R and von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2 [J]. EMBO J.1999,18:6027-6036.
    118. Li S, Assmann SM and Albert R. Predicting essential components of signal transduction network:a dynamic model of guard cell abscisic acid signaling [J]. PLoS Biol.2006,4:e312.
    119. Lin HX, Yang YQ, Quan RD, et al. Phosphorylation of SOS3 LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis [J]. Plant Cell.2009,21:1607-1619.
    120. Lino B, Baizabal-Aguirre VM, Gonzalez de la Vara LE. The plasma-membrane H+-ATPase from beet root is inhibited by a calcium-dependent phosphorylation [J]. Planta.1998,204: 352-359.
    121. Liu J, Ishitani M, Halfter U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance [J]. Proc Natl Acad Sci USA.2000,97 (7): 3730-3734.
    122. Liu Q, Zheng Y, Korde AS, Yadav VR, Rathore R, Wess J, Wang Y. Membrane depolarization causes a direct activation of G protein-coupled receptors leading to local Ca2+ release in smooth muscle [J]. Proc Natl Acad Sci USA.2009,106:11418-11423.
    123. Liu WH, Schachtman DP, Zhang W. Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance [J]. J Biol Chem.2000,275:27924-27932.
    124. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts:requirement for dATP and cytochrome c [J]. Cell.1996,86:147-157.
    125. Lii PP. Hu J, Chen SL, Shen X, Yin WL, Chen YH, Sun YR, Hu ZM. Function of the putative Na+/H+ antiporter gene PeNhaDl from salt-resistant Populus euphratica Oliv [J]. J Plant Physiol Mol Biol.2007,33:173-178.
    126. Ma TJ, Liu QL, Li Z and Zhang XJ. Tonoplast H+- ATPase in response to salt stress in Populus euphratica cell suspensions [J]. Plant Sci.2002,163:499-505.
    127. Ma X, Deng L, Li J et al. Effect of NaCl on leaf H+-ATPase and the relevance to salt tolerance in two contrasting poplar species [J]. Trees.2010,24:597607.
    128. Maathuis FJM, Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios [J]. Ann Bot.1999,84:123-133.
    129. Maathuis FJM, Sanders D. Sodium uptake in Arabidopsis thaliana roots is regulated by cyclic nucleotides [J]. Plant Physiol.2001,127:1617-1625.
    130. Maathuis FJM. The role of monovalent cation transporters in plant responses to salinity [J]. J Exp Bot.2006,57:1137-1147.
    131. Mackenzie A, Young MT, Adinolfi E, Surprenant A. Pseudoapoptosis induced by brief activation of ATP-gated P2X7 receptors [J]. J Biol Chem.2005,280:33968-33976.
    132. Maffei M, Mithofer A, Arimura G, et al. Effects of feeding Spodoptera littoralis on Lima bean leaves. Ⅲ.Membrane depolarization and involvement of hydrogen peroxide [J]. Plant Physiol. 2006,140,1022-1035.
    133. Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R. AKT3, a phloem-localized K+ channel, is blocked by protons [J]. Proc Natl Acad Sci USA.1999,96: 7581-7586.
    134. Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ. Conservation of the salt overly sensitive path way in rice [J]. Plant Physiol.2007,143: 1001-1012.
    135. Mason MJ, Hussain JF, and Mahaut-Smith MP. A novel role for membrane potential in the modulation of intracellular Ca2+ oscillations in rat megakaryocytes [J]. J Physiol.2000,524: 437-446.
    136. Mazea D, Schatten G, Sale W. Adhension of cells to surfaces coated with polylysine [J]. J Cell Biol.1975,66:198-200.
    137. Mehlmer N, Wurzinger B, Stael S, et al. The Ca2+ -dependent protein kinase CPK3 is required for MAPK-independent salt stress acclimation in Arabidopsis [J]. Plant J.2010,63:484-498.
