废水处理用新型光催化剂的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,水体污染已成为人类社会面临和亟需解决的重大课题。在众多水处理技术中,光催化氧化法以其环保、高效、节能而越来越受到人们的重视。纳米尺度的TiO_2被认为是一种极具前途的光催化剂,但由于其带隙较宽、光生载流子的复合率高等缺点而限制了它的实际应用。因此,制备和研究新型的高活性光催化剂是很有必要的。钒酸盐是一类极具潜力的光催化剂,已报导的如BiVO_4、InVO_4、Ag_3VO_4等都具有很窄的带隙宽度,从而能够更充分地利用太阳能光催化降解污染物。
     本文首先以硝酸铋(Bi(NO_3)_3·5H_2O)和偏钒酸铵(NH_4VO_3)为原料,通过氨水沉淀获得BiVO_4先驱体;然后采用低温熔盐法,在先驱体与熔盐(复合熔盐46wt%NaNO_3+54wt%LiNO_3或LiNO_3熔盐)比例为1:8的条件下,分别于不同温度下煅烧8h合成出了形貌各异、大小不同、结晶度良好的BiVO_4粉体;以硝酸钇(Y(NO_3)_3·6H_2O)和偏钒酸铵(NHO4VO_3)为原料,通过氨水沉淀获得YVO_4先驱体:再采用低温熔盐法,在先驱体与熔盐比例为1:8的条件下,分别于不同温度下煅烧8h合成出了具有良好结晶度的球状YVO_4纳米粉体。然后,通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和紫外-可见分光光谱(UV-Vis)等测试仪器对样品进行表征;最后,以YVO_4纳米粉体为光催化剂,以罗丹明B为对象模拟染料废水进行光催化降解实验,采用正交实验和单因素实验的方法,考察了水溶液的pH值、光催化剂的粒径、光催化剂的浓度对水溶液中罗丹明B降解率的影响,并初步探讨了YVO_4的光催化机理,研究结果如下:
     (1)煅烧温度对BiVO_4形貌尺寸、相结构和光吸收均具有明显的影响。XRD图谱显示:200℃下合成的BiVO_4为四方相,270℃及以上温度合成的BiVO_4皆为单斜相;SEM照片表明:四方相BiVO_4粒径大于单斜相的BiVO_4粒径;UV-Vis光谱分析表明:单斜相的BiVO_4比四方相BiVO_4和TiO_2具有更广的可见光谱响应。
     (2)熔盐的加入和煅烧温度对YVO_4结晶度、粒径和光吸收均具有显著的影响。XRD图谱显示:熔盐的加入明显改善了产物YVO_4的结晶度;TEM照片表明YVO_4的粒径则随煅烧温度的提高而增大;UV-Vis光谱分析表明:粒径10nm的YVO_4粉体吸光强度最强。
     (3)采用正交实验法,研究了YVO_4光催化剂的粒径、光催化剂的浓度和水溶液的pH值对YVO_4光催化降解罗丹明B的影响,得到了实验因素对罗丹明B降解率影响的主次顺序为:水溶液的pH值>光催化剂的浓度>光催化剂的粒径。
     (4)在正交实验的基础上,采用单因素实验的方法,进一步研究水溶液的pH值和光催化剂的浓度对YVO_4光催化降解罗丹明B的影响,结果表明,最佳条件为:pH值为4、光催化剂浓度为1g/L、10nm的YVO_4纳米粉体。通过一元线性回归,研究了不同条件下光催化降解速率的关系。
     (5)分析推测YVO_4光催化过程是光敏化和光催化联合作用的结果,其中光敏化起着主导作用;当两者达到平衡后,光催化效果达到最佳值。
In recent years,water pollution has become an urgent and serious problem for human society.Among the water treatment technologies,the photocatalytic oxidation has drawn widely attention for its environment-friendly,high efficient and energy saving.TiO_2 is considered as a promising photocatalyst.However,its large band gap and fast recombination rate of photogenerated charge hinder its application.Therefore, it is necessary to develop new photocatalyst with high activity.The vanadate is a kind of photocatalyst with great potential,it has been reported that BiVO_4,InVO_4,Ag_3VO_4 have a very narrow band gap,enabling the lull utilization of solar to degrade pollutants.
