强磁场中非晶晶化组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合Nd_2Fe_(14)B/α-Fe型磁体是八十年代末发展起来的新型永磁材料。这种磁体是由Nd_2Fe+(14)B相和α-Fe相在纳米尺度内复合而成的。α-Fe相中原子磁矩的转动受Nd_2Fe+(14)B相的控制,因而这种磁体具有磁能积高的优点,其理论预测磁能积高达1000KJ/m~3,远高于目前使用的各类永磁材料,被称为下一代永磁体。但是,目前制备出的纳米复合NdFeB永磁材料,其磁能积与理论预测有很大的差距。原因是理论上的计算采用的都是理想模型:晶粒形状规则,大小均匀,都要达到几十纳米。而目前制备纳米复合永磁材料主要采用快淬方法得到非晶合金薄带,然后通过加热晶化来获得纳米晶复相组织。以这种方法制备的纳米晶微观组织与理论模型相比,无论是晶粒大小,晶粒形状还是晶粒分布都有很大差距,由此造成了磁性能的差距。本论文在这种背景下展开研究,考察强磁场中NdFeB非晶晶化组织与性能,探索新的工艺以进一步提高纳米复合永磁材料的磁能积。
     首先,选择Nd-Fe-B基合金成分,并适当添加Co,制备成非晶合金;然后在强磁场中将非晶样品加热晶化处理,在不同的晶化条件下(外加磁场与晶化温度),制备出纳米晶材料;最后,通过XRD和TEM观察非晶晶化组织结构与形貌,利用振动样品磁强计(VSM)分析非晶晶化组织的磁性能。通过对实验结果分析,得到如下结论:
     1.在Nd_8Fe_(65)Co_(10)B_(17)非晶合金的DTA分析中,发现两个放热峰。第一个680℃的放热峰是非晶晶化峰,生成Nd_2Fe_(23)B_3,Nd_2Fe(14)B和α-Fe晶化相;第二个870℃的放热峰是亚稳相Nd_2Fe_(23)B_3的分解,生成Nd_2Fe_(14)和α-Fe。
     2.在非晶态Nd_8Fe_(65)Co_(10)B_(17)合金晶化的过程中,强磁场抑制了亚稳的Nd_2Fe_(23)B_3的析出,使其分解为稳定的Nd_2Fe_(14)B和α-Fe相。原因是Nd_2Fe_(23)B_3相从磁场中获得了能量,而越过势垒发生分解。
     3.在对晶化相的微观形貌进行分析时发现,磁场使得晶粒变小,晶粒分布变得均匀,同时使残余非晶相的量减少。通过热力学分析认为,磁场的存在改变了体系的自由能,从而增大了形核率,使得晶粒细化,并且减少了残余非晶相的量。
     4.在较低的晶化温度下(650℃),晶化析出的软磁相与硬磁相之间存在很强的交换耦合作用,材料具有很好的磁性能;当晶化温度升高后,由于晶粒长大,交换耦合作用被严重削弱,材料的磁性能也随之下降。由于磁场具有细化晶粒的作用,所以在晶化过程中施加磁场,可以有效地提高材料的磁性能。实验中发现,当外加磁场达到10T时,材料的磁能积提高了30%。
The nanocomposite Nd2Fe14B/ a -Fe magnet is a new kind of magnetic material developed since the end of 1980s. This kind of magnet consist of two phases: magnetically hard Nd2Fe14B and soft a -Fe. The rotation of magnetic moments in the a -Fe phase is controlled by Nd2Fe14B phase through exchange coupling effect which gives this kind of magnet high magnetic energy product (BH)m. This kind of magnet has 1000KJ/m3 (BH)m received by calculation, which is much higher than the (BH)m of other kinds of magnets. So this kind of magnet is called "The magnet of next era". But there is a large gap between the (BH)m received in the lab and the (BH)m received by calculation. The reason is that the theory (BH)m is calculated from ideal model, in which the shape of grains is regular, the distributing of two phase grains is homogenous and the dimension of all the grains is tens of nanometers. And at present the most popular way of producing nanocomposite permanent magnet is RQC, that is, rapid quenching and crystallization.
    The micro structure of magnet produced by RQC is different from the ideal model not only in the shape and distributing of grains but also in the dimension of grains. This difference leads to the gap of magnetic properties between the (BH)m received in the lab and the (BH)m received by calculation. In view of this condition the paper focuses on the micro structure and magnetic properties of crystallization phase transformed from amorphous NdFeB alloys under magnetic field in order to find new way of manufacturing nanocomposite permanent magnet with higher (BH)m.
