超磁致伸缩材料微位移执行器空间磁场分布特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料是一种在室温和低磁场条件下,就能产生很大磁致伸缩应变的新型功能材料,具有输出力大、能量密度高、机电耦合系数大、响应速度快、输出应变大等优点,因此用超磁致伸材料制成的超磁致伸缩微位移执行器具有结构简单、体积小的优点,在振动控制、微定位控制、微进给控制等领域有着广阔的应用前景。
     本文在查阅大量中、外文文献的基础上,根据磁场标量磁位方法,建立超磁致伸缩材料内部空间磁场方程,进一步完善了超磁致伸缩材料的磁感应强度驱动模型。同时,应用数学仿真工具对磁场分布特性加以分析,并应用电磁场有限元分析软件对理论模型进行验证。
     在此基础上,根据线圈磁场均匀化理论方法,确立通过外磁场激励多组软铁对实现空间磁场的均匀化思路,并应用数学工具加以优化,求得了具有一定均匀度的空间磁场的结构参数,并根据求得的参数,应用磁路分析法重新设计了执行器的内部磁路结构,得到执行器内部各磁路结构参数,最终应用电磁场有限元分析软件对执行器内部空间磁场进行了仿真,仿真结果表明执行器中超磁致伸缩材料内部空间磁场具有较高的均匀度。
     另外,本文在分析执行器输出精度要求的基础上,对超磁致伸缩微位移执行器内部线圈的驱动程控恒流源的精度进行了分析,设计和改进了电路结构,优化了电路参数,解决了原有恒流源未能满足执行器驱动精度要求的问题。
     本文的研究,建立了超磁致伸缩材料内部空间磁场模型,同时也为同类执行器提供了磁场分析方法,并在一定的程度上解决了超磁致伸缩材料内部空间磁场的均匀化问题,为今后进一步提高均匀度、完善执行器设计及实现超磁致伸缩微位移执行器的精确控制奠定了理论基础。
Giant Magnetostrictive Material, GMM in abbreviatory, is one kind of new function materials
    and can give giant magnetostriction strains with temperature indoor and low magnetic field. It
    has good features such as giant strains, high force, high energy density, high
    mechanical-magnetic coupling coefficient, microsecond response and so on. So, Giant
    Magnetostrictive Actuators equipped with GMM are now being employed in a variety of
    applications such as vibration control, micro-feeding-on control, micro-displacemetnt
    positioning control with relative simply structures and small body.
    This paper was mainly concerned with the design and establishment of model of space
    magnetic field of GMM in the Giant Magnetostrictive Actuator (GMA), and solution of
    magnetic field uniformity degree of GMM in the GMA.
    The establishment of model of GMM is processed as follow: firstly, established the model of
    space magnetic field in the GMM using the theory of scalar magnetic potential; secondly,
    emulated the magnetic field of GMM and validate the model by ANSYS magnetic analysis
    software; lastly analyzed the magnetic field distribution characteristic of GMM.
    The solution of magnetic field equality degree of GMM in the GMA is described as follow:
    firstly, applied a few pair of soft iron to offer the magnet field for the GMM according to
    theory of winding uniformization; secondly, optimized the parameter by MATLAB
    mathematics emulation software; thirdly, designed the magnetic circuit framework by
    parameter; lastly, emulate magnetic field uniformity degree of GMM in the new GMA, and
    validate the model by ANSYS magnetic analysis software. From the emulation solution, the
    GMM magnetic field has perfectly uniformed in the new GMA.
    In addition, the paper introduce the method to improve the precision of programme control
    constant current source(CCS). the circuit framework is designed and optimization of
    parameter is described.
    This paper established a magnetic field model of GMM in GMA, provided a method to
    improve the strong magnetic field uniformity degree, and improve the precision of constant
    current source. It will highly benefit for the design of GMA and control precision of GMA.