    138.Miedema H, Bothwell JHF, Brownlee C, Davies JM. Calcium uptake by plant cells channels and pumps acting in concert [J]. Trends Plant Sci.2001,11:514-519.
    139. Miedema H, Demidchik V, Very A, Bothwell JHF, Brownlee C, Davies JM. Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs [J]. New Phytol.2008,179:378-385.
    140. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses [J]. Plant Cell Environ.2010,33:566-589.
    141. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants [J]. Trends Plant Sci.2004,9,490-498.
    142. Mittova V, Tal M, Volokita M, Guy M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii [J]. Plant Cell Environ.2003, 26:845-856.
    143. Moller IM. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species [J]. Ann Rev Plant Physiol Plant Mol Biol.2001,52: 561-591.
    144. Mφller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J.Tester M. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis [J]. Plant Cell.2009,21:2163-2178.
    145. Moschou P, Paschalidis KA, Delis LD, et al. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco [J]. Plant Cell.2008,20:1708-1724.
    146. Munns R, Tester M. Mechanisms of salinity tolerance [J]. Ann Rev Plant Biol.2008, 59:651-681.
    147. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol.1981,22:867-880.
    148. Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure, and abiotic stress [J]. J Exp Bot.2008,59:165-176.
    149. Newman IA, Kochian LV, Grusak MA, Lucas WJ. Fluxes of H+ and K+ in corn roots. Characterization and stoichiometries using ion-selective microelectrodes [J]. Plant Physiol.1987,84:1177-1184.
    150. Newman IA. Ion transport in roots:Measurement of fluxes using ion-selective microelectrodes to characterize transporter function [J]. Plant Cell Environ.2001,24,1-14.
    151. Noguchi T, Ishii K, Fukutomi H, Naguro I, Matsuzawa A, Takeda K, Ichijo, H. Requirement of reactive oxygen species-dependent activation of ASK1-p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage [J]. J Biol Chem.2008,283:7657-7665.
    152. Nurnberger T, Scheel D. Signal transmission in the plant immune response [J]. Trends Plant Sci.2001,6:372-379.
    153. Oh DH, Leidi E, Zhang Q, et al. Loss of halophytism by interference with SOS1 expression [J]. Plant Physiol.2009,151:210-222.
    154. Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ. Intracellular consequences of SOS1 deficiency during salt stress [J]. J Exp Bot.2010,61:1205-1213.
    155. Ohta M, Hayashi Y, Nakashima A, et al. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice [J]. FEBS Lett.2002,532:279-282.
    156. Olias, R, Eljakaoui Z, Li J, et al. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs [J]. Plant Cell Environ.2009,32:904-916.
    157. Orton TJ. Comparison of salt tolerance between Hordeum vulgare and H. jubatum in whole plants and callus cultures [J]. Z Pflanzenphysiol.1980,98:105-118.
    158. Ottow EA, Brinker M, Teichmann T, et al. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress [J]. Plant Physiol.2005a,139:1762-1772.
    159. Ottow EA, Polle A, Brosche M, Kangasjarvi J, Dibrov P, Zorb C, Teichmann T. Molecular characterization of PeNhaD1:the first member of the NhaD Na+/H+ antiporter family of plant origin [J]. Plant Mol Biol.2005b,58:73-86.
    160. Parks GE, Dietrich MA and Schumaker KS. Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl [J]. J Exp Bot.2002,53:1055-1065.
    161. Pei ZM, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells [J]. Nature.2000,406:731-734.
    162. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms:role of cardiolipin [J]. J Biol Chem.2004,279:53103-53108.
    163. Pilot G, Gaymard F, Mouline K, et al. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant [J]. Plant Mol.Biol.2003, 51:773-787.
    164. Pozniakovsky Al, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF. Role of mitochondria in the pheromone-and amiodarone-induced programmed death of yeast [J]. J Cell Biol.2005,168:257-269.