     In this thesis,Bi(NO_3)_3·5H_2O and NH_4VO_3 were used as raw materials to obtain BiVO_4 precursor by adding ammonia solution.And then,well-crystallized BiVO_4 powders with different morphologies and particle sizes were synthesized via a low temperature molten salt method at different temperatures for 8h in a weight ratio of 1:8 of the precursor to the molten salt;Starting from Y(NO_3)_3·6H_2O and NH_4VO_3,YVO_4 precursor was formed by adding ammonia solution as a co-precipitant.Then, well-crystallized YVO_4 nanoparticles were synthesized via a low temperature molten salt method at different temperatures for 8h in a weight ratio of 1:8 of the precursor to the molten salt.The samples were characterized with X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),UV-visible absorption spectra(UV-Vis) respectively.Finally,the photocatalytic degradation was carried out by using YVO_4 nanoparticles as photocatalyst and Rhodamine B as dye wastewater.The effects of the particle size,the pH value and the dosage of the YVO_4 photocatalyst on photodegradation were studied.In addition,the YVO_4 photocatalytic mechanism was also proposed,Results were as following:
     (1) The calcining temperature had a significant impact on morphology,particle size,crystalline phases and optical absorption of BiVO_4 particles.XRD patterns showed that:At 200℃,a pure tetragonal-phase BiVO_4 could be obtained,with the increasing of the calcining temperature from 270℃to 410℃,the tetragonal phase BiVO_4 gradually transformed to the monoclinic phase.SEM images revealed that: tetragonal-phase BiVO_4 particles were bigger than monoclinic-phase BiVO_4;The UV-Vis absorption spectra presented that:compared with tetragonal-phase BiVO_4 and TiO_2,monoclinic-phase BiVO_4 had a broader visible-light spectral response.
     (2) The molten salt and calcining temperature had great effects on the crystallinity, particle size and optical absorption of YVO_4 nanoparticles.XRD patterns showed that: the addition of the molten salt obviously improved the crystallization of YVO4;TEM images indicated that YVO_4 particles remarkably growed up with the increase of the calcining temperature;Their UV-Vis absorption spectra revealed that YVO_4 nanoparticles with 10nm possess the strongest UV absorption.
     (3) By adopting the orthogonal experimental method,the effects of the particle size, the pH value and the dosage of the YVO_4 photocatalyst on rhodamine B's photodegradation were studied.The order of the factors which influence the degradation was as follows:the pH value>the dosage of photocatalyst>the particle size.
     (4) For more detail,on the basis of the orthogonal experiment,the experiment of single-factor was carried out to fine the best conditions for the photodegradation of rhodamine B were:pH value for 4,the dosage of photocatalyst for 1g/L,YVO_4 nanoparticle size for 10nm.By using the unitary linear regression method,we could find out the relation of the degradation rates under different conditions.
     (5) It was predicted that the process of YVO_4 photodegradation was under the photocatalysis and photosensitization's association action.Moreover,the photosensitization played a major role.When the two factors reached a balance,the maximum rate was presented.