引文
1.雷源忠.现代制造科学的新发展.中国机械工程,1999,10(9):962-965
    2.袁哲俊.王先逵.精密和超精密加工技术.机械工业出版社,1999
    3. Yiming R, Yaoxiang Zhu, Qicheng Zhang. Development of a micro-positioning system for Ultraprecision machines. ASME, 1990, 45(11): 25-31
    4.杜立群等.智能结构发展综述.机械设计与制造.1997,(3):49-50
    5.高旭,项占琴,邬义杰.磁致伸缩材料及其在机械工程中的应用.磁性材料及器件.1993,24(3):47-51
    6. Wakiwaka H, Aoki K, Yoshikawa T et al. Maximum output of a low frequency sound source using giant magnetostrictive material. J Alloys Comp, 1997, 258(8): 87-92
    7. Voccio J P, Joshi, Lindberg J F. Application of High-Temperature Superconducting Wires to Magnetostrictive Transducers for Underwater Sonar. IEEE Transactions on Magnetics, 1994, 30(4): 2845-2851
    8.张洪平,杜挺,王龙妹等.稀土——铁系超磁致伸缩材料水声换能器的研制.金属功能材料,1995,2(3):107-109
    9.周利生,曹荣,唐良雨等.多边形稀土换能器.声学与电子工程,1996,(1):8-10
    10.郭东明,杨兴,贾振元等.超磁致伸缩执行器在机电工程中的应用研究现状.中国机械工程,2001,12(6):724-727
    11.贾振元,杨兴,武丹等.超磁致伸缩执行器及其在流体控制元件中的应用.机床与液压,2000(2):3-4
    12.夏春林,丁凡,陶国良.GMM电—机械转换器驱动的气动压力阀.液压气动与密封,1999,(3):21-22
    13. Hiroshi E, Yasuhiko S, Ryuji H. Development of a giant magnetostriction type ultraprecision positioning device and ultraprecision machine tool equipped with it. JSME, 1994, 60(4): 1446-1452
    14.李旦,郭永丰,董申.磁致伸缩纳米级微量进给机构的实验研究.仪器仪表学报,1995,16(1):126-128
    15. 江田 弘.研究. Japan Society for Precision Engineering, 1991, (3): 134-139
    16. Eda H, Ohmura E, Sahashi M et al. Machine Tool Equipped with a Giant Magnetostriction Actuator-Development of New Materials Tb0.27Dy0.73(FeMn)1.93and Their Application. Annals of the CIRP, 1992, 41(1): 421-424
    17. Hirotami Nakano, Angstrom positioning system using a giant magnetostriction actuator for high power applications, IEEE, 2002
    18. ETREMAPRODUCTS, INC. http://etrema-usa.com/actuation/index.asp
    19. Teter J P, Sendaula M H, John Vranish et al. Magnetostrictive linear motor development. IEEE Trans Magn, 1998, 34(4): 2081-2083
    20. Claeyssen F, Lhermet N, Letty R Leet al. Actuators, transducers and motors based on giant magnetostrictive materials. J Alloys Comp, 1997, 258(8): 61-73
    
    
    21. Vranish L M, Naik D P, Restorff J B et al. Magnetostrictive Direct Drive Rotary Motor Development. IEEE Trans Magn, 1991, 27(6): 5355-5357
    22.贾振元,武丹,杨兴等,薄膜型超磁致伸缩微执行器的研究现状,压电与声光,2000(3):157-159
    23. Quandt E. Giant magnetostrictive thin film materials and applications. Journal of Alloys and Compounds, 1997, 258(8): 126-132
    24. Quandt E, Seemarm K. Fabrication and Simulation of Magnetostrictive Thin-film Actuators. Sensors and Actuators, 1995, A50(1~2): 105-109
