螺磁机的研制及其在攀枝花磁选厂的选矿试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型高效磁铁矿精选设备的研制一直是选矿界的难点之一。自八十年代以来,随着矿产资源的日益贫化以及人类对钢铁需求量的不断扩大,加之环保要求,人们对高炉冶炼入炉的铁精矿品位要求越来越高,由于磁选能耗低,不需要价格昂贵的药剂,一大批新型磁选设备相继问世。攀枝花钒钛磁铁矿的磁选,已有30多年的历史,经过大量的试验研究与生产实践,磁选机筒体直径从φ750mm发展到φ1050mm,减少了磁选机的台数,显著地提高了选别作业的技术水平。然而随着市场经济的发展和产品竞争的不断升级,冶炼厂对钒钛铁精矿品位的要求,已从20世纪90年代的51.5%提升到目前的52.6%,这对选矿厂的生产产生了极大的压力。为了满足这一精矿指标的要求,选矿厂做了大量的技术工作,然而只有细磨是最有效的。通过细磨不仅可以使精矿品提升到52.6%以上,而且还有继续提升到53%的可能。但代价是巨大的,即细磨大大地降低了磨机的处理能力,选矿成本升高,同时矿石磨细后,-0.045mm粒级含量大幅度增加,粗选回收率显著下降,严重地影响了企业的经济效益和资源综合回收率。因此研究开发新型高效磁铁矿精选设备已迫在眉睫,本论文选择新型高效磁铁矿精选设备—螺磁机的研制及试验作为硕士论文的研究内容。
     我们在认真分析和研究现有磁选设备的基础上,针对攀钢选厂原矿入选粒度偏粗,有用矿物钛磁铁矿中,钛铁共生为复合矿物相,单一靠磁选的方法难以明显提高其精矿品位的特点,认为利用磁重联合力场,同时加强磁场强度和加强水力的淘洗冲刷作用,有利于磁铁矿精选。以开放磁系理论为基础,结合磁团聚弱磁选理论,提出了一种全新的磁铁矿精选设备—螺磁机的设计思想,突破了传统的“提高铁精矿品位就必须降低磁场强度”的观点。对螺磁机工业样机的设计提出了如下的要求:①螺磁机的磁系使用带有四条螺旋形的开放型磁系;②分选空间必须选用不导磁的耐磨损材料;③加强磁场强度以增加对磁性矿物的回收和加强切向给入的上升水流的强度以加强对非磁性矿物的淘洗,提高精矿品位;④整台样机需运行稳定可靠,调整方便,布局合理。
     螺磁机主要由旋转螺旋磁系、环形分选柱、给矿匀分器、尾矿槽、机架、精矿槽、传动系统等组成。具有分选精度高,精矿品位高,精矿回收率高以及能适用于强磁性矿物的粗选、精选和扫选的特点。
    
     螺磁机用于选别攀枝花帆钦磁铁矿的最佳操作条件为给矿ts吨/小时、磁
    系转速30转/分、单元格上升水t250奄升/秒.其选别指标为:铁精矿品位
    53.69%,尾矿品位15.87%,回收率为97.48%.
     理论研究表明:攀枝花钒钦磁铁矿现用中1050x3000mm湿式永磁筒式磁选
    机的磁场特性为H。·131.77‘,,J锄.0.125mm粗粒钦磁铁矿在中1050x300omm
    磁选机中距简体表面70.28mm处所受的磁力与机械总力平衡,该磁选机在底箱
    间隙小于7o.28mm时,适合于该粒级钦磁铁矿的磁选.而0.045mm粒级钦磁
    铁矿在距筒体表面75mm时,所受的机械总力是磁力的10倍,处于该位哭的
    0.045mm单颗粒钦磁铁矿磁选回收困难.因此要提高0.045mm细粒和徽细粒级
    钦磁铁矿的回收率,改变磁选机的磁场特性是必要的.
    扮
    咋
    螺磁机的上升水速应满足v>
    耐科(‘,一p)s
     句脚
    其磁场强度应满足
    Hgr
    adH,竺兰巡色匕边
    叼碑川JZ
    磁系转速要求。.嘴李
     h-
    科屏心阴以衬
     甸姆h.