    165. Qiao W, Fan LM. Nitric oxide signaling in plant responses to abiotic stresses [J]. J Integr Plant Biol.2008,50:1238-1246.
    166. Qiao W, Xiao S, Yu L, Fan LM. Expression of a rice gene OsNOAI re-establishes nitric oxide synthesis and stress-related gene expression for salt tolerance in Arabidopsis nitric oxide-associated 1 mutant Atnoal [J]. Environ Exp Bot.2009,65:90-98.
    167. Qiu N, Chen M, Guo J, et al. Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa [J]. Plant Sci.2007, 173 (5):487-494.
    168. Qiu QS, Guo Y, DietrichMA, Schumaker KS, Zhu JK. Regulation of SOS1, a plasma membrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2 and SOS3 [J]. Proc Natl Acad Sci USA.2002,99:8436-8441.
    169. Qiu QS, Barkla BJ, Vera-Estrella R, Zhu JK, Schumaker KS. Na+/H+ exchange activity in the plasma membrane of Arabidopsis [J]. Plant Physiol.2003,132:1041-1052.
    170. Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS and Zhu JK. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway [J]. J Biol Chem.2004,279:207-215.
    171. Quintero FJ, Ohta M, Shi HZ, Kim C, Zhu JK, Pardo JM. Reconstitution in yeast of the Arabidopsis SOS signaling path-way for Na+ homeostasis [J]. Proc Natl Acad Sci USA.2002, 99:9061-9066.
    172. Reape TJ, McCabe PF. Apoptotic-like programmed cell death in plants [J]. New Phytol.2008, 180:13-26.
    173. Reape TJ, Molony EM, McCabe PF. Programmed cell death in plants:distinguishing different models [J]. J Exp Bot.2008,59:435-444.
    174. Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ. Intersection of two signalling pathways:extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide [J]. J Exp Bot.2009,60:2129-2138.
    175. Renault S. Response of red-osier dogwood(Cornus stolonifera) seedlings to sodium sulphate salinity:effects of supplemental calcium [J]. Physiol Plant.2005,123:75-81.
    176. Rincon-Zachary M, Teaster ND, Sparks JA, Valster AH, Motes CM, Blancaflor EB. Fluorescence resonance energy transfer-sensitized emission of Yellow Cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to Aluminum and other trivalent cations [J]. Plant Physiol.2010,152:1442-1458.
    177. Roberts SK. Plasma membrane anion channels in higher plants and their putative functions in roots [J]. New Phytol.2006,169:647-666.
    178. Roux SJ, Steinebrunner I. Extracellular ATP:an unexpected role as a signaler in plants [J]. Trends Plant Sci.2007,12:522-527.
    179. Rubio F, Gassmann W, Schroeder JI. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance [J]. Science.1995,270: 1660-1663.
    180. Rubio L, Laohavisit A, Mortimer JC, et al. Salt stress signalling involves ATP release and Arabidopsis annexin 1 [J]. Comparative Biochem Physiol A-Mol Integr Physiol.2009,153A: S193-S194.
    181. Rus A, Lee BH, Munoz-Mayor A, et al. AtHKTl facilitates Na+ homeostasis and K+ nutrition in planta [J]. Plant Physiol.2004,136:2500-2511.
    182. SagiM, Fluhr R. Production of reactive oxygen species by plant NADPH oxidases [J]. Plant Physiol.2006,14:336-340.
    183. Sanchez-Alcazar JA, Ault JG, Khodjakov A, Schneider E. Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells [J]. Cell Death Differ.2000,7:1090-1100.
    184. Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells [J]. FEBS Lett.2000,475:267-272.
    185. Schachtman DP, Kumar R, Schroeder JI, Marsh EL. Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants [J]. Proc Natl Acad Sci USA.1997,94:11079-11084.
