Mo-V-Sb-O催化剂上丙烷选择性氧化制备丙烯酸
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳烷烃广泛存在于天然气、煤层气、石油液化气及炼厂气中,目前主要用作燃料,价格相对低廉。由低碳烷烃制备醇、醛、酸等高附加值产品日益引起人们的重视。VPO催化剂用于丁烷催化氧化制备马来酸酐工业化生产的成功更是激发起科学界研发人员对低碳烷烃转化的极大兴趣,其中化学性质相对于甲烷和乙烷比较活泼的丙烷的催化氧化尤为引人注目。
     丙烯酸分子中由于含有极其活泼的α,β-不饱和双键而成为理想的聚合反应单体,因而应用广泛。传统的丙烯酸生产方法(主要丙烯的两步氧化法)由于原油价格迅速上涨而受到成本上涨的严峻考验。由丙烷选择氧化制备丙烯酸由于原料成本低廉因而广泛受到人们的关注。
     本文主要采用固相法、溶液法和水热合成的方法,制备了Mo-V-Sb-O多元金属氧化物催化剂,采用XRD、TG-DTA、SEM、EDS、FT-IR和BET等多种技术对所制备的催化剂的结构、形貌和组成等进行了表征,并基于所制备的催化剂开展了丙烷选择性氧化制丙烯酸反应研究。主要研究结果如下:
     (1)固相法所制备的催化剂几乎没有活性,溶液法制备的催化剂活性很低,水热合成法所制备的催化剂活性最高。
     (2)水热法制备的催化剂前驱体具有正交晶相的结构,但是因其表面吸附有一定量的铵根离子和水分子,从而影响了催化剂的活性,需要进一步的焙烧处理以脱去表面所吸附的铵根离子和吸附水。
     (3)催化剂的焙烧条件如焙烧温度、焙烧气氛、焙烧时间均对催化剂结构及表面性质具有重要的影响,进而影响催化剂的催化效果。通过实验对焙烧条件进行了详细的考察,并得出了最佳的催化剂焙烧条件为:焙烧温度600℃、氩气保护气氛及焙烧时间2h。
     (4)考察了合成母液中的金属原子配比对催化效果的影响。按金属原子摩尔比为Mo:V:Sb=6:2:0.5合成的催化剂Mo6V2Sb0.5Ox具有最好的催化性能,在原料气组成为C3H8/O2/CO2/H2O=6:12:24:75(vol)、空速为2760ml/(g·h)、反应温度为390℃条件下,丙烯酸的收率可达到11.7%。
     (5)考察了反应的工艺条件,包括平衡气、反应温度、原料气中水蒸气的含量和空速等对水热方法制备的催化剂Mo6V2Sb0.5Ox催化效果的影响,发现平衡气的引入可以抑制丙烷的过氧化,对于提高丙烯酸的选择性有一定好处。作为过氧化产物的之一的二氧化碳作为平衡气效果相对比较好;反应温度、水蒸气的含量和空速大小对丙烷的转化率和丙烯酸的收率有显著影响。在反应温度为390℃、原料气组成为C3H8/O2/CO2/H2O=6:12:24:50(vol)时,空速为3680ml/(g·h)的反应条件下,丙烯酸的收率达到了最高值(13.8%)。
Light alkanes now mainly used for fuel are cheap chemicals existed in natural gas, coal bed gas, liquid petroleum gas and petroleum refinery processes. Since light alkanes are very cheap chemicals, the conversion of light alkanes to high valued oxygenates and olefins such as corresponding alcohols, aldehydes, acids and propene has attracted much attentions in the past decades. The economic importance of this possibility and the successful manufacture of maleic anhydride by selective oxidation of n-butane over VPO catalysts have stimulated various researches, one of which is the selective oxidation of propane to acrylic acid because propane could be activated more easily than methane and ethane.
     Acrylic acid is an ideal monomer widely used in chemical industry due to itsα,β-unsaturated double bond. Up to now acrylic acid is commercially produced in a two-step process using propene as the raw material, which now limited by the climbing price of petroleum. Selective oxidation of propane to acrylic acid is one of promising methods to replace the commercial two-step method for producing acrylic acid.