    处理能
    .~、,~,、~、:_龙D
    刀明甘异公双刀:9.二万q。
     JU
    同常规的湿式永磁筒式弱磁场徽选机相比,螺徽机的精选能力有了极大的
    提高。
It has always been the difficulties to develop a new type of efficient equipment for cleaning magnetite in the mill. Since the 1980s, because of the indigence of mineral resources, the ever-increasing need for the steel, and protecting the environment, we need better quality of iron concentrate and the lowness of the energy consumption and chemical regents, a new set of equipment of magnetic separation appeared. Panzhihua vanadium titanium magnetite separation has a history of about 30 years. Magnetism separator has developed from 750mm to 1050mm; there is a reduction in the number of machines and operations technical level is obviously increased. However, with the development of market economy and the upgrade of the product competition, the smelt factory calls for the high grade of vanadium titanium concentrate, the grade has risen to 52.6% from 51.5% in the 1980s, which has led to the much pressure for the smelt factory. In order to meet the needs of this index, the factory has done a lot of technical work, but only fine grinding is most efficient. The concentrate grade not only rises to 52.6% but also rises to 53% through the fine grinding. But the cost is high, the fine grinding decreases the machine processing capacity, makes the cost increase, at the same time the contain of the -0.045mm particles increases largely, the recovery decreases apparently, which seriously affects the economic profits and the recovery of the resources. It is urgent to develop a new type of equipment, so the thesis focuses on the study of the new type efficient magnetic iron ore separation equipment ?spiral magnetic separation machine.
    We have analyzed and studied the present magnetic separators carefully, the results show that the Pangang raw mineral particle size is a little big, vanadium titano-magnetite is complex mineral combination available, it is difficult to promote the concentrate grade by a single separate method. So we consider definitely to make use of magnetic-gravity and to strengthen magnetic intensity and water. We have done much to design of the magnetic system and introduced a new designation of the spiral magnetic system firstly. It is based on the theory of the open magnetic system and the low magnetic coagulation theory; we put forward a new designation conception about spiral magnetic separator. It breaks down the traditional opinions-must be decreased magnetic intensity to improve Fe concentrate grade. It is required that the need of the designation of industrial prototype: 甌he designation of the four spiral magnetic is an important basis to realize the theory. (2) In order to realize the theory, the separation space must be un-conducted magnetic materials. (3) The water and the magnetic must be improved and strengthen, so that the recovery of the magnetic mineral and the Fe concentrate grade is improved. (4) The prototype must run steadily, be adjusted conveniently and layout reasonably.
    The spiral magnetic separator is made up of revolving spiral magnetic system, loop separation tube, presenting ore even disport organ, trailing groove, frame, concentrate groove, drive system. This machine has the characteristics of high separation precision, grade and
    
    
    
    recovery and can be used in the coarse separation, fine separation and scavenging of the strong magnetic minerals.
    The optimal operation conditions of the spiral magnetic separator in Panzhihua are as follows: feed rate is 5t/h, rotation speed is 30r/h, and ascending water is 250ml/s. The index is follow: iron concentrate grade is 53.69%, tailing grade is 15.87%, and the recovery is 97.48%.
