几种氧化物介孔材料的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料由于较高的比表面积、有序的孔道结构等优势,在光催化催化、吸附和生物等领域具有广泛的应用前景。近年来,功能介孔材料的制备及性能研究成为材料研究者的重要研究方向。本论文致力于几种氧化物介孔材料的制备及其性能研究,找到了几种氧化物介孔材料制备的有效方法,并进行了相应介孔样品的性能研究。其主要内容如下:
     (1)以立方分子筛MCM-48为硬模板,利用“纳米铸造法”合成纯相介孔钒酸铋光催化材料。与传统大颗粒相比,“纳米铸造”介孔BiVO4介孔材料比表面积为22.9 m2·g-1,孔道结构有序,颗粒尺寸较小(约为10nm),有效减少了光生电子和空穴复合的几率,在可见光范围内表现出优良的可见光催化活性,90min内对乙基黄原酸钾的光催化降解率高达78%。
     (2)利用水热法,以无机钛源硫酸钛、葡萄糖和钨酸钠为原料,通过控制C,W元素摩尔掺杂量,成功制备了可见光响应型金属/非金属共掺杂TiO2介孔材料。样品颗粒大小约为12nm,比表面积约为120m2·g-1左右;样品在可见光区的吸收随着钨掺杂量的增加而不断加强;W6+发挥了电子捕获剂和电子转移的作用,抑制光生电子-空穴的复合,获得了可见光条件下TiO2良好的响应性能;当碳掺杂量为1%、钨掺杂量为10%时,样品在可见光范围内对对苯二甲酸的催化效果最佳。
     (3)利用分子筛有序孔道的毛细管力,将前躯体吸附进入孔道中,通过[Cu(NH3)4]2+在高比表面积有序介孔分子筛MCM-48孔道内的介孔自组装,成功合成了高比表面的介孔CuO/SiO2复合材料。当Cu:Si=1:2.5时,所制备的主客体复合材料比表面积约为219 m2·g-1,孔径分布与主体材料相似,表现为双峰分布,但都较集中分布于3 nm左右,孔容约为0.3 cm3·g-1,对亚甲基蓝的吸附性能良好,90 min内对乙基黄原酸钾的降解效率高达92%。
With the advantage of large specific surface area and ordered pore structure, mesoporous materials showed extensive application prospect in photocatality, adsorption and biology. In the past few years, study on synthesis and properties of functional mesoporus materials had become an important field for researchers. This thesis devoted to fabrication and performance study of types of mesoporous nano-semiconductor photocatalytic materials. Effective methods to synthetize mesoporous materials were found. And performance of as-synthesis samples via different methods was tested. The main contents were discussed as follows:
     (1) Ordered nanocrystalline mesoporous BiV04 with pure phase was successfully synthesized via nanocasting using cubic MCM-48 molecular sieves as hard template. Comparing with conventional BiVO4 synthesized by hydrothermal method, the nanocasting mesoporous BiVO4 have much higher specific surface of 22.9 m2.g-1, more ordered pore structure and smaller particle size (about 10nm), which decreased the recombination of optical excitation electrons and holes efficiently. As a result, the photocatalytic efficiency of mesoporous BiVO4 for xanthate in 90 mins reached up to 78%.
     (2) Highly visible light active mesoporous (C、W) doped/co-doped TiO2 were synthesized via hydrothermal method by controlling the dosage of inorganic titanium sulfate, glucose and sodium tungstate. The crytal size of as-synthesized samples was about 12nm and its surface area was greater than 100 m2.g-1. Its visible light absorbance enhanced with the increasing of the W doping amounts. W6+ played the role of the electron capture agent and transferring electron that well photoresponse performance under visible light was got. The photocatalyst doped with C 1.0% and W 10% showed the highest photocatalytic activity under visible light irradiation.