    25.本田崇,荒井賢一.磁歪薄膜用微小走行機構動作特性.日本应用磁气学会誌,1996,20(2):537-540
    26.本田崇,荒井賢一.磁性薄膜驅動原理関—考察.日本应用磁气学会誌,1997,21(4-2):817-820
    27. Ohmata K, Zaike M, Koh T. A three-link arm type vibration control device using magnetostrictive actuators. J Alloys Comp, 1997, 258(8): 74-78
    28.顾仲权,朱金才,彭福军等.磁致伸缩材料作动器在振动主动控制中的应用研究.振动工程学报,1998,11(4):381-388
    29.欧阳光耀,施引.用磁致伸缩作动器进行主动隔振的研究.噪声与振动控制,1997,(4):2-5
    30. Uchida H, Wada M, Koike K, et al. Giant Magnetostrictive Materials thin film formation and application to magnetic surface acoustic wave devices. Journal of Alloys and Compounds, 1994, 211~212:576-580
    31.张榴晨.徐松.有限元法在电磁计算中的应用.北京.中国铁道出版社,1996.8:1-9
    32.莫喜平,朱厚卿等.Terfenol-D超磁致伸缩换能器的有限元模拟.应用声学,2000,(4):5-8
    33.贾宇辉,谭久彬.超磁致伸缩驱动器及有限元分析方法的研究.光学精密工程,2000,(2):161.164
    34.林鹤云,朱震莲.稀土永磁电机磁场有限元分析系统.微电机,1998,(3):7-10
    35.林荣文.谐波励磁同步发电机气隙磁场有限元分析.福州大学学报(自然科学版),1998,(1):61-64
    36.林鹤云,周鹗等.开关磁阻电机磁场有限元分析与铁耗计算.电工技术学报,1996,(1):25-29
    37.谭嘉成,谢仕聘.释放式印字机构线圈磁场有限元分析.西安电子科技大学学报,1996,(2):164-170
    38. J. Hwang, W. Lord. Finite element analysis of the magnetic field distribution inside a rotating ferromagnetic bar. IEEE Transactions on Magnetics. 1974, 10(4): 1113-1118
    39. R. Asensi, J. A. Cobos, O. Garcia, R. Prieto, J. Uceda. 1994 A full procedure to model high frequency transformer windings. IEEE. 1994:856-863
    40. R. Prieto, J. A. Cobos, O. Garcia, P. Alou, J. Uceda. Study of 3-D magnetic components by means of double 2-D methodology. 2003:183-191
    41. D.G. Taylor, R. Ahmed. Analysis of a linear variable reluctance motor with magnetically coupled phases. IEEE. 2002:219-223
    42. R. Wang, A.J. Kamper. Evaluation of eddy current losses in axial flux permanent magnet (AFPM) machine with an ironless stator. IEEE. 2002:1289-1294
    43. A. Van den Bossche, V. Valchev, T. Filchev. Improved approximation for fringing permeances in gapped inductors IEEE. 2002:932-938
    
    
    44. Q. Ramadan, V. Samper, P. Neuzil, L. Marie, Optimization of on-chip micro-electromagnets for biomolecular separation. IEEE. 2002: 249-254
    45. Byung I1 Lee, Suk Hoon Oh, Eung Je Woo, Soo Yeol Lee, Min Hyoung Cho, Ohin Kwon. Three-dimensional forward problem in magnetic resonance electrical impedance tomography. IEEE CNF. 2002, 2:967 968
    46. P.J. Yim, J. R. Cebral, A. Weaver, R. Lutz, G. B. C. Vasbinder, P. L. Choyke. Measurement of pressure drops at arterial stenoses from MR imaging. IEEE. 2002:1029-1030
    47.孙宝元,钱敏,张军.机电耦合大于等于二次感生效应探析.大连理工大学学报,1999,39(2):268-273
    48.刘梅冬,许毓春.压电铁电材料与器件.华中理工大学出版社,1990