    According to the theory and research, magnetism characteristic of the wet permanent magnetic tube separator is . The magnetic force acting on the 0.125mm coarse particles titanium magnetite iron, which is 70.28mm from tube surface in the diameter 1050x3000mm separator, is balanced with mechanic resultant force. If the bottom separation space is less than 70.28mm in the machine, it adapts to the recover of the titanium magnetite. However, when the 0.045mm titanium magn
引文
〔1〕 译文,磁选综述,国外选矿快报,1993,170(8):1~5
    〔2〕 译文,磁选综述(续),国外选矿快报,1993,171(9):1~5
    〔3〕 艾莉森·拉塞尔,磁选——门非常严格的科学,国外选矿快报,1992,155(17):1~6
    〔4〕 译文,稀土磁选设备及应用发展,国外选矿快报,1997,274(16):1~6
    〔5〕 译文,稀土永磁磁选机在选矿中的应用,国外选矿快报,1995,223(6):16~18
    〔6〕 J · Svoboda, Magnetic Methods for the Treatment of Minerals, ELSEVIER Amsterdam, 1987:68
    〔7〕 王常任,磁电选矿。北京:冶金工业出版社,1986
    〔8〕 蒋朝澜,磁选理论及工艺。北京:冶金工业出版社,1994
    〔9〕 孙仲元,磁选设备的现状及进展,国外金属矿选矿,1990(10):28~34
    〔10〕 曹志良,永磁磁选技术的新进展,金属矿山,1997(6):15~17
    〔11〕 赵昱东,磁选设备的新发展,冶金矿山设计与建设,1998(1):51~56
    〔12〕 冯旭滨,国外矿用磁选设备的现状与分析,选煤技术,1999(1):45~46
    〔13〕 朱俊士,中国钒钛磁铁矿选矿。北京:冶金工业出版社,1996
    〔14〕 王常任,磁电选矿。北京:冶金工业出版社,2002
    〔15〕 孙仲元,磁选理论。长沙:中南工业大学出版社,1987
    〔16〕 奥斯塔平科,铁矿石选矿。北京:冶金工业出版社,1981
    〔17〕 袁志涛、徐新阳、郑龙熙,磁团聚与弱磁选设备,有色矿冶,2001,17(1):17~19
    〔18〕 H · D · Wasmuth etc. The Proceedings of ⅩⅦ IMPC. Vol.3(23),1991,207~218
    〔19〕 刘秉裕、朱臣建,磁选柱的磁场和分选原理,矿冶工程,1997,17(2):31~34
    〔20〕 杨蓓德、屈春山、刘秉裕,新型高效磁选设备—磁选柱的研制,鞍
    
    山钢铁学院学报,1996,19(1):8~11
    〔21〕 赵辉、王玉香、刘秉裕,磁选柱的研制及应用.中国矿业.1997(3):91~92
    〔22〕 刘秉裕、赵通林、杨蓓德,磁选柱的研制和应用,金属矿山,1995(7):33~37
    〔23〕 郭绍安,国内高梯度磁选发展的探讨,昆明工学院学报,1994,19(3):38~45
    〔24〕 周平、郭绍安,国外高梯度磁选的发展,昆明工学院学报,1994,19(5):115~120
    〔25〕 P·A·奥古斯多等,新型磁选机和磁分级机的改进特点,国外金属矿选矿,2001(7):2~7
    〔26〕 魏建民,磁团聚重力分选机剖析,金属矿山,2002(2):39~41
    〔27〕 斯沃波达等,磁选法的最新进展,国外金属矿选矿,2003(12):13~18
    〔28〕 朱俊士,攀枝花—西昌地区钒钛磁铁矿的选矿特征,矿冶工程,1997,17(1):20~24
    〔29〕 袁志涛、郑龙熙,脉冲振动磁场磁选柱的研制与试验,金属矿山,2001(3):36~38
    〔30〕 冯定五、孙仲元.永磁磁选机的现状与进展,国外金属矿选矿,1992(12):1~5
    〔31〕 林潮、孙传尧,磁铁矿物的磁性及磁团聚对选矿过程的影响,矿冶,1997,6(3):25~31
    〔32〕 罗德璋,磁团聚重选法,矿产综合利用,1988(1):1~11
    〔33〕 E·马丁内斯,磁重分选,国外选矿快报,1992,143(5):10~11
    〔34〕 H·D·瓦斯穆特等,PERMOS-具有特殊钕铁硼磁铁结构的新型中场强筒式磁选机,国外选矿快报,1992,148(10):9~12
    〔35〕 T·耶尔帝,磁悬选矿机—发展及评述,国外选矿快报,1992,159(21):1~4