     (3) By means of capillary force, mesoporous CuO/SiO2 composites with high surface area were triumphantly synthesized via self-assembly basing on [Cu(NH3)4]2+ into the pore of well-organized molecular sieve. The results showed that:at the ratio of Cu:Si=1:2.5, surface area and pore volume of as-synthesized host-guest materials was 219 m2.g-1 and 0.3 cm3.g-1 respectively, and it exhibited a similar bimodal pore size distribution to the host sieve, distributing extensively at about 3nm. It exhibited fine adsorption charactors with methyl blue. Simultaneously, it revealed an excellent photocatalytic activity that 92% of xanthate was degradated in 90 min.
引文
[1]Barrer,R.M. Hydrothermal Chemistry of Zeolites [J]. Journal of Molecular Structure, 1982,99(3-4):318-319.
    [2]Matin K T, Bastani D, Kazemian. H. Applying the Taguchi Method to Develop an Optimized Synthesis Procedure for Nanocrystals of T-Type Zeolite [J].Chemical Engineering & Technology,2009,32(7):1042-1048.
    [3]Wilson S T. Overview of zeolite synthesis strategies [J].Stud. Surf. Sci. Catal., 2007,170(A):3-18.
    [4]Zhao D Y, Huo Q S. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable,Mesoporous Silica Structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [5]Davis M E. Ordered Porous Materials for Emerging Applications [J]. Nature, 2002,417(6891):813-821.
    [6]Maji S K, Mukherjee N, Mondal A, et al. Chemical synthesis of mesoporous CuO from a single precursor:Structural, optical and electrical properties [J]. J. solid. State. Chem.,2010,183(8):1900-1904.
    [7]Ouraipryvan P, Sreethawong T, Chavadej S. Synthesis of crystalline MgO nanoparticle with mesoporous-assembled structure via a surfactant-modified sol-gel process [J]. J. Mater. Chem.,2009,63(21):1862-1865.
    [8]Shao W B, Jonas B, Pragati G, et al. A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption [J]. J. mater. Chem.,2010,20(39): 8705-8710.
    [9]Xiao Q, Si Z C, Zhang J, et al. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline [J]. J. Hazardous Materials, 2008,150(1):62-67.
    [10]Smith Y R, Joseph A R K, Vaidyanathan(Ravi) S, et al. Sulfated Fe2O3-TiO2 synthesized from ilmenite ore:A visible light active photocatalyst [J].Colloids and Surfaces A,2010,367(1-3):140-147.
    [11]Peng L L, Xie T F, Lu Y C, et al. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts [J]. J. Phys. Chem.,2010,12(28):8033-8041.
    [12]Watanabe S, Ma X L, Song C S. Characterization of Structural and Surface Properties of Nanocrystalline TiO2-CeO2 Mixed Oxides by XRD, XPS, TPR and TPD [J]. J.phys. Chem. C,2009,113 (32):14249-14257.
    [13]Mohammadi M R., Fray D J. Nano structured TiO2-CeO2 mixed oxides by an aqueous sol-gel process:Effect of Ce:Ti molar ratio on physical and sensing properties [J].Sensors and Actuators B,2010,150(2):631-640.
    [14]Fang C L, Qian K, Zhu J H, et al. Monodisperse alpha-Fe2O3@SiO2@Au core/shell nanocomposite spheres:synthesis,characterization and properties [J]. Mater. Lett.,2009,63(12):1054-1056.
    [15]郭一萍,董元源.纳米材料的奇异特性及其应用前景[J].机械研究与应用,2002,15(3):72-75.
    [16]塔娜.CeO2基纳米材料的合成及光催化性能研究[D].黑龙江:哈尔滨工程大学,2009.
    [17]陈洪敏.无机氧化物介孔材料的自组装构筑及性能研究[D].上海:中国科学院理化技术研究所,2009.
    [18]沈俊、罗文斌、张昭。低质量分数表面活性剂做模板合成MCM-41中孔分子筛[J].精细化工,2003,20(3):140-142.
    [19]沈俊、罗文斌、张昭。低质量分数表面活性剂做模板合成MCM-48中控分子筛的机理探讨[J].四川大学学报,2003,35(2):60-63.
    [20]张任远.功能性介孔材料的合成及其在催化中的应用[D].浙江:浙江大学,2010.