    The first step is to ascertain component of alloy and transform the alloy into amorphous phase. Then transform amorphous phase into nanocomposite crystallization phase under different crystallizing temperature and different magnetic field. Finally analyze the microstructure of crystallization phase by XRD and TEM; analyze the magnetic properties of crystallization phase by VSM. Such conclusions can be drawn from the results: 1 . During the DTA analysis of amorphous Nd8Fe65Co10B17 alloy two peaks can be
    found. The first 680℃ peak represents the crystallizing of amorphous alloys.
    And the second 870℃ peak represents the decomposition of metastable
    2. During the crystallization course of amorphous NdgFe65Co10B17 alloy magnetic field promotes the decomposition of metastable Nd2Fe23B3. The reason is that Nd2Fe23B3 phase gains the energy from magnetic field and decomposes into Nd2Fe14B and a -Fe phase.
    3.By analyzing the microstructure of crystallization samples it can be found that magnetic field makes grains smaller, makes grain distributing more regular and makes remanent amorphous phase reduced. The thermodynamic analysis
    
    
    shows that magnetic field changes Gibbs free energy of the system and increase the rate of forming nucleus which leads to the experimental results above.
    4. At the low crystallizing temperature (650C) there is strong exchange coupling effect between magnetically hard phase and soft phase., and the magnet has high magnetic properties. With the increasing of crystallizing temperature the exchange coupling effect becomes weak because of grains' growing, and the magnetic properties of magnet becomes bad. Because magnetic field can make grains smaller it is useful to improve magnetic properties of the magnet by the participating of magnetic field during the crystallization. It can be found that the magnetic properties improves with the 30% increasing in (BH)m when magnetic field reaches 10T.
引文
[1] K. H. J. Buschow, Recent Progress of Magnetic Physics and Magnetic Material with Permanent Magnetism J. Less-Common Met., 1974, Vol. 37,p 91-95
    [2] J. B. Y.Tsui and K J.Snoter, The micomagnetisn and microstructure of R-Co permanent magnet, Appl. Phya Lett., 1971, Vol. 18, 107-110
    [3] 吴昌衡,庄育智,Sm-Co型永磁材料的研究进屣,材料科学与工程,1986,No.1,p.9-12
    [4] J.D. Livington, Dcmains in Sintered Cu-Co-Fe-Sm Magnets, J. Appl. Phys Lett., 1971, Vol. 46, p. 5259-5263
    [5] H. Nagel, Coercivity and Microstructure of Sm(Cu_(0.87)Co_(0.13)_(7.8),J. Appl. Phys, 1979, Vol. 50, p. 1026-1030
    
    
    [6] K.N.Melton Magnetic Properties of Sm: (Cu, Co) Alloys, J. Appl. Phys, 1976, Vol. 47, p. 2671-2675
    [7] 潘树明,第三代永磁材料—钕铁硼磁体,稀有金属材料与工程.1993,Vol.2:2,No3 P 1-6
    [8] C.D.Fuerst and J. F.Herbst,Selectively δ-doped quantum wall transistor grow by gas source molecular beam epitaxy, J. Appl. Phys, 1998, Vol. 15, p. 3324-3330
    [9] 赵韦人,王新林,李平,马诺,一种新型的永磁材料—复相纳米永磁,金属功能材料,2000,Vol.7,No.4,29-32
    [10] M. Sagawa, S. Hirosawa,H Yamamoto, S. Fujimura and Y. Matsura, Jpn, Discharge Properties of Formedferrite Plasma Sources, J. Appl. Phys, 1987, Vol. 26, p. 785-790
    [11] R.K.Mishra, microstructure of melt spun Nd-Fe-B magnequench magnets, J. Magn Magn Mater., 1986, Vol 54-57, p. 450-455