     Various methods have been employed to prepare multiply metal oxides catalysts for selective oxidation of propane to acrylic acid, including solid state reaction method, solution method and hydrothermal synthesis method. some catalyst precursors and most of catalysts used in the present work were characterised by XRD, SEM, EDS,BET and FT-IR et al. Activity testing experiments were also carried out over as-prepared catalysts. Results can be listed as follows:
     (1) Mo-V-Sb-O catalysts prepared by hydrothermal method possess higher activity compared to those specimens prepared by other two methods.
     (2) Uncalcined precursors of Mo-V-Sb-O catalyst prepared by hydrothermal synthesis method show poor activity though possess orthorhombic structure for the adsorption of ammonium cation and water over their surface, so calcination is needed to drive off adsorbed specimens and to obtain catalytic activity.
     (3) Calcination conditions including calcination temperature, calcination atmosphere and calcination time have effective impacts over catalytic performance. An Effective Mo-V-Sb-O catalyst were obtained after as-synthesized orthorhombic-structured precousor were calcined for 2 hours in a 40ml/min flowing Argon atmosphere under 600℃.
     (4) Effects of molar ratio of different metal atoms in mother suspension over catalyst performance was investigated, preferred molar ratio of metal atoms is Mo:V:Sb=6:2:0.5. 28.7% of C3H8 conversion and 11.7% of acrylic acid yield was obtained when activity testing experiment was performed over as-prepared Mo6V2Sb0.5Ox catalyst under the following conditions: reaction temperature of 390℃, the space velocity of 2760ml/(g·h) and the feedstock composition(C3H8/O2/CO2/H2O volume ratio) of 6/12/24/75.
     (5) Effects of reaction conditions such as balance gas, reaction temperature, steam content and space velocity were investigated and discussed. Results showed that yield of acrylic acid was slightly promoted when nitrogen and carbon dioxide was introduced as balance gas respectively, which indicated that over oxidation was prevented to some extent. Acrylic acid selectivity and yield were strongly effected by reaction temperature, steam content and space velocity. The temperature of 390℃, the space velocity of 3680ml/(g·h) and the feedstock compositon (C3H8/O2/CO2/H2O volume ratio) of 6/12/24/50 were suitable for acrylic acid production. The acrylic acid yield could reach 13.8% when the optimal reaction experiment was tested.
引文
[1]赵在庆.丙烯酸及酯的生产与消费.化学工业. 2007, 25(9): 27-31
    [2] Manhua M L. Selective oxidation of propane to acrylic acid with molecular oxygen. Applied Catalysis A: General, 2001, 207: 1-16
    [3] Ai M. Oxidation of propane to acrylic acid on V2O5-P2O5 based catalysts. J Catal. 1986, 101: 389-395
    [4]程桦,韩一帆,王怀明.在Ce/VPO催化剂上丙烷一步氧化制丙烯酸.石油化工, 1999, 28(12): 803-807
    [5] Hodett B K. Vanadium phosphorus oxide catalysts for the selective oxidation of C4 hydrocarbons to maleic anhydride. Rev Sci Eng, 1985, 27: 373-424
    [6]李秀凯,赵静,季伟捷等.丙烷选择氧化制丙烯酸现状与展望,天然气化工. 2003, 28: 40-45
    [7] Cotton A, Wikinson G. Advanced Inorganic Chemistry, 5th Edition, Stuttgart: Wiley Interscience, 1988: 817-818
    [8]李霞,王鉴,方永奎等.丙烷氧化制备丙烯酸催化剂研发现状.石化技术与应用.2004, 22(3): 161-164
    [9] Ueda W, Suzuki Y. Partial Oxidation of propane to acrylic acid over reduced heteropolymolybdate catalysts. Chem Soc Jap Chem Lett, 1995,24(7): 541-545