    [21]马国维.不相容聚合物聚氯乙烯/聚乙烯共混中相分散-交联协同作用机理的研究[D].浙江:浙江大学,2003.
    [22]Blin J L, Bleta R, Stebe M J. Cloud point curve of nonionic surfactant related to the structures of mesoporous materials [J]. J. colloid Interf. Sci., 2006,300(2):765-773.
    [23]Miguel J, Jose'R B G, Natalia D S C,et al. Molecular Dynamics Simulation of the Early Stages of the Synthesis of Periodic Mesoporous Silica [J]. J. phys. Chem.B,2009,113(3):708-718.
    [24]陶玲.以离子液体为模板剂合成介孔分子筛催化剂及活性评价[D].湖北:武汉理工大学,2007.
    [25]张震东.纳米(介)孔材料的形貌控制[D].吉林:吉林大学,2001.
    [26]Tolbert S H, Landry C C, Stucky G D. Phase transitions in mesostructured silica/surfactant composites:Surfactant packing and the role of charge density matching [J]. Chem. Mater.,2001,7(13):2247-2256.
    [27]Landry C C, Tolbert S H, Gallis K W. Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesist [J].Chem. Mater.,2001,5(13):1600-1608.
    [28]Janicke M T, Landry C C, Christiansen S C, et al. Low Silica MCM-41 Composites and Mesoporous Solids [J].Chem. Mater.,1999,11 (5):1342-1351.
    [29]Antonietti, Markus. Silica nanocasting of lyotropic surfactant phases and organized organic matter:material science or an analytical tool? [J].Phil. Trans. R. Soc. A,2006,364(1847):2817-2840.
    [30]Yuan P, Yang S, Wang H N, et al. Structure transition from hexagonal mesostructured rodlike silica to multilamellar vesicles [J].Langmuir,2008, 24(9):5038-5043.
    [31]Bruno A, Emmanuel V, Dominique D, et al. New insights into the formation of textures through spray-drying and self-assembly [J]. Microporous Mesoporous Mater.,2007,106(1-3):76-94.
    [32]Jin H Y, Qiu H, Sakamoto Y, et al. Mesoporous Silicas by Self-Assembly of Lipid Molecules:Ribbon, Hollow Sphere, and Chiral Materials [J]. Chemistry, 2008,14(21):6413-6420.
    [33]Vikrant N U, Luis B, Jonathan D K, et al. Controlling Interfacial Curvature in Nanoporous Silica Films Formed by Evaporation-Induced Self-Assembly from Nonionic Surfactants. Ⅱ. Effect of Processing Parameters on Film Structure [J]. Langmuir,2007,23(8):4268-4278.
    [34]Altug S P, Omer D. Role of Organic and Inorganic Additives on the Assembly of CTAB-P123 and the Morphology of Mesoporous Silica Particles [J]. J. phys. Chem. C,2009,113(43):18596-18607.
    [35]Leontidis E. Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids [J]. Cocis.2002,8(1-2):81-91.
    [36]Para G, Jarek E, Warszynsk P. The Hofmeister series effect in adsorption of cationic surfactants-theoretical description and experimental results. [J]. Advances in Colloid and Interface Science,2006,122(1-3):39-55.
    [37]Wojciechowski K, Kucharek M, Wroblewski W, Warszynski P. On the origin of the Hofmeister effect in anion-selective potentiometric electrodes with tetraalkylammonium salts [J]. J. Electroanal Chem.,2010,638(2):204-211.
    [38]Vlachy N, Drechsler M, Touraud D, et al. Anion specificity influencing morphology in catanionic surfactant mixtures with an excess of cationic surfactant [J].Comptes Rendus Chimie,2009,12(1-2):30-37.
    [39]Lin H P, Mou C Y. Salt effect in post-synthesis hydrothermal treatment of MCM-41 [J].Microporous Mesoporous Mater.,2002,55(1):69-80.
    [40]Lu A H, Ferdi Schuth. Nanocasting:A Versatile Strategy for Creating Nanostructured Porous Materials [J].Adv. Mater.,2006,18(14):1793-1805.