引文
[1]方旭洁.我国水资源可持续利用对策[J].水利发展研究,2008,8(3):24-27
    [2]张自杰等.排水工程[M].北京:中国建筑工业出版社,1999,448-590
    [3]陈金龙.树脂吸附法处理高浓度混甲酚生产废水的研究[J].南京大学学报,1995,4:598-603
    [4]王保成,许文林,孙彦平.有机污染物治理新技术评述[J].化工冶金,1996,3:278-281
    [5]F.B Dewalle,W.G Light.Organic carbon removal by advanced wastewater treatment process[J].Environ Sci Tech,1982,16:741-743
    [6]B.M Jones,et al.Effects of ozonation and ultraviolet irradiation on biodegradability of oil shale wastewater organic solute[J].Water Res,1985,11:1421-1428
    [7]A Fujisbima,K Honda.Electrochemical Photocatalysis of Water at a Semiconductor Electrode[J].Nature,1972,238:37-38
    [8]P.N.Moza,K.Fytianos,V.Samanidou,F.Korte.Photodecomposition of chlorophenols in aqueousmedium in the presence of hydrogen peroxide[J].Bull.Environ.Contam.Toxicol,1988,5:678-682
    [9]L.Cermenati,P.Pichaat,C.Guillard,A.Albini.Probing the TiO_2 photocatalytic mechanisms in waterpurification by use of quinoline,photo-fenton generated OH.Radicals and superoxide dismutase[J].J.Phys Chem.B,1997,101(14):2650-2658
    [10]J.R.Harbour,M.L.Hair.Radical intermediates in the photosynthetic generation of hydrogen peroxide with aqueous zinc oxide dispersions[J].J.Phys.Chem,1979,6:652-656
    [11]J.C.Vedrine,G.Coudurier,M.Forissier,J.C.Volta.Relations between catalytic properties and atomic arrangements of metallic oxides[J].Catal.Today,1987,1:261-280
    [12]E.Godard,E.M.Gaigneaux,P.Ruiz,B.Delmon.New insights in the understanding of the behaviour and performances of bismuth molybdate catalysts in the oxygen-assisted dehydration of 2-butanol[J].Catalysis Today,2000,1-4:279-285
    [13]M.T.Le,J.Van Craenenbroeck,I.Van Driessche,S,Hoste.Bismuth molybdate catalysts synthesized using spray drying for the selective oxidation of propylene[J].Applied Catalysis A:General,2003,2:355-364
    [14]M.M.Bettahar,G.Costentin,L.Savary,J.C.Lavalley.On the partial oxidation of propane and propylene on mixed metal oxide catalysts[J].Appl.Catal.A,1996,145:1-12
    [15]H iroak i T,M anabu A,Yasuyak i K,Seish iro I.Enhancing Effect of SiO_x Monolayer Coverage of TiO_2 on the Photoinduced Oxidation of Rhodamine 6G in Aqueous Media[J].J.Plays.Chem.B,1998,102:6360-6366
    [16]K.W.Boer.Survery of Semiconductor Physics[M].NewYork:Van Nostrand Reinhold,1990,231-249
    [17]E.Brillas,E.Mur,R.Sauleda.Aniline mineralization by AOP's:anodic oxidation,photocatalysis,electro-Fenton and photoelectro-Fenton processes[J].Appl.Catal.B:Environ,1998,16:31-42
    [18]R.M.Alberici,W.F.Jardim.Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide[J].Appl.Catal.B:Environ,1997,14:55-68
    [19]范崇政,肖建平,丁延伟.纳米TiO_2的制备与光催化反应研究进展[J].科学通报,2001,46:265-273
    [20]G.Pecchi,P.Reyes,P.Sanhueza,Villasenor.Photocatalytic degradation of pentachlorophenol on TiO_2 sol-gel catalysts[J].J.Chemosphere,2001,43:141-146
    [21]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.8-9.