    [10] Koshihara W L, Ueda W. Catalytic performation for propane selective oxidation and surface properties of 12-Molybdophosphoric acid treated with pyridine. Appl Catal A: General, 1999, 182: 357-363
    [11] Noritaka M, Suh D J, Han W, et al. Catalytic performance of Fe0.08Cs2.15H1.26PVMo11O40 for direct oxidation of lower alkanes. J Mole Catal A: Chem, 1996, 114: 309-317
    [12] Ushikubo T, Nakamura H, Koyasu Y, et al. Method for producing an unsaturated carboxylic acid. US Patent. 5380933, 1995-01-10
    [13] Takahaishi M , Tu X L, Hirose T, et al. Process for producing acrylic acid. US Patent. 5994580, 1997-11-30
    [14] Védrine J C, Novakova E K, Derouane E G. Recent developments in the selective oxidation of propane to acrylic and acetic acids. Catalysis Today, 2003, 81: 247–262
    [15] Ekaterina K N, Jacques C V. Propane oxidation on Mo–V–Sb–Nb mixedoxidecatalysts2.Influence of catalyst activation methods on the reaction mechanism. Journal of Catalysis, 2002, 21: 235–243
    [16] Ushikubo T, Oshima K, Kayou A, et al. Ammoxidation of propane over Mo-V-Nb-Te mixed oxide catalysts .Stud Surf Sci Catal, 1997, 112: 473-485
    [17] Ushikubo T, Oshima K, Kayou A, et al. Ammoxidation of propane over catalysts comprising mixed oxides of Mo and V. J. Catal, 1997, 169(1): 394-396
    [18] Vaarkamp M, Ushikubo T. Limitations of V–Sb–W and Mo–V–Nb–Te mixed oxides in catalyzing propane ammoxidation. Appl Catal A, 1998, 174(1): 99-107
    [19] Baca M, Aouine M, Dubois J, et al. Synergetic effect between phases in MoVTe(Sb)NbO catalysts used for the oxidation of propane into acrylic acid. Journal of Catalysis, 2005, 233: 234–241
    [20] Ueda W, Chena N F, Oshihara K. Hydrothermal synthesis of Mo–V–M–O complex metal oxide catalysts active for partial oxidation of ethane. Chem Commun, 1999, 517-518
    [21] Oshihara K, Hisano T, Ueda W. Catalytic oxidative activation of light alkanes over Mo-V-based oxides having controlled surface. Topics in Catalysis, 2001, 15: 2-4
    [22] Vitry D, Morikawa Y, Dubois J L, et al. Mo-V-Te-(Nb)-O mixed metal oxides prepared by hydrothermal synthesis for catalytic selective oxidations of propane and propene to acrylic acid. Applied Catalysis A: General, 2003, 251: 411-424
    [23] Ueda W, Endo Y, Watanabe N. K-doped Mo–V–Sb–O crystalline catalysts for propane selective oxidation to acrylic acid. Topics in Catalysis, 2006, 38(4): 261-268
    [24] Lin M. Complex metal-oxide catalysts for selective oxidation of propane and derivatives I: Catalysts preparation and applycation in propane selective oxidation to acrylic acid. Applied Catalysis A:General, 2003, 250(2): 305-318
    [25] Luo L, Labinger J, Davis M. Catalysis and Surface Science. In: 219th ACS Meeting. Poster, 2000, 123-125
    [26] Ushikubo T, Koyasu Y, Nakamura H. Production ofα,β-unsaturated carboxylicacid. Janpan patent. 10045664, 1998-03-04
    [27] Takahashi M, Hirose S. Preparation of catalyst for producing acrylic acid. Janpan patent. 10118491, 1998-12-01
    [28] Botella P, Concepcion P, Nieto J L, et al.The influence of Te-precursor in Mo-V-Te-O and Mo-V-Te-Nb-O catalysts on their catalytic behaviour in the selective propane oxidation. Catalysis Today, 2005, 99: 51–57
    [29]杨杏生.制备丙烯腈的新工艺-丙烷氨氧化.合成纤维工业,1994,17(3): 41-47
    [30] Gumnann A T. Ammoxidation of paraffins and catalysts therefore. United States patent. 4788317, 1988-11-29.
    [31]侯昭胤,戴擎镰,吴肖群等.丙烷直接氨氧化制丙烯腈综述.石油化工, 1997, 26(10): 697-702.