    [41]Sang H J, Shinae J, Ryong R. Synthesis of ordered mesoporous carbon molecular sieves CMK-1 [J].Microporous Mesoporous Mater.,2001,44-45:153-158.
    [42]Vinu A, Hartmann M. Characterization and microporosity analysis of mesoporous carbon molecular sieves by nitrogen and organics adsorption [J]. J. catal. Today.,2005,102-103:189-196.
    [43]Sayari A, Yang Y. SBA-15 Templated Mesoporous Carbon:New Insights into the SBA-15 Pore Structure [J]. Chem. Mater.,2005,17(24):6108-6113.
    [44]Vipin K S, Marta, A Moises L, et al. Pinto. How the adsorption properties get changed when going from SBA-15 to its CMK-3 carbon replica [J]. Sep. Purif. Technol.,2010,75(3):366-376.
    [45]Yamauchi Y, Takai A, Komatsu M, et al. Vapor Infiltration of a Reducing Agent for Facile Synthesis of Mesoporous Pt and Pt-Based Alloys and Its Application for the Preparation of Mesoporous Pt Microrods in Anodic Porous Membranes [J]. Chem. Mater.,2008,20 (3):1004-1011.
    [46]Huang N M, Kan C S, Radiman S. In situ synthesis of mesoporous CdS nanoparticles in ternary cubic phase lyotropic liquid crystal [J].Appl. Phys. A,2003,76(4):555-559.
    [47]Li B, Takahashi H. New immobilization method for enzyme stabilization involving a mesoporous material and an organic/inorganic hybrid gel [J].Biotechnology Letters,2000,22(24):1953-1958.
    [48]Qin Xu, Jun-Jie Zhu, Xiao-Ya Hu. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction [J].Analytica Chimica Acta.,2007,597(1):151-156.
    [49]R. F. Popovici, E. M. Seftel, G. D. Mihai, et al. Controlled drug delivery system based on ordered mesoporous silica matrices of captopril as angiotensin-converting enzyme inhibitor drug [J]. Pharmaceutical Sciences, 2011,100(2):704-714.
    [50]阳晓宇.纳米孔材料的设计与合成:催化中心的稳定性[D].吉林:吉林大学,2007.
    [51]Zhang A P, Zhang J Z. Characterization of visible-light-driven BiVO4 photocatalysts synthesized via a surfactant-assisted hydrothermal method [J].Spectrochimica Acta. Part A,2009,73(2):336-341.
    [52]Ren L, Jin L, Wang J B, et al. Template-free synthesis of BiVO4 nanostructures: I. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light [J].Nanotechnology, 2009,20(11):115603-115611.
    [53]戈磊,张宪华等.微乳液法合成新型可见光光催化材料BiVO4及光催化性能研究[J].无机材料学报,2009,24(3):453-456.
    [54]Zhou Y, Vuille K, Heel A, et al. An inorganic hydrothermal route to photocatalytically active bismuth vanadate [J].Applied Catalysis A:General, 2010,375(1):140-148.
    [55]Yu J C, Wang X C, Fu X Z, et al. Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films [J]. Chem. Mater.,'2004, 16(8):1523-1530.
    [56]刘晶冰,汪浩等.化学浴沉积法制备高取向钒酸铋薄膜[J].无机材料学报,2007,23(7):1299-1302.
    [57]Zhou L, Wang W Z, Zhang L S, et al. Single-Crystalline BiVO4 Microtubes with Square Cross-Sections:Microstructure, Growth Mechanism, and Photocatalytic Property [J]. J. Phys. Chem. C,2007,111(37):13659-13664.
    [58]刘晶冰,张慧明.纳米钒酸铋的微波快速合成及光催化性能研究[J].无机材料学报,2008,24(5):777-780.
    [59]Long M C, Cai W M, Cai J, et al., Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation [J]. J. Phys. Chem. B,2006,110(41):20211-20216.