    [22]张海萍.钒酸盐纳米发光材料和钛酸铋系光催化薄膜的制备及性能研究[D].山东大学博士学位论文,2007
    [23]A.I Ekimov,A.L Efros,A.A Onushchenko.Quantum size effect in semiconductor microcrystals[J].Solid State Communications,1985,56(11):921-924
    [24]G.A Niklasson.Optical properties of square lattices of gold nanoparticles[J].Nanostructured Materials,1999,11(12):725-733
    [25]王天赤,路殡,车巫智,辛显双,周百斌.纳米材料的特性及其在催化领域的应用[J].哈尔滨商业大学学报(自然科学版),2003,4:474-476
    [26]光焕竹,郝东凯,王安齐,杨陪霞,赵春梅.纳米材料的研究和进展[J].哈尔滨商业大学学报(自然科学版),2002,04:104-105
    [27]J.Eckert,J.C.Halzer,C.E.Krill,et al.Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders[J].J.Appl.Plays,1993,73:2794-2804
    [28]J.Lee,A.J.Easteal,U.Pal,D.Bhattacharyya.Evolution of ZnO nanostructures in sol-gel synthesis[J].Current Applied Physics,2009,9(4):792-796
    [29]L.Burtrand,J.R Zhang.Preparation,structure evolution and dielectric properties of BaTiO_3thin films and powders by an aqueous sol-gel process[J].Thin Solid films,2001,388(1-2):107-113
    [30]施尔畏,夏长泰,王步国等.水热法的应用与发展[J].无机材料学报,1996,11:193-206
    [31]R.H.Arendt,Z.H.Rosolowski,J.W.Szymaszek.Lead zirconate titanate ceramics from molten salt synthesis Powders[J].Mater.Res.Bull,1979,14:703-709
    [32]蔡君威,王聪秀.熔盐合成法制备铌铁酸铅粉末[J].化学世界,1993,34:616-618
    [33]W.D.Jamrack.Rare Metal Extraction by Chemical Engineering Techniques[M].Oxford Pergamon,1963,274-276
    [34]U.Rambabu,D.P.Amalnerkar,B.B.Kale,S.Buddhudu.Fluorescence spectra of Eu~(3+)-doped LnVO_4(Ln=La and y) powder phosphors[J].Mater.Res.Bull,2000,35:929-936
    [35]M.Yu,Y.H.Zhou,M.L.Pang,Luminescence properties of RP_(1-x)V_xO_4:A(R=Y,Gd,La;A=Sm~(3+),Er~(3+)x=0,0.5,1) thin films prepared by Pechini sol-gel process[J].Thin Solid Films,2003,444:245-253
    [36]L.Z.Zhang,Z.Hu,Z.B.Lin,G.F.Wang.Growth and spectral properties of Nd~(3+):LaVO_4crystal[J].J.Cryst.Growth,2004,260:460-463
    [37]Y.T.Kim,Gopukumar,K.B.Kim,B.W.Cho.Novel synthesis of high-capacity cobalt vanadate for use in lithium secondary cells[J].J.Power sources,2002,112:504-508
    [38]E.Andrukaitis.Lithium intercalation into the copper,nickel or manganese vanadates Me(VO_3)_(2y)H_2O[J].J.Power sources,1997,68:652-655
    [39]E.Andrukaitis,J.P.Cooper,J.H.Smit.Lithium intercalation in the divalent metal vanadates MeV_2O_6(Me=Cu,Co,Ni,Mn or Zn)[J].J.Power sources,1995,54:465-469
    [40]J.Ye,Z.Zou,H.Arakawa,M.Oshikir.Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO_4(M=V~(5+),Nd~(5+),Ta~(5+))[J].J.Photochem.Photobiol.A,2002,148:79-83
    [41]H.Harada,C.Hosoki,A.Kudo.Overall water splitting by sonophotocatalytic reaction:the role of powdered photocatalyst and an attempt to decompose water using a visible-light sensitive photocatalyst[J].J.Photochern.Photobiol A,2001,141:219-224
    [42]A.K.Bhattacharya,K.K.Mallick,A.Hartridge.Phase transition in BiVO_4[J].Materials Letters,1997,30:7-13
    [43] P. Wood,F.P. Glasser.Preparation and properties of pigmentary grade BiVO_4 precipitated from aqueous solution[J].Ceramics International, 2004,30:875-882
    [44] A. Kudo,K. Ueda,H. Kato,I. Mikami.Photocatalytic O_2 Evolution under Visible Light Irradiation on BiVO_4 in Aqueous AgNO_3 Solution[J].Catal. Lett, 1998,53:229-230
    [45] JingBing Liu, Hao Wang,Shu Wang,Hui Yan. Hydrothermal preparation of BiVO_4 powders[J]. Materials Science and Engineering B, 2003,104:36-39