    [12] Coehoom R, de Mooij D. B, Duchateau J. P. W. B, et al. Nvel Permanenr Magnets Materials made by rapid Quenching, J. de Phys c. 8 Supplemen, 1988, 49:669-674
    [13] Kneller K F.,Hawig R,The Exchange-Spring Magnet:A New Materials Principle Permanent Magnets, IEEE Trans. on Magn MAG27(4), 1991:3588-3592
    [14] Manaf A., Buckley R.A,Davies H. A, New nanoctystalline high-remanence Nb-Fe-B by rapid solidification J. Magn.Mater., 1993, 128:302-308
    [15] Ding J., Mccormick P.G.,Remanence enhancement in Mechnically alloyed isotropic Sm_7Fe_8(?) nitrid J. Magn. Mater., 1993, 124: 1-4
    [16] J.E.Herbst J.J.Croat and F.E.Pinkerton, Relationships between crystal structure and magnetic properties in Nd_Fe_(14)B. Phys. Rev. B., 1984, Vol. 29, p. 4176-4179
    [17] D. Givord. H S. Li, L. M. Moreau Solid State Commu 1984 Vol50, p. 497-500
    [18] C. B.Shoemaker and R. Fruchart, Acta Crystall., 1984 Vol. 40, p. 1665-1670
    [19] 周寿增,董清飞著,《超强磁体-稀土铁系永磁材料》,北京,冶金工业出版社,1999,p 107
    [20] E Kneller, Ferromagnetism, Berlin,Springer, 1962, p. 67
    [21] A Sakuma, S. Tanigawa and M. Tokunaga J. Magn. Magn Mater., 1990, Vol. 84,p 52-57
    [22] R S.Tebble and D.J.Craik著,北京冶金研究所《磁性材料》翻译组译,《磁性材料》,北京,科学出版社,1979,p371
    [23] 周寿增等著,《稀土永磁材料及其应用》,北京,冶金工业出版社,1995,p 219
    [24] F. C Stoner and E. P..Wohlfarth, Philos. Trans R. Soc. London Se., 1948, Vol. A240, p. 599-604
    [25] G. B. Clemente, J. E Keem and K. Bradley, The Microstructural and Compositional Influence upon HIREM Behavior in Nc_2Fe_(?)B, J.Appl. Phys, 1988, Vol. 64, p. 5299-5308
    [26] A, Manf, M. Alkhafaji, P. Z. Zhang and H. A Davies, J.Magn. Mater., 1993, Vol. 128, p. 307-313
    [27] M. Jurczky, S. J. Collocott, J. B Dunlop and P.B. Gwan,,Magnetic properties of nanoccmposite (Nd, Dy)2(Fe, Co, Cr)14B and Nd(Fe,Mo)12Nx mterials with excess of Fe, J. Phys. D:Applied Physics 1996, Vol. 29, p. 2284-2290
    [28] R. Fischer, T. Schrefl, H. Kronumller and J. Fidler, Grain size dependence of remnence and coercive field of isotropic nanocrystalline compositeit permanent magnets, J. Magn. Magn Maten, 1996, 153:35- 42
    [29] R.Skcmsky, Aligned Two Phase Magnet:Permanent Magnetism of The Future, J. Appl. Phys, 1994, 76:7079-7063
    
    
    [30] R. Skomsky and J. M D. Coey, Giant energy product in nanostructure two-phase magnets, Phys Rev. B, 1993, 48:15812-15820
    [31] J.Fidler and T.schrefl, Overview of Nd-Fe-B Magnets and Coercivity, J.Appl.Phys, 1996,79:5029-5037
    [32] T. Schrefl, J. Filder and H. Krormuller, Nucleation field of hard magnetic particles in 2D and 3D micromagnetism calculation, J. Magn. Magn. Mater., 1994, 138:15-22
    [33] A. Manaf, R. A. Buchley and H. A. Daviea J. Magn. Magn. Mater., 1993, 128:302-310
    [34] R. Coehoom D. B. de Mooji and C. de Waard, J. Magn. Magn. Mater., 1989, Vol. 80:101-109
    [35] A. Inoue, A Takeuchi, A. Makino and T. Masumoto, Materials Transactions, JIM, 1995, 36:962-968
    [36] A. Manaf, M. Leonowicz, H. A. Davies and R. A. Buckley, Effect of Grain Size and Microstructure on Magnetic Properties of Rapidly Solidified Fe_(82.4)Nd_(13.1)B_(45) alloy, J. Appl. Phys, 1991, 70:6366-6373
    [37] 何圣静,高莉如著,《非晶态材料及其应用》,北京,机械工业出版社,1965,p.30
    [38] W. C Chang,D. M. Dsing, B. M. Ma and C O. Bounds, The effect of boron on the microstructure and exchange couple effect of Nd_(9.5)Fe_(86-5x)B_(5+x) melt spun ribbons IEEE Trans. Magn., 1996, 132:4425-4434