    [60]Shang M, Wang W Z, Sun S M. Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-like PANI/BiVO4 [J]. J. Phys. Chem C, 2009,113(47):20228-20233.
    [61]Ji P F, Zhang J L, Feng C, et al. Ordered Mesoporous CeO2 Synthesized by Nanocasting from Cubic Ia3d Mesoporous MCM-48 Silica:Formation, Characterization and Photocatalytic Activity [J]. J. Phys. Chem. C,2008, 112(46):17809-17813.
    [62]Bandyopadhyay M, Birkner A, Berg W E M, et al. Synthesis and Characterization of Mesoporous MCM-48 Containing TiO2 anoparticles [J]. Chem. Mater.,2005,17(15):3820-3829.
    [63]Chen L F, Zhou X L, Noren L E, et al. Comparative studies of Zr-based MCM-41 and MCM-48 mesoporous molecular sieves:Synthesis and physicochemical properties [J]. Appl. Surf. Sci.,2006,253(5):2443-2451.
    [64]Tang J W, Zou Z G, Ye J H. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation [J]. Angew. Chem. Int. Ed.,2004,43(34):4463-4466.
    [65]Dapurkar S.E., Badamali S.K., Selvam P.. Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates [J]. Catal. Today,2001,68(1-3): 63-68.
    [66]Rolison D R. Catalytic nanoarchitectures-The Importance of Nothing and the Unimportance of Periodicity [J]. Science,2003,299(5613):1698-1701.
    [67]沈晶晶,刘畅.介孔TiO2的水热法制备及其光催化性能[J].物理化学学报,2009,25(5):1013-1018.
    [68]Serpone N, Lawless D, Khairutdinov R. Subnanosecond Relaxation Dynamics in TiO2 Colloidal Sols (Particle Sizes R=1.0-13.4 nm). Relevance to Heterogeneous Photocatalysis [J]. J. Phys. Chem.,1995,99(45):16655-16661.
    [69]Cao C B, Zhang G S, Song X P, et al. Layer-by-Layer Growth Mechanism of TiO2 Nanotube Arrays [J]. J. The Electrochemical Soc.,2011,158(1):E8-E11.
    [70]Yoriya, Sorachon, Grimes, et al. Self-assembled anodic TiO2 nanotube arrays: electrolyte properties and their effect on resulting morphologies [J]. J. Mater. Chem.,2011,21(1):102-108.
    [71]Tian X L, Tao J, Tao H J, et al. Electrode Reaction and Impedance Resistance of TiO2 Nanotube Arrays Prepared by Anodic Oxidation [J]. Rare Metal Materials and Engineering,2010,39(6):1066-1070.
    [72]Xue Q, Guan Y J, Wang Z B, et al. Preparation of Nitrogen Doped TiO2 Nanotube Arrays and Its Visible Light Responsive Photocatalytic Properties [J]. Acta Chim Sinica.2010,68(16):1603-1608.
    [73]Zhang Ai Y, Zhou M H, Han L, et al. Combined potential of three catalysis types on TiO2 nanotube (TNT)/Ti and nanoparticle (TNP)/Ti photoelectrodes:A comparative study [J]. Appl. Catal. A,2010,385(1-2):114-122.
    [74]Srimala S, Saharudin K A, Lockman Z, et al. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis [J].Nanotechnology,2010,21(36):365603-365610.
    [75]Zhang A Y, Zhou M H, Han L, et al. Combined potential of three catalysis types on TiO2 nanotube (TNT)/Ti and nanoparticle (TNP)/Ti photoelectrodes:A comparative study [J]. Appl. Catal. A,2010,385(1-2):114-122.
    [76]Yang Y, Wang X H, Li L T. Zinc-Doped TiO2 Nanotube Arrays [J]. Key Engineering Materials,2010,434-435:446-447.
    [77]Allam, Nageh K, El-Sayed, et al. Photoelectrochemical Water Oxidation Characteristics of Anodically Fabricated TiO2 Nanotube Arrays:Structural and Optical Properties [J]. J. Phys. Chem. C,2010,114(27):12024-12029.