    [46] Haibin Li,Guocong Liu,Xuechen Duan.Monoclinic BiVO_4 with regular morphologies: Hydrothermal synthesis, characterization and photocatalytic properties[J]. Materials Chemistry and Physics, 2009,115:9-13
    [47] Li Zhang,Dairong Chen,Xiuling Jiao.Monoclinic Structured BiVO_4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties[J]. J. Phys. Chem. B,2006, 110:2668-2673
    [48] Ken Hirota,Goro Komatsu, Masamichi Yamashita, Hideaki Takemura, Osamu Yamaguchi. Formation, characterization and sintering of alkoxy-derived bismuth vanadate[J].Mater.Res. Bull,1992,27,823-830
    [49] A. Kudo, K. Omori, H. Kato. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and highly Crystalline BiVO_4 Powder from Layered Vanadates at Room Temperature and and its Photocatalytic and Photophysical Properties[J].J.Am.Chem. Soc, 1999,121 (49): 11459-11467
    [50] Xi Zhang,et al. Selective synthesis and visible-light photocatalytic activities of BiVO_4 with different crystalline phases[J]. Materials Chemistry and Physics,2007,103:162-167
    [51] Aklhiko, K. Keiko, O. Hideki, K. A Novel Aqueous Process for Preparation of cyrstal Form-Controlled and Highly Crystalline BiVO_4 Powder form Layered vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties[J].J.Am.Chem.Soc, 1999,121,11459-11467
    [52] Hongmei Luo, Alex H. Mueller, T. Mark McCleskey, Anthony K. Burrell, Eve Bauer, and Q. X. Jia. Structural and Photoelectrochemical Properties of BiVO_4 Thin Films[J]. J. Phys. Chem. C 2008, 112, 6099-6102
    [53] Jinhua Ye, Zhigang Zou, Mitsutake Oshikiri, Akiyuki Matsushita, Masahiko Shimoda, Motoharu Imai, Toetsu Shishido. A novel hydrogen-evolving photocatalyst lnVO_4 active under visible light irradiation[J].Chemical Physics Letter:A,2002,356(3-4):221-226
    [54]Liwu Zhang,Hongbo Fu,Chuan Zhang,Yongfa Zhu.Synthesis,characterization,and photocatalytic properties of InVO_4 nanoparticles[J].Journal of Solid State Chemistry,2006,179:804-811
    [55]X U Lixian,SANG Lixia,MA Chongfang,LU Yuanwei,WANG Feng,LI Qunwei,DAI Hongxing,HE Hong,SUN Jihong.Preparation of Mesoporous In VO_4 Photocatalyst and Its Photocatalytic Performance for Water Splitting[J].Chin J Catal,2006,27(2):100-102
    [56]Chao Ming Huang,Guan Ting Pan,Yu Chu M.Li,Min Hsing Li,Thomas C.K.Yang.Crystalline phases and photocatalytic activities of hydrothermal synthesis Ag_3VO_4 and Ag_4V_2O_7 under visible light irradiation[J].Applied Catalysis A,2009,358(2):164-172
    [57]R.Konta,H.Kato,H.Kobayoshi,A.Kudo,Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates[J].Phys.Chem.Chem.Phys,2003,5:3061-3065
    [58]Xuexiang Hu,Chun Hu,Jiuhui Qu.Preparation and visible-light activity of silver vanadate for the degradation of pollutants[J].Materials Research Bulletin,2008,43:2986-2997
    [59]Misook Kang.Synthesis of Fe/TiO_2 photocatalyst with nanometer size by solvothermal method and the effect of H_2O addition on structural stability and photodecomposition of methanol[J].Journal of Molecular Catalysis A:Chemical,2003,197:173-183
    [60]Hui Xu,Huaming Li,Chundu Wu,Jinyu Chu,Yongsheng Yan,Huoming Shu.Preparation,characterization and photocatalytic activity of transition metal-loaded BiVO_4[J].Materials Science and Engineering:B,2008,147(1):52-56