    186. Schaedle M, Bassham JA. Chloroplast glutathione reductase [J]. Plant Physiol.1977, 59:1011-1012.
    187. Schiefelbein JW, Shipley A, Rowse P. Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana [J]. Planta.1992,187:455-459.
    188. Schonknecht G, Spoormaker P, Steinmeyer R, et al. KCO1 is a component of the slow-vacuolar (SV) ion channel [J]. FEBS Lett.2002,511:28-32.
    189. Scott I, Logan DC. Mitochondrial morphology transition is an early indicator of subsequent cell death in Arabidopsis [J]. New Phytol.2008,177:90-101.
    190. Shabala S, Newman IA, Morris J. Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of external pH [J]. Plant Physiol.1997, 113:111-118.
    191. Shabala S, Newman I, Whittington J, Juswono U. Protoplast ion fluxes:their measurement and variation with time, position and osmoticum [J]. Planta.1998,204:146-152.
    192. Shabala S, Newman IA. Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll:masking role of the cell wall [J]. Ann Bot (Lond).2000, 85:681-686.
    193. Shabala S. Ionic and osmotic components of salt stress specifically modulate net ion fluxes frombean leafmesophyll [J]. Plant Cell Environ.2000,23:825-837.
    194. Shabala S, Shabala L, Van Volkenburgh E. Effect of calcium on root development and root ion fluxes in salinised barley seedlings [J]. Funct Plant Biol.2003,30(5):507-514.
    195. Shabala S, Shabala L, Volkenburgh EV, Newman IA. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves [J]. J Exp Bot.2005a,56:1369-1378.
    196. Shabala L, Cuin TA, Newman IA, Shabala S. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants [J]. Planta.2005b,222:1041-1050.
    197. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ,Miller AJ, Davies JM, Newman IA. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels [J]. Plant Physiol.2006,141: 1653-1665.
    198. Shabala S, Cuin TA. Cellular mechanisms of potassium transport in plants [J]. Physiol Plant. 2008,133:651-669.
    199. Shabala S, Shabala S, Cuin TA, et al. Xylem ionic relations and salinity tolerance in barley [J]. Plant J.2010,61:839-853.
    200. Shang Z, Laohavisit A, Davies JM. Extracellular ATP activates an Arabidopsis plasma membrane Ca2+-permeable conductance [J]. Plant signal Behav.2009,4:989-991.
    201. Shi H, Lee BH, Wu SJ and Zhu JK. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana [J]. Nat Biotechnol,2003,21(1):81-85.
    202. Shi H, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants [J]. Plant Cell,2002,14(2):465-477.
    203. Shi HZ, Ishitani M, Kim CS, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter [J]. Proc Natl Acad Sci USA,2000,97(12):6896-6901.
    204. Shi QH, Fei Ding, Wang XF, Wei M. Exogenous nitric oxide pretect cucumber roots against oxidative stress induced by salt stress [J]. Plant Physiol Biochem.2007,45:542-550.
    205. Silva P, Facanha AR, Tavares RM, Geros H. Role of tonoplast proton pumps and Na+/H+ antiport system in salt tolerance of Populus euphratica Oliv [J]. J Plant Growth Regul.2010, 29:23-34.
    206. Simon-Plas F, Rusterucci C, Milat ML, Humbert C, Montillet JL, Blein JP. Active oxygen species production in tobacco cells elicited by cryptogein [J]. Plant Cell Environ.1997,20: 1573-1579.
    207. Smith MK, McComb JA. Effects of NaCl on the growth of whole plants and their corresponding callus culture [J]. Aust J Plant Physiol.1981,8:267-275.
    208. Song CJ, Steinebrunner I, Wang XZ, Stout SC, Roux SJ. Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis [J]. Plant Physiol.2006, 140:1222-1232.
    209. Steinebrunner I, Wu J, Sun Y, Corbett A, Roux SJ. Disruption of apyrases inhibits pollen germination in Arabidopsis [J]. Plant Physiol.2003,131:1638-1647.