    [78]Xu J J, Ao Y H, Chen M D, et al. Photoelectrochemical property and photocatalytic activity of N-doped TiO2 nanotube arrays [J]. Appl. Surf. Sci., 2010,256(13):4397-4401.
    [79]Liu Y T, Liu R H, Liu C B, et al. Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film [J]. J. Hazard Mater., 2010,182(1-3):912-918.
    [80]Masahiko M, Teruyoshi W. Evaluation of photocatalytic properties of titanium oxide films prepared by plasma-enhanced chemical vapor deposition [J].Thin Solid Films,2005,489(1-2):320-324.
    [81]Rawat R S, Aggarwal V, Hassan M, et al. Nano-phase titanium dioxide thin film deposited by repetitive plasma focus:Ion irradiation and annealing based phase transformation and agglomeration [J]. Appl. Surf. Sci.,2008,255(5):2932-2941.
    [82]Wirat J, Samuk P, Santi M, et al. Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application [J].Thin Solid Films,2009,517(16):4663-4667.
    [83]Dimitra V, Giannis K, Emmanouil S, et al. Photoinduced hydrophilic and photocatalytic response of hydrothermally grown TiO2 nanostructured thin films [J].Solid State Sci.,2009,11(8):1499-1502.
    [84]Jeong Y M, Lee J K, Jun H W, et al. Preparation of super-hydrophilic amorphous titanium dioxide thin film via PECVD process and its application to dehumidifying heat exchangers [J].Ind. Eng. Chem. Res.,2009,15(2):202-206.
    [85]Boukrouh S, Bensaha R, Bourgeois S, et al. Reactive direct current magnetron sputtered TiO2 thin films with amorphous to crystalline structures [J].Thin Solid Films,2008,516(18),6353-6358.
    [86]Agarwala S, Ho G W. Synthesis and tuning of ordering and crystallinity of mesoporous titanium dioxide film [J].Mater. Lett.,2009,63(18-19):1624-1627.
    [87]Asiah M N, Ahmad M K, Mamat M H, et al. The Study of Physical Properties on Nanostructured Titanium Dioxide Thin Film Annealed at Different Temperatures [J]. Nanoscience and Nanotechnology,2009,1136,811-814.
    [88]Tsai C C, Teng H. Chromium-doped titanium dioxide thin-film photoanodes in visible-light-induced water cleavage [J]. Appl. Surf. Sci., 2008,254(15):4912-4918.
    [89]Mane R S, Joo O S, Min S K, et al. A simple and low temperature process for super-hydrophilic rutile TiO2 thin films growth [J]. Appl. Surf. Sci., 2006,253(2):581-585.
    [90]Karuppuchamy S,. Jeong J M, Amalnerkar D P, et al. Photoinduced hydrophilicity of titanium dioxide thin films prepared by cathodic electrodeposition[J].Vacuum,2006,80(5):494-498.
    [91]Faheem A S, Nasser A M B, Muzafar A, et al. Electrospun titanium dioxide nanofibers containing hydroxyapatite and silver nanoparticles as future implant materials [J]. J. Mater. Sci. Mater. Med.,2010,21(9):2551-2559.
    [92]Jin M, Zhang X T, Alexei V, et al. Fibrous TiO2-SiO2 nanocomposite photocatalyst [J].Chem. Commun.,2006,43:4483-4485.
    [93]Liu B, Boercker J E, Aydil E S. Oriented single crystalline titanium dioxide nanowires [J].Nanotechnology,2008,19(50):505604-505610.
    [94]HuangY L, LeeY T, Yeh V, et al. Phonon confinement in individual titanium dioxide nanowires [J].Luminescence,2009,129(12):1762-1766.
    [95]Wu J M, Shih H C, WuW T. Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation [J].Nanotechnology,2006,17(1):105-109.
    [96]Boercker J E, Pommer E E, Aydil E S. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells [J].Nanotechnology,2008,19(9): 5604-5613.
    [97]Chang M, Chung C C, Deka J R, et al. Mechanical properties of microwave hydrothermally synthesized titanate nanowires [J].Nanotechnology,2008,19(2): 5710-5717.