    〔36〕 Marlene Marinescu, etc. New permanent magnetic separator with NdFeB meets theoretical predictions, IEEEE Trans, Magns, vol25(3),1989:2732
    〔37〕 王常任、孙仲元、郑龙熙,磁选设备磁系设计基础。北京:冶金工
    
    业出版社,1990
    〔38〕 冯定五、陈荩,磁选技术的进展,国外金属矿选矿,1996(4):9~12
    〔39〕 刘秉裕、曾丽,磁选柱的磁场、上升水流及其对分选过程的影响,中国矿业,1996(3):49~52
    〔40〕 金文杰、朱高淑、曾丽,磁选柱分选攀钢选矿厂粗精矿的试验研究.金属矿山,2000(4):45~47
    〔41〕 金文杰、曾丽、朱高淑,用磁选柱选分攀枝花钒钛磁铁矿的试验研究,中国矿业,2000,9(4):65~67
    〔42〕 刘志雄,攀枝花钒钛磁铁矿的磁性特征及合理选别工艺探讨。见:第四届全国青年选矿学术会议论文集。昆明:云南科技出版社,1996
    〔43〕 J · Svoboda, Magnetic Methods for the Treatment of Minerals, ELSEVIER Amsterdam, 1987:69~77
    〔44〕 Dr.l.Kuzev and Dr.Stoyche Stove, Vibromagnetic separation or tronores, WorldMining Equipment,1986(12):84~86
    〔45〕 边荣岭,正交试验设计法优化磁选指标的研究与实践。见:第四届全国青年选矿学术会议论文集。昆明,云南科技出版社,1996
    〔46〕 曲德伟,攀枝花铁钛资源合理选矿工艺流程研究。见:第四届全国青年选矿学术会议论文集。昆明:云南科技出版社,1996
    〔47〕 王永堂,带式永磁中场强磁选机的试验研究。见:第四届全国青年选矿学术会议论文集。昆明;云南科技出版社,1996
    〔48〕 程应全,交变磁场磁力和最佳反向磁场强度的理论探讨,金属矿山,1995,223(1):33~36
    〔49〕 吴尚德,F 1050mm系列非均匀磁系永磁磁选机分选钒钛磁铁矿实践,金属矿山,1995,223(1):37~40
    〔50〕 刘秉裕,磁选柱在大型磁铁矿选矿厂应用前景,金属矿山,1996,241(7):27~29
    〔51〕 杨世忠,磁重选矿机的研制和应用,金属矿山,1996,241(7):30~33
    〔52〕 张振宇,BKPJF 1500mm×2000mm抛出分离筒式精选磁选机的研制和工业试验,金属矿山,1996,241(7):37~39
    〔53〕 储德应、蒋朝澜,强磁性矿物的选择性磁团聚分选机理论研究,金
    
    属矿山,1990(1):38~42
    〔54〕 魏以和、高福祥等,磁铁矿磁絮凝沉降行为及应用于分选的研究,金属矿山,1990(8):46~50
    〔55〕 东北工学院选矿教研室,磁电选矿。北京:冶金工业出版社,1977
    〔56〕 孟长春,攀枝花选矿厂选铁工艺现状及合理选矿工艺流程探讨,昆明工学院学报,1994,19(3):99~104
    〔57〕 王景宽.磁重选矿机用工业试验,矿山技术,1989(2),33~36
    〔58〕 汪云华,攀枝花钒钛磁铁矿合理磁选工艺研究,金属矿山,1999(1):20~24
    〔59〕 张建廷、张光伟,攀枝花选矿厂流程产物工艺矿物学研究.四川有色金属,1997,17(1):32~45
    〔60〕 谢建国、曾维龙、王安五,攀枝花选矿厂选铁新工艺工业试验研究,矿冶工程,1997,17(1):25~28
    〔61〕 廖祥文,攀枝花钒钛磁铁矿乘磁团聚重选工业试验,矿产综合利用,1998(1):9~11
    〔62〕 文书明、张文彬,攀枝花钛磁铁矿颗粒在磁场中的受力分析,有色金属(选矿部分),2004(2):24~27
    〔63〕 曾丽、金文杰,磁选柱代替细筛获得高品位磁铁矿精矿的实验研究,鞍山钢铁学院学报,2000,23(4):266~269
    〔64〕 D · Mochev, etc. Improving the efficiency of highly magnetic mineral separation by means of influenced vibration, ⅩⅦ IMPC papers, vol 3(3),1993:173~184
    〔65〕 HD.Wasmuth and KHUN-kelbach, Recent developments in magnetic separation of feebly magnetic minerals, Min Engr, 1991(4):825
    〔66〕 孙波,攀枝花密地选矿厂选别流程优化设想,矿业快报,2003(3):24~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700