    [39] 高彦东,张少卿,刘伯操,纳米复相Nd_xFe(94-x)B_6(x=7,8,9,10)合金的结构与磁性能,金属学报,1999,Vol.35,p.1103-1110
    [40] W. F. Miao, J. Ding P. G. Mcormick and R. Street, Remanence enhance Nd_Fe_(87)M_1B_(14)(M=Fe, V, Si, Ga, Cr) alloy, J. Magrn. Magn. Mater., 1998,177:976-983
    [41] 张敏刚,周俊琪,郭东城等人,NdFeB系纳米复合永磁合金,材枓导报,1998,12:16-21
    [42] Donnell K.,Rao X.L. and Coey J.M.D. et al, Exchange coupling and grain boundary in magnetic nanocomposition, IEEE Trans. On Mag, 1997, 33:3886-3889
    [43] Jczierska E. and Faszuwra W. TEM study of inhomogeneities in Nd-Fe-B sintered mashers, IEEE Trans. On Mag, 1994, 30:583-583
    [44] Betancout J.I. and Davies H. k, Magnetic properties of nanocrystalline didymirm(Nd-Pr)-Fe-B alloys. J. Appl. Phys, 1999, 85:5911-5915
    [45] 潘树明,马如璋,李国保等,Nd-Fe(Co,Al,Ga)-B合金的磁性及Al,Co,Ga原子的晶位占据研究,中国科学,1991,A5:538-545
    [46] Grmossinger R, Heib S., Wiesinger G., et al, J. Magn Magn. Mater., 1989, 80:61-69
    [47] Hirosawa S.,High-coercivity iron-rich rare-earth permanet magnet material based on (Fe, Co):B-Nd-M(M=Al, Si, Cu, Ga Ag, Au), J. Appl. Phys, 1993, 73:6488-6492
    [48] Liu J. F. and Davies H. A, Magnetic properties of cobalt substituted Nd_Fe_(14)B/α-Fe nanocomposite magnets processed by overquenching and annealing, J. Magn. Magn. Mater., 1996, 157-158:29-30
    [49] Chang W.C. ,Chiou D.Y. and Bounds C.O.,High performance α-Fe/R_2F_(14)B-type nanocomposites with nominal compositions of (Nd, La)_(95)Fe_(78-x)Co_xCr_2B_(10 5)(x=0-10), J. Magn. Magn. Mater., 1998, 198:55-61
    [50] Micski A. and Uhrenius B, A Contribute to the Knowledge of Phase Equilibria and the Magnetic Properties of the Nd-Fe-B-X Systems (X=Al, Co, V), J. Appl. Phys, 1994, 75:6265-6268
    [51] Hu J. F. and Wang Z X,Magnetical tunable oscillators and filters, IEEE Trana. On Magn., 1989, 25: 3249-3251
    [52] Tokunaga M, Improvement of thermal stability of Nd-Dy-Fe-Co-B sintered magnets by additions of AL, Nb and Ga IEEE Trans. On Mag, 1987, 23:22887-2289
    
    
    [53] Jurczyk M., Jakubowycz J., Nanocomposite Nd_2(Fe, Co, Cr)_(14)B alpha Fe permanent magnetic materials, J. Magn. Mang. Mater., 1998. 185:66-70
    [54] Chen Z. H.,Shen B.G. and Zhan W.S.,Effect of carbon substitution on the magnetic properties and crystalline phases of melt-spun Nd_4Fe_(77.5)B_(48.5) alloys, Phys. Rew., 1995, B51: 12433-12435
    [55] Gried B. and Fritz K, As-cast Magnets Based on Fe-Nd-C J. Appl. Phys., 1991, 70:6456-6459
    [56] Cheng B. and Zhang M, ISPMM95,Seoul Korea, 1995,745-748
    [57] Fidler J. and Bernardi J., Tranmission Electron Microscope Characterization of cast and Hotworked R-Fe-B:Cu(R=Nd, Pr) permanent magnets. Appl. Phys, 1991, 70:6456-6459
    [58] Bernardi J. and Fidler, Preparation and transmission electron micrscope investigation of sintered Nd_(15.4)Fe_(75.7)B_(6.7)Cu_(4.3).Nb_(0.9) magnet, J. Appl. Phys., 1994, 76:6241-6245
    [59] Raviprasad K., Ravishankar N. and Padhyay K.C.,J.,Magnetic hardening mechanism in nanocrystalline Nd_2Fe_(14)B with addition of Cr, Cu or Zr, J.Appl. Phys, 1998,83:916-920
    [60] Camp F.E. and Kim A. S.,Effect of Microstructure on the Corrosion Behavior of NdFeB and NdFeCoAlB Magnets, J. Appl. Phys, 1991, 70:6348-6351
    [61] Yang C J.,Park E. B.,Hawig Y.S.,The effect of Co on the enhanced magnetic peoperties of Fe_(?)B/Nd_2Fe_(14)B magnets J. Magn. Magn. Mater., 2000, 212:168-174