    [98]Dan L, Jesse T, Mc C, et al. Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania [J].J. Chem. Phys. Lett.,2004,394(4-6): 387-391.
    [99]Jamie M F J, Laurel M G, Abigail S, et al. Eric Aston. Wettability of Electrospun Poly(vinylpyrrolidone)-Titania Fiber Mats on Glass and ITO Substrates in Aqueous Media [J].Appl. Mater.,2009,1(10):2325-2331.
    [100]Park S J, George G C, Jeong K U. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol-gel precursor [J].Sol-Gel Sci. Technol., 2010,54(2):188-194.
    [101]Li D, Xia Y N. Fabrication of Titania Nanofibers by Electrospinning [J].Nanotechnology,2003,3(4):555-560.
    [102]Faheem A S, Muzafar A K, Hak Y K, et al. Fabrication of titanium dioxide nanofibers containing hydroxyapatite nanoparticles [J].Appl. Surf. Sci., 2010,257(1):296-301.
    [103]Ao Y H, Xu J J, Zhang SH, et al. A one-pot method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light [J].Appl. Surf. Sci.,2010,256(9):2754-2758.
    [104]Ao Y H, Xu J J, Fu D G, et al. A simple method for the preparation of titania hollow sphere [J].Catalysis Communications,2008,9(15):2574-2577.
    [105]Ao Y H, Xu J J, Fu D G, et al. A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light [J]. J. Hazard Mater.,2009,167(1-3):413-417.
    [106]Syoufian A, Nakashima K. Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst:Optimization of reaction by peroxydisulfate electron scavenger [J].J. Colloid Interface Sci., 2007,313(1):213-218.
    [107]Syoufian A, Oktaviano H S, Nakashima K. Photocatalytic activity of titania hollow spheres:Photodecomposition of methylene blue as a target molecule [J].Catalysis Communications,2007,8(5):755-759.
    [108]Xu J J, Ao Y H, Chen M D. Preparation of B-doped titania hollow sphere and its photocatalytic activity under visible light [J].Mater. Lett., 2009,63(28):2442-2444.
    [109]Wang C, Ao Y H, Wang P F, et al. Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium[J]. J. Hazard Mater., 2010,178(1-3):517-521.
    [110]Zheng R B, Meng X W, Tang F Q. Synthesis, characterization and photodegradation study of mixed-phase titania hollow submicrospheres with rough surface [J].Appl. Surf. Sci.,2009,255(11):5989-5994.
    [111]Gu Y Q, Liu X Y, Niu T, et al. Titania nanotube/hollow sphere hybrid material: Dual-template synthesis and photocatalytic property [J].Materials Research Bulletin,2010,45(5):536-541.
    [112]Ao Y H, Xu J J, Fu D G, et al. Visible-light responsive C,N-codoped Titania hollow spheres for X-3B dye photodegradation [J].Microporous Mesoporous Mater.,2009,118(1-3):382-386.
    [113]欧阳林莉.掺杂氧化物低维纳米材料的制备及可见光催化性能研究[D].长沙:中南大学,2010.
    [114]Zhao W, Ma W H, Chen C C, et al. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation [J]. J. Am. Chem. Soc., 2004,126(15):4782-4783.
    [115]Yu J G, Yu H G, Cheng B, et al. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method [J].Photochemistry and Photobiology A,2006,182(2):121-127.
    [116]Wong M S, Hsu S W, Rao K K, et al. Influence of crystallinity and carbon content on visible light photocatalysis of carbon doped titania thin films [J]. J. Mol. Catal. A,2008,279(1):20-26.
    [117]Shen Y F, Xiong T Y, Li T F, et al. Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response [J].Appl. Catal. B, 2008,83(3-4):177-185.
    [118]Chen C, Long M C, Zeng H, et al. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species [J].J. Mol. Catal. A,2009,314(1-2):35-41.