    210. Su H, Golldack D, Zhao CS, Bohnert HJ. The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant [J]. Plant Physiol.2002,129: 1482-1493.
    211.Sueldo DJ, Foresi NP, Casalongue CA, Lamattina L, Laxalt AM. Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production is suspension-cultured tomato cells [J]. New Phytol.2010,185:909-916.
    212. Sun J, Chen S, Dai S, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar sepecies [J]. Plant Physiol,2009a,149(2): 1141-1153.
    213. Sun J, Dai S, Wang R, Chen S, et al. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance [J]. Tree Physiol,2009b,29(9):1175-1186.
    214. Sun J, Wang M, Ding M, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells [J]. Plant Cell Environ,2010a,33(6):943-958.
    215. Sun J, Li L, Liu M, et al. Hydrogen peroxide and nitric oxide mediate K+/Na+ Homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars [J]. Plant Cell Tiss Organ Cult,2010b,103(11):205-215.
    216. Sylte MJ, Kuckleburg CJ, Inzana TJ, Bertics PJ, Czuprynski CJ. Stimulation of P2X receptors enhances lipooligosaccharide-mediated apoptosis of endothelial cells [J]. J Leukoc Biol.2005,77:958-965
    217. Tanaka K, Swanson SJ, Gilroy S, Stacey G. Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis [J]. Plant Physiol.2010a,154:705-719.
    218. Tanaka K, Gilroy S, Jones AM and Stacey G. Extracellular ATP signaling in plants [J]. Trends Cell Biol.2010b,20:601-608.
    219. Tang RJ, Liu H, Bao Y, Lv QD, Yang L and Zhang HX. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress [J]. Plant Mol Biol,2010,74 (11):367-380.
    220. Tang W, Brady SR, Sun Y, Muday GK, Roux SJ. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport [J]. Plant Physiol,2003,131(1):147-154.
    221. Tanou G, Molassiotis A, Diamantidis G. Hydrogen peroxide and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants [J]. J Plant Physiol,2009,166(17):1904-1913.
    222. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants [J]. Ann Bot (Lond). 2003,91:503-527
    223. Tester M. Plant ion channels:Whole-cell and single-channels studies [J]. New Phytol.1990, 114:305-340.
    224. Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P. Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules [J]. Plant J.1998,13:603-610.
    225. Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death [J]. Plant Physiol,2002,128(4):1271-1281.
    226. Tracy FE, Gilliham M, Dodd AN, Webb AAR, Tester M. NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition [J]. Plant Cell Environ.2008,31,1063-1073.
    227. Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E. Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death [J]. Plant Physiol.2006,141:208-219.
    228. Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death [J]. Plant Physiol.2006, 141:384-390.
    229. Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Krajnakova J, Patui S, Braidot E, Macri F. Plant mitochondrial pathway leading to programmed cell death [J]. Physiol Plant. 2007,129:242-252.
    230. Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN,Gilroy S, Bankaitis VA. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs [J]. J Cell Biol.2005,168:801-812.
    231. Virolainen E, Blokhina O, Fagerstedt K. Ca2+-induced high amplitude swelling and cytochrome c release from wheat(Triticum aestivum L.) mitochondria under anoxic stress [J]. Ann Bot.2002,90:509-516.
    232. Vitart V, Baxter I, Doerner P, Harper JF. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis [J]. Plant J.2001,27:191-201.
    233. Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium [J]. Plant Cell Environ.2003,27:1-14.
    234. Wang HH, Liang XL, Wan Q, Wan Q, Wang XM, Bi YR. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress [J]. Planta. 2009,230:293-307.
    235. Wang Q, Wang L, Feng YH, Li X, Zeng R, Gorodeski GI. P2X7 receptor-mediated apoptosis of human cervical epithelial cells [J]. Am J Physiol Cell Physiol.2004,287:c1349-c1358.