    [32]白尔铮.丙烷氨氧化制丙烯腈催化剂及工艺进展.工业催化, 2004, 12(7): 1-6
    [33] Shiju N R, Guliants V V. Microwave-Assisted Hydrothermal synthesis of monophasic Mo-V-Te-Nb-O mixed oxide catalyst for the selective ammoxidation of propane. Chem Phys Chem, 2007, 8(11): 1615-1617
    [34] Prada S R , Florea M , Grange P. Ammoxidation of hrdro-carbons and hydrogenated metallooxynitride catalyst therefore. England patent. 03053913, 2003-10-15
    [35] Kim Y C, Ueda W, Moro-Okay J .Selective oxidation of propane to acrolein over Ag-doped bismuth vanadomlybdate catalysts. Chem Soc Chem Commun, 1989, 652-653
    [36] Huang C J, Guo W, Yi X D, et al. Effect of support on performance of MoVTeO catalyst for selective oxidation of propane to acrolein. Stud Surf Sci Catal, 2004, 147: 661-666
    [37]杜鸿章,王贤高,迟亚武等.丙烷部分氧化制取丙烯醛I.多组份氧化物催化剂的研究.石油化工, 1997, 26(1): 1-4
    [38]李静,宗伟,窦伯生.钼钒酸铋体系催化剂上丙烷的选择氧化反应.应用化学, 1996, 13(2): 88-99
    [39] Kim Y C, Ueda W, Moro-oka Y. Catalytic activity of mixed metal oxides for selective oxidation of propane to acrolein. Chem Lett, 1989, 18(4): 531-534
    [40] Baerns M, Buyevskaya O V. Catalytic partial oxidation of propane to acrolein. Catalysis Today, 1997, 33: 85-96
    [41] Cavani F, Ballarini N, Cericola A. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation. Catalysis Today, 2007, 127: 113–131
    [42] Mamedov E A, Corberán V C. Oxidative Dehydrogenation of Lower Alkanes on Vanadium Oxide-based Catalysts: The present state of the Art and outlooks. Appl Catal A: General, 1995, 127: 1-40
    [43] Routray K, Reddy, Deo G. Oxidative dehydrogenation of propane on V2O5/Al2O3 and V2O5/TiO2 catalysts: understanding the effect of support by parameter estimation. Applied Catalysis A: General, 2004, 265(1): 103-113
    [44] Blasco T, Nieto J M. Oxidative Dehydrogenation of Short Chain Alkanes on Supported Vanadium Oxide Catalysts. Appl Catal A: General, 1997, 157: 117-142
    [45]方智敏,张伟德,刘为东等.载体酸碱性对丙烷氧化脱氢钒基催化剂性能的影响.厦门大学学报(自然科学版), 1994, 33(sup): 226-228
    [46]伊楠,刘咏梅,冯伟等.新型介孔钒氧化物催化剂上丙烷高选择性氧化脱氢制丙烯研究.复旦学报(自然科学版), 2004, 43(4): 597-603
    [47] Chaar M A, Patel D, Kung H H. Selective oxidative dehydrogenation of propane over V-Mg-O catalysts. J Catal,1988, 109: 463-467
    [48] Sam D S, Soenen V, Volta J C. Oxidative dehydrogenation of propane over V-Mg-O catalysts. J Catal, 1990, 123: 417-435
    [49] Chao Z S, Ruckenstein E. Noncatalytic and catalytic conversion of ethane over V-Mg oxide catalysts prepared via solid reaction or mesoporous precursors. Journal of Catalysis, 2004, 222(1): 17-31
    [50] Miller J E, Jackson N B, Evans Lindsey, et al. The formation of active species for oxidative dehydrogenation of propane on magnesium molybdates. Catal Lett, 1999, 58: 147-152
    [51]刘延,程铁欣,周广栋等. Ni-Mo-O催化剂中协同作用对丙烷氧化脱氢的影响.精细石油化工, 2002, 1: 30-32
    [52] Kaddouri A, Mazzocchia C, Tempesti E. Propane and isobutane oxidative dehydrogenat ion with K,Ca,and P-dopedαandβ-nickel molybdate catalysts. Appl Catal A: General, 1998, 169(1): 3-7