    [119]Lu G, Li X Y, Qu Z P, et al. Correlations of WO3 species and structure with the catalytic performance of the selective oxidation of cyclopentene to glutaraldehyde on WO3/TiO2 catalysts [J]. Chem. Eng. J, 2010,159(1-3):242-246.
    [120]Dong F, Wang H Q, Wu Z B.One-Step "Green" Synthetic Approach for Mesoporous C-Doped Titanium Dioxide with Efficient Visible Light Photocatalytic Activity [J].J. Phys. Chem. C,2009,113(38):16717-16723.
    [121]Prasad G K, Ramacharyulu P V R K, Batra K, et al. Decontamination of Yperite using mesoporous mixed metal oxide nanocrystals [J]. J. Hazard Mater., 2010,183(1-3):847-852.
    [122]Liu Z L, Deng J C, Deng J J, et al. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method [J].Mater. Sci. Eng. B,2008,150(2):99-104.
    [123]Moretti E, Lenarda M, Storaro L, et al. One-step synthesis of a structurally organized mesoporous CuO-CeO2-Al2O3 system for the preferential CO oxidation [J].Appl. Catal. A,2008,335(1):46-55.
    [124]Yang M, Gao Q M. Copper oxide and ordered mesoporous carbon composite with high performance using as anode material for lithium-ion battery [J]. Microporous Mesoporous Mater.,2011,143(1):230-235.
    [125]Liu Y Y, Lei J P, Ju H X. CuO-Doped Mesoporous Silica Hybrid for Rapid and Sensitive Amperometric Detection of Phenolic Compounds [J].Electroanalysis, 2010,22(20):2407-2412.
    [126]Karvan O, Sirkecioglu A, Atakul H. Investigation of nano-CuO/mesoporous SiO2 materials as hot gas desulphurization sorbents [J]. Fuel. Process. Technol., 2009,90(12):1452-1458.
    [127]杜建平,薛永强,王志忠.纳米氧化铜的制备新方法及应用[J].山西化工,2004,24(3):3-7.
    [128]Kong A G, Wang H W, Yang X, et al. A facile direct route to synthesize large-pore mesoporous silica incorporating high CuO loading with special catalytic property [J].Microporous Mesoporous Mater.,2009,118(1-3):348-353.
    [129]Zong J, Zhu Y H, Yang X L, et al. Confined growth of CuO, NiO, and Co3O4 nanocrystals in mesoporous silica (MS) spheres [J]. J. Alloys Compd., 2011,509(6):2970-2975.
    [130]Suh M J, Ihm S K. Preparation of Copper Oxide with High Surface Area Associated with Mesoporous Silica [J].Top. Catal.,2010,53(7-10):447-454.
    [131]Hu C Q, Zhu Q S, Jiang Z, et al. Preparation and formation mechanism of mesoporous CuO-CeO2 mixed oxides with excellent catalytic performance for removal of VOCs [J].Microporous Mesoporous Mater.,2008,113(1-3):427-434.
    [132]李本侠,王媛媛,王艳芬.CuO纳米结构阵列的简易合成及其光催化性质[J].Acta. Phys. Chim. sin.,2009,25(11):2366-2372.
    [133]Cao J L, Wang Y, Yu X L, et al. Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation [J]. Appl. Catal. B, 2008,79(1):26-34.
    [134]周彩霞,张雪军,袁忠勇.空心橄榄结构型纳米氧化铜的制备与表征[J].石 油学报(石油加工),2006,22(21):257-260.
    [135]龚良玉,朱风华,曹艳霞等.浸渍一煅烧法合成纳米氧化铜的研究[J].化学研究与应用,2010,22(3):328-330.
    [136]Maji S K, Mukherjee N, Mondal A, et al. Chemical synthesis of mesoporous CuO from a single precursor:Structural, optical and electrical properties [J]. J. Solid State Chem.,2010,183(8):1900-1904.
    [137]刘宏燕.椰壳基活性炭改性及其对Pb2+的吸附性能研究[D].长沙,中南大学,2010.
    [138]Zhu J, Qian X F. From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity [J].J. Solid State Chem.,2010,183(7):1632-1639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700