    236. Wang R, Chen S, Ma H, et al. Genotypic differences in antioxidative stress and salt tolerance of three poplars under salt stress [J]. Front For China.2006,1:82-88.
    237. Wang R, Chen S, Deng L, Fritz E, Huttermann A, Polle A. Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars [J]. Trees.2007,21:581-591.
    238. Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E, Hu ttermann A, Polle A. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress [J]. Tree Physiol.2008,28:947-957.
    239. Wang Y, Zhu Y, Ling Y, et al. Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs [J]. BMC Plant Biol. 2010,10:53.
    240. Warren RS, Gould AR. Salt tolerance expressed as a cellular trait in suspension cultures developed from the halophytic grass Distichlis spicata [J]. Z. Pflanzenphysiol.1982, 107:347-356.
    241. White P J. Seperation of K+ and Cl- selective ion channels from rye roots on a continuous sucrose density gradient [J]. J Exp Bot.1995,46:361-376.
    242. White PJ and Davenport RJ. The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis [J]. Plant Physiol.2002,130:1386-1395.
    243. White PJ, Broadley MR. Chloride in soils and its uptake and movement within the plant:a review [J]. Ann Bot (Lond).2001,88:967-988.
    244. White PJ. Cation channels in the plasma membrane of rye roots [J]. J Exp Bot.1997,48: 499-514.
    245. Wilson C, Shannon MC. Salt-induced Na+/H+ antiport in root plasma membrane of a glycophytic and halophytic species of tomato [J]. Plant Sci.1995,107:147-157.
    246. Wu SJ, Ding L, Zhu JK. SOS1, a genetic locus essential for salt tolerance and potassium acquisition [J]. Plant Cell.1996,8:617-627.
    247. Wu SJ, Wu JY. Extracellular ATP-induced NO production and its dependence on membrane Ca2+ flux in Salvia miltiorrhiza hairy roots [J]. J Exp Bot.2008,59:4007-4016.
    248. Wu Y, Ding N, Zhao X, ZhaoM, Chang Z, Liu J, Zhang L. Molecular characterization of PeSOS1:the putative Na+/H+ antiporter of Populus euphratica [J]. Plant Mol Biol.2007,65: 1-11.
    249. Xie Y, Ling T, Han Y, et al. Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots [J]. Plant Cell Environ,2008,31(12):1864-1881.
    250. Xing T, Higgins VJ, Blumwald E. Regulation of plant defense response to fungal pathogens: two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+- ATPase [J]. Plant Cell.1996,8:555-564.
    251. Xu Q, Xu X, Zhao Y, Jiao K, Herbert SJ, Hao L. Salicylic acid, hydrogen peroxide and calcium-induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings [J]. Plant Growth Regul.2008,54:249-259.
    252. Xu Y, Sun T, Yin LP. Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube [J]. J Integr Plant Biol.,2006,48 (7): 823-831.
    253. Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong ZZ. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis [J]. Molecular Plant.2009,2:22-31.
    254. Yang Y, Qin Y, Xie C, et al. The Arabidopsis Chaperone J3 Regulates the Plasma Membrane H+-ATPase through Interaction with the PKS5 Kinase [J]. Plant Cell,2010,22(4):1313-1332.
    255. Yang Y, Zhang F, Zhao M, An L, Zhang L and Chen N. Properties of plasma membrane H+-ATPase in salt-treated Populus euphratica callus [J]. Plant Cell Rep.2007b,26,229-235.
    256. Yang YQ, Hu L, Chen X, Ottow EA, Polle A and Jiang X. A novel method to quantify H+-ATPase-dependent Na+ transport across plasma membrane vesicles [J]. Biochim. Biophys. Acta.2007b,1768:2078-2088.
    257. Yao N, Eisfelder BJ, Marvin J, Greengerg J. The mitochondriaon-an organelle commonly involved in programmed cell death in Arabidopsis thaliana [J]. Plant J 2004,40(4):596-610.