    [62] Fidler J. and Schrefl T., Overview of Nd-Fe-B Magnets and Coercivity, J. Appl. Phys., 1996, 79:5029-5034
    [63] Kanekiyo H, Hirosawa S., Microstructure and magnetic properties of high remanence Nd_(?)Fe_(?)Co_5B_(?)M(M=Al, Si, Ga, Ag, Au) rapidly solidified and crystallized alloys for resin-bond magnets, IEEE Trans. On Mag., 1993, 29:2863-2865
    [64] Ping D. H., Hono K. and Hirosawa S., Partitioning of Ga and Co atoms in a Fe_(?)/Nd_2Fe_(14)B nanocomposite magnet, J. Appl. Phys., 1998, 83:7769-7773
    [65] Mishra R. K., Panchanathan V., Microstructure of Higfi-remanenve Nd-Fe-B Alloys with Low-rare-earth Content, J. Appl. Phys, 1994, 75:6652-6655
    [66] Wang Z.C.,Zhang M.c.,Zhou S.Z,et al, High-coercivity (NdDy)_2(FeNb)_(14)B-α-Fe nanocrystalline alloya J. Appl. Phys, 1997, 81:5097-5099
    [67] Schrefl T., Fidler J. and Kronmuller H., Remanence and coercivity in isotropic nanocrystalline permanent magnets, Phys. Rev., 1994, B49:6100-6110
    [68] Krormuller H, Fischer R. and Zerm. A. et al, Micromagnetism and microstructure of hard magnetic materials, J. Phys D:Appl. Phys., 1996, 29:2274-2278
    [69] Bauer J.,Seeger M. and Kronmuller H., Nanocrystalline NdFeB Permanent Magnet with Enhanced Remanence, J. Appl. Phys., 1996, 80:1667-1673
    [70] Sun X K., Zhang J., Chu y. l. et al, Dependence of magnetic properties on the grain size of α-Fe in nanocomposite(Nd, Dy)FeB magnets, Appl. Phya. Lett., 1999, 74:1740-1742
    [71] Kneller E. F., The exchange spring magnet:a new matreial principle for permanent magnets, IEEE Trans. on Mag., 1991, 27:3588-3600
    [72] Schrefl T. and Fidler J., Finite element modeling of nanocomposite magnets, IEEE Trans. On Mag., 1999, 35:3223-3228
    [73] Billoni K., Urreta S. E. and Bertorello H. R., Dependence of the coercivity on the grain size in a
    
    NdFeB/α-Fe nanocrystalline composite with enhanced remanence, J.Magn.Magn. Mater., 1998, 187:371-380
    [74] Chang W. C and Hsing D.M.,Magnetic properties and transmission electron microscope microstructure of exchange coupled Nd_(12-x)Fe(82+x)B_6 melt spun ribbons, J. Appl. Phys, 1996, 79:4843-4847
    [75] Wang Z.C,Zhou S. Z. and Zhang M.C et al, Effects of as-Quench Structure on the Phase Transformation and Magnetic Properties of Melt-Spun Pr_Fe_(88)B_6 Ribbons J. Appl. Phys, 1999,86:7010-7016
    [76] Yang C. J.,Kim S.M.,Application of Taguchi method to robust design of BLOC motor performance, IEEE. Trans. On Mag, 1999,35:233-237
    [77] Yang C. J., Park E.B.,The effect of magnetic field treatment on the enhanced exchange coupleling of a Nd_2Fe_(14)B/Fe_(?)B magnet, J. Magn. Magn. Mater., 1997, 166:243-248
    [78] Resarch matters pub. By Oxford Instrument, Issue 7,Aug (1997)
    [79] E. Beaugnon, D. Bourgault, D. Braithwaite, A. Sulpjce and R. Toumier:J. Phys. 1 France, (1993)
    [80] 茂木严,材料电磁最近动向,日本钢铁协会高温部会,(1996)6
    [81] 佐键介,森川拓,浅井滋生,日本金属会志,特集《强磁场材料科学》61(1997),1283
    [82] 东启介,佐键介,浅井滋生,电磁研究会,平成9年度第3回研究发表会,(1997)
    [83] 腋宪久,佐键介,浅井滋生,铁钢,86(2000),363
    [84] C C Koch. Experiment evidence for magnetic or electric field effects on phase transformations,Materials Science and Engineering 2000, A287:213-218
    [85] 环球信息,金属功能材料,1996,Vol.3,p.148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700