    [53] Yoon Y S. Propane oxidation over various metal molybdate catalysts. Catalysis Today, 1995, 24: 327-333
    [54] Zhang W D, Zhou X P, Tang D L, et a1. Oxidative dehydrogenation of propane over fluorine promoted rare earth-based catalyst. Catal Lett, 1994, 23: 103-106
    [55] Fang Z M, Hong Q, Zhou Z, et a1. Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catal Lett, 1999, 61: 39-44
    [56] Maione A, Ruiz P, Devillers M. Rationalization of the role played by bismuth and lanthanides in modified Ni–Co molybdates as catalysts for partial and total oxidation of propane. Catalysis Today, 2004, 91: 121-125
    [57]陈明树,翁维正,许翩翩等.酸碱性和氧化还原性对负载型钒基催化剂丙烷氧化脱氢性能的影响.天然气化工, 1998, 3(5): 17-20
    [58]张伟德,李基涛,傅锦坤等.丙烷在Ni0.5Mg0.5Mo1.05Ox催化剂上的氧化脱氢.天然气化工, 2000, 25(4): 1-4
    [59]照日格图,李文钊,于春英等.钼掺杂LaVO4上丙烷氧化脱氢.物理化学学报, 2000, 18(1): 1-5
    [60]余长林,葛庆杰,徐恒泳等.丙烷脱氢制丙烯研究新进展.化工进展, 2006, 25(9): 977-982
    [61] Tang J, Chen C X, Li W S, et al. Highly efficient conversion of propane to maleic anhydride and acetic acid by partial oxidation. Applied Catalysis A: General, 2005, 287: 197-202
    [62] Kerler B, Martin A. Partial oxidation of alkanes to oxygenates in supercritical carbon dioxide. Catalysis Today, 2000, 61(1-4): 9-17
    [63] Kerler B, Martin A, Jans A et al. Partial oxidation of propane in compressed carbon dioxide using CoOx/SiO2 catalysts. Applied Catalysis A: General, 2001, 220(1-2): 243–252
    [64] Kerler B, Martin A, Baerns M. Partial oxidation of propane to oxygenates in dense CO2 phase use (VO2)2P2O7 as catalysts. Chem Eng Technol, 2003, 26(4): 22-31
    [65] Lin M, Desai T, Kaiser F, et al. Innovation in selective oxidation by solid catalysts. Catalysis Today, 2000, 62(5-8): 231-232
    [66] Zheng B, Hua W M, Yue Y H, Gao Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide. J Catal, 2005, 232 (1): 143-151
    [67]邵怀启,钟顺和,郭俊宝. CO2氧化丙烷脱氢制丙烯用Pd-Cu/V2O5-SiO2催化剂的研究.催化学报, 2004, 25 (2): 143-148
    [68] Ekaterina K, Eric G D and Jacques C. Effect of water on the partial oxidation of propane to acrylic acid and acetic acid on Mo-V-Sb-Nb mixed oxides. Catalysis Letters, 2002, 83(3-4):117-182
    [69] Ueda W, Vitry D, Katou T. Crystalline MoVO based complex oxides as selective oxidation catalysts of propane. Catalysis Today, 2005, 99: 43-49
    [70] Ueda W, Vitry D, Katou T, et al. Key aspects of crystalline Mo-V-O-based catalysts active inthe selective oxidation of propane. Res Chem Intermed, 2006, 32(3-4): 217-233
    [71] Baca M, Millet J M M. Bulk oxidation state of the different cationic elements in the MoVTe(Sb)NbO catalysts for oxidation or ammoxidation of propane. Appl Catal A, 2005, 279: 67-77
    [72] Asakura K, Nakatani K, Kubota T, et al. Characterization and kinetic studies onthe highly active ammox-idation catalysts MoVTeNbOx. Catalysis Today, 2000, 194(2): 309-317
    [73] Kaddouri A C, Mazzocchia C, Tempesti E, The synthesis of acrolein and acrylic acid by direct propane oxidation with Ni-Mo-Te-P-O catalysts. Appl Catal A, 1999, 180(1-2): 271-275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700