    [61]Ge L.Novel visible-light-driven Pd/BiVO_4 photocatalyst for efficient degradation of methyl orange[J].Journal of Molecular Catalysis A:Chemical,2008,282:62-66
    [62]Hsin-Yu Lin,Yueh-Fang Chen,Yu-Wen Chen.Water splitting reaction on NiO/InVO_4 under visible light irradiation[J].International Journal of Hydrogen Energy,2007,32:86-92
    [63]Haiqing Jiang,Masayuki Nagai,Koichi Kobayashi.Enhanced photocatalytic activity for degradation of methylene blue over V_2O_5/BiVO_4 composite[J].Journal of Alloys and Compounds,2009,303:9-14
    [64]李琳.多相光催化在水污染治理中的应用[J].环境科学进展,1994,2(6):23-28
    [65]K.Shantha,G.N.Subbanna,K.B.R.Varma,Mechanically Activated Synthesis of Nanocrystalline Powders of Ferroelectric Bismuth Vanadaate[J].Journal of Solid State Chemistry, 1999,142:41-47
    
    [66] Shigeru Kohtani, Misa Tomohiro, Kunihiro Tokumura, Ryoichi Nakagaki, Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO_4 photocatalysts[J]. Applied Catalysis B: Environmental, 2005,58:265-272
    
    [67] Baoping Xie, Hanxia Zhang, Peixiang Cai, Rongliang Qiu, Ya Xiong, Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO_4 under visible light irradiation [J]. Chemosphere, 2006, 63:956-963
    
    [68] M.A.M.A. Maurera, A.G. Souza, L.E.B. Soledade, F.M. Pontes,E. Longo, E.R. Leite, J.A. Varel, Microstructural and optical characterization of CaWO_4 and SrWO_4 thin films prepared by a chemical solution method[J]. Materials Letters, 2004,58:727- 732
    [69] L.Z. Zhang, G.F. Wang, S.K. Lin. Synthesis, growth and spectral properties of Tm~(3+)/Yb~(3+)-codoped YVO_4 crystal[J]. J. Crystal Growth, 2002,241:325-329
    [70] W. Ryba-Romanowski. YVO_4 crystals-Puzzles and challenges Cryst[J].Res.Technol, 2003,38:225-236
    [71] H.Y. Xua, H. Wang, H. Yan. Preparation and photocatalytic properties of YVO_4 nanopowders[J]. Journal of Hazardous Materials, 2007, 144:82-85
    [72] K. Riwotzki, M.Hasse. Wet-chemical synthesis of doped colloidal nanoparticles: YVO_4: (Ln=Eu,Sm,Dy) [J]. J. Phys.Chem B, 1998,102:10129-10235
    [73] A. Huignard, V. Buissette, A-C Franville, T. Gacoin, J-P Boilot. Emission processes in YVO_4:Eu nanoparticles[J]. J. Phys. Chem. B, 2003.107:6754-6759
    [74] K. Riwotzk, M. Hasse. Colloidal YVO_4:Eu and YP_(0.95)V_(0.05)O_4: Eu nanoparticles: luminescence and energy transfer process[J]. J. Phys. Chem. B, 2001,105:12709-12713
    [75] Y.Q. Yu, S.H. Zhou, S.Y.Zhang. Luminescence of the compounds Y_(0.5-x)Li_(1.5)VO_4: (Dy, Eu)_x[J]. Journal of alloys and compounds, 2003,351:84-86
    [76] F.M Nirwan, T.K. Gundu Rao, P.K. Gupta, R.B. Pode. Studies of defects in YVO_4:Pb~(2+), Eu~(3+) red phosphor material [J]. Phys. Status Solidi (A), 2003, 198:447-456
    [77] G. Li, Y. Hong. Synthesis and luminescence properties of nanocrystalline YVO_4:Eu~(3+)[J]. J. Solid State Chem, 2005, 178:645-649
    
    [78] J. Ma, Q.S. Wu, Y.P. Ding. Mild hydrothermal solid-phase synthesis of YVO_4 nanocrystals[J]. Materials Letters,2007,61:3616-3619
    [79]Q.X.Zheng,B.Li,M.Xue,H.D.Zhang,Y.J.Zhan,W.S.Pang,X.T.Tao,M.H.Jiang.Synthesis of YVO4 and rare earth-doped YVO_4 ultra-fine particles in supercritical water[J].J.of Supercritical Fluids,2008,46:123-128
    [80]Zou ZG,Ye JH,Arakawa H:Structural properties of InNbO_4 and InTaO_4:correlation with photocatalytic and photophysical properties[J].Chemical Physics Letters,2000,332(3-4):271-277.