    49.黄昆.固体物理学.高等教育出版社,1988
    50. Greenough R D, Schulze M P, Pollard D. Non-destructive testing of Terfenol-D. J Alloys Comp, 1997, 258(8): 118-122
    51. Moffett M B, Clark A E, Wun-Fogle M, et al. Characterization of Terfenol-D for magnetostrictive transducers. J Acoust Soc Amer, 1991,89(3): 1448-1455
    52. Besbes M, Ren Z, Razek A. Finite Element Analysis of Magneto-Mechanical Coupled Phenomena in Magnetostrictive Materials. IEEE Transactions on Magnetics. 1996, 32(3): 1058-1061
    53. Gros L, Reyne G, Body C. Strong Coupling Magneto Mechanical Applied to Model Heavy Magnetostrictive Actuators. IEEE Transactions on magnetics. 1998, 34(5): 3150-3153
    54. Ikeda M, Uemura K, Sasaki I, et al. Factors Affecting the Output Voltage ofa Magnetostrictive Torque Sensor Constructed from Ni-Fe Sputtered Films and a Ti-Alloy Shaft. 日本应用磁学会志,1998,22(6): 1074-1079
    55.吴国安.磁致伸缩非晶磁性传感器——磁性传感器的现状与未来(二).磁性材料及器件,1994,25(3):34-40
    56.周洪福.水声换能器及基阵.国防工业出版社,1984
    57. Clark A E, Teter J P, McMasters O D. Magnetostriction jumps in twined Tb_(0.3)Dy_(0.7)TFe_(1.9). J Appl Phys, 1988, 63(8): 3910-3912
    58. Kendau D, Piercy A R. Magnetization Process and Temperature of the Magnetomechanical Properties or Tb_(0.27)Dy_(0.73)Fe_(1.9). IEEE Transactions on Magnetics. 1990, 26(5): 1837-1839
    59. Choudhary P, Meydan T. A novel accelerometer design using the inverse magnetostrictive effect. Sensors and Actuators, 1997, A 59(4): 51-55
    60. Sunao Ishihara. High Precision Positioning for Submicron Lithography Bull. Japan Society of Prec. 1987, 21(1): 1-8
    61.赵英俊,杨克冲,杨叔子.非晶态合金传感器技术与应用.华中理工大学出版社,1998
    62.第三章(美)克劳斯(Kraus,J.D).电磁学.人民邮电出版社,1979
    63.徐在新,宓子宏.从法拉第到麦克斯韦.科学出版社,1986
    64.夏平畴.永磁机构.北京工业大学出版社.2002.12:35-44
    65.(美)R.K.Wangsness.电磁场.北京.科学出版社.1987.8:276-316
    66.电子工业部第二十一研究所.微特电机设计手册.上海科学技术出版社.1997:292
    67.杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究.国内优秀毕业论文.2001
    
    
    68.张泽瑜,赵钧编.电动力学.北京.清华大学出版社.1987.8
    69.雷银照.轴对称线圈磁场计算.北京-中国计量出版社.1991.8
    70.张宝裕,刘恒基.磁场的产生.北京-机械工业出版社.1987.9
    71.张智星.MATLAB程序设计与应用.清华大学出版社.2002
    72.孟庆龙,颜威利.电器数值分析.机械工业出版社,1993
    73.N30钕铁硼永磁材料性能说明书.沈阳绿德磁性材料有限公司
    74.(英)R.S.特贝尔,D.J.克雷克 北京冶金研究所磁性材料翻译组.磁性材料.科学出版社,1979
    75.(日)内山晋著,姜恩永 译.应用磁学.天津科学技术出版社,1982
    76.(日)大森酆明.磁性材料手册.机械工业出版社,1983
    77.(美)金建铭.电磁场有限元方法.西安电子科技大学出版社.1997
    78.唐兴伦,范群波等.ANSYS工程应用教程热与电磁学篇.中国铁道出版社.2003
    79.陈凯良,竺树声.恒流源及其应用电路.浙江科学技术出版社.1992
    80.邓汉馨,郑家龙.模型集成电子技术教程.浙江大学电子学教研室.1994:152-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700