    258. Yao N, Greenberg JT. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death [J]. Plant Cell.2006,18:397-411.
    259. Ye CY, Zhang HC, Chen JH, Xia XL, Yin WL. Molecular characterization of putative vacuolar NHX-type Na+/H+ exchanger genes from the salt-resistant tree Populus euphratica [J]. Physiol Plant.2009,137:166-174.
    260. You Z, Saims D, Chen S, et al. Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis [J]. J Cell Biol.2002,157:429-440.
    261. Yu L, Nie J, Cao C, et al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana [J]. New Phytol.2010,188:762-773.
    262. Yu XC, Li MJ, Gao GF, et al. Abscisic acid stimulates a calcium-dependent protein kinase in grape berry [J]. Plant Physiol.2006,140:558-579.
    263. Zeng F, Yan H, Arndt SK. Leaf and whole tree adaptations to mild salinity in field grown Populus euphratica [J]. Tree Physiol,2009,29(10):1237-1246.
    264. Zhang A, Jiang M, Zhang J, Tan M, Hu X. Mitogen-activated protein kinase is involved in abscisic acid-induced anti-oxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants [J]. Plant Physiol,2006,141(2),475-487.
    265. Zhang F, Wang Y, Yang YL, Wu H, Wang D and Liu JQ. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica [J]. Plant Cell Environ,2007,30 (7):775-785.
    266. Zhang HX, Hodson JN, Williams JP, Blumwald E. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation [J]. Proc Natl Acad Sci USA.2001,98:12832-12836.
    267. Zhang JL, Flowers TJ and Wang SM. Mechanisms of sodium uptake by roots of higher plants [J]. Plant Soil.2010,326:45-60.
    268. Zhang LR, Xing D. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death [J]. Plant Cell Physiol,2008,49(7):1092-1111.
    269. Zhang WH, Rengel Z, Kuo J. Determination of intracellular Ca2+ in cells of intact wheat root: loading of acetoxymethyl ester of Fluo-3 under low temperature [J]. Plant J.1998,15: 147-151.
    270. Zhang YY, Wang LL, Liu YL, Zha,ng Q, Wei QP, Zhang WH. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast [J]. Planta,2006,224(3):545-555.
    271. Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites [J]. Biotechnol Adv.2005,23:283-333.
    272. Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed [J]. Plant Physiol.2004,134:849-857.
    273. Zhao MG, Tian QY, Zhang WH. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis [J]. Plant Physiol.2007,144:206-217.
    274. Zheng CF, Jiang D, Liu FL, Dai TB, Liu WC, Jing Q, Cao WX. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity [J]. Environ Exp Bot.2007,67:222-227.
    275. Zheng LM, Zychlinsky A, Liu C, Ojcius DM, Young JDE. Extracellular ATP as a trigger for apoptosis or programmed cell death [J]. J Cell Biol.1991,112:279-288.
    276. Zhu JK. Plant salt tolerance. [J] Trends Plant Sci.2001a,6:66-71.
    277. Zhu JK. Cell signaling under salt, water and cold stresses [J]. Curr Opin Plant Biol,2001b, 4(5):401-406.
    278. Zhu JK. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol.2003, 6:1-5.
    279. Zimmermann M, Maischak H, Mithofer A, Boland W and Felle H. System potentials, a novel electrical long distance apoplastic signal in plants, induced by wounding [J]. Plant Physiol, 2009,149(3):1593-1600.
    280. Zonia L, Cordeiro S, Tupy J and Feijo JA. Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol-3,4,5, 6-tetrakisphosphate [J]. Plant Cell,2002,14(9):2233-2249.
    281. Zuppini A, Navazio L, Mariani P. Endoplasmic reticulum stress-induced programmed cell death in soybean cells [J]. J Cell Sci,2004,117 (12):2591-2598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700