    [81]Zou ZG,Ye JH,Arakawa H:Pbotophysical and photocatalytic properties of InMO_4(M =Nb~(5+),Ta~(5+)) under visible light irradiation.Materials Research Bulletin,2001,36(7-8):1185-1193
    [82]Zou ZG,Ye JH,Sayama K,Arakawa H:Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO_4(M=Mn,Fe,Co,Ni and Cu)photocatalysts[J].Journal of Photochemistry and Photobiology a-Chemistry,2002,148(1-3):65-69
    [83]Zou ZG,Ye JH,Sayama K,Arakawa H:Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J].Nature,2001,414(6864):625-627
    [84]陈剑雄.稀土掺杂二氧化钛的制备及其光催化性能研究[D].福州大学硕士学位论文,2005
    [85]C.S.Turchi,D.F.Ollis,Mixed reactant photocatalysis:intermediates and mutual rate inhibition[J].J.Catalysis,1989,119:483-496
    [86]A.L.Pruden,D.F.Ollis,Photoassisted heterogeneous catalysis:the degradation of trichloroethylene in water[J].J.Catalysis,1983,82:404-417
    [87]D.D.Dionysiou,A.P.Khodadoust,A.M.Kern,M.T.Suidan,I.Baudin,J.M.Laine,Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO_2 rotating disk reactor[J].Appl.Catal.B:Environ,2000,24:139-155
    [88]王岩,隋思涟,王爱青.数理统计与MATLAB 工程数据分析[M].北京.清华大学出版社.2006,183-203.
    [89]Xuexiang Hu,Chun Hu,Jiuhui Qu,Preparation and visible-light activity of silver vanadate for the degradation of pollutants[J].Materials Research Bulletin,2008,43:2986-2997
    [90]Liwu Zhang,Hongbo Fu,Chuan Zhang,Yongfa Zhu,Synthesis,characterization,and photocatalytic properties of InVO_4 nanoparticles[J].Journal of Solid State Chemistry,2006,179:804-811
    [91]W.F.Yao,X.H.Xu,J.T.Zhou,X.N.Yang,Y.Zhang,S.X.Shang,H.Wang,B.B.Huang,Photocatalytic property of sillenite Bi_(24)AlO_(39) crystals[J].Journal of Molecular Catalysis A:Chemical,2004,212:323-328
    [92]K.Chhor,J.F.Bocquet,C.Colbeau-Justin,Comparative studies of phenol and salicylic acid photocatalytic degradation:influence of adsorbed oxygen[J].Materials Chemistry and Physics,2004,86:123-131
    [93]Bullock E L,Patthey L,Steinamann S G.Hydroxylated rutile TiO_2 surfaces studied by X-ray photoelectron sprectroscopy[J].Surface Science,1996,504:352-354
    [94]夏炎.纳米TiO_2光电催化降解亚甲基蓝的研究[D].东北大学硕士学位论文,2005
    [95]Wu T,Liu G,Zhao J,et al.Mechanistic study of the TiO_2-assited photodegradation of squarylium cyanine dye in methanolic suspensions exposed to visible light.New[J].J.Chem,2000,24:93-98
    [96]Liu G,Zhao J,Photocatalytical degradation of dye sulforhodamine B:A comparative study of photocalaysis with photosensitization[J].New J Chem,2000,24:411-417
    [97]T.X.Wu,G.M.Liu,J.C.Zhao,Photoassisted degradation of dye pollutants.V.self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO_2 dispersions[J].J.Phys.Chem.B,1998,102:5845-5851

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700