鄂尔多斯盆地南区保安群地下水水化学特征及演化机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯白垩系盆地是由巨厚层白垩系下统保安群陆相碎屑岩组成的大型自流水盆地,盆地以白于山为中线划分为南北两大部分。白于山以南地区,面积约5.5892万km2,地表水短缺、地下水水质复杂,可用水资源非常短缺,对鄂尔多斯能源基地的扩建造成影响,为了寻求优质地下水源,有必要进行该区的地下水水化学演化机理研究。
     本学位论文依托中国地质调查局国土资源大调查项目“鄂尔多斯盆地地下水勘查”,以鄂尔多斯盆地白于山以南的白垩系分布区(简称“盆地南区”)为研究区,以盆地南区白垩系地下水为研究对象,以水文地球化学理论为指导,应用数理统计、聚类分析、水文地球化学模拟等多种技术方法和常规水文地质分析相结合的手段,深入研究了盆地南区白垩系保安群中深层地下水水化学演化过程和规律,取得了以下主要研究结果:
     1.盆地南区西北部洛河组和环河组地下水水化学类型均以SO4·Cl—Na型水为主,水质差;盆地南区自边界和西南边界向马莲河东线一带,地下水类型呈HCO3—Ca·Mg·Na型水、HCO3·SO4—Na型水、HCO3·SO4·Cl—Na型水、向S04—Na型水和S04·Cl—Na型水水平分带现象;研究区罗汉洞组地下水从西北向东南,水化学类型由S04·Cl、HCO3·SO4·Cl型逐渐转化为HCO3·S04、S04型,向南该组尖灭一带为HCO3型水。
     2.通过对盆地南区保安群各含水岩组地下水化学场对地下水流场指示意义的研究表明:洛河组、环河组地下水水化学分带与水动力分区吻合的较好,从补给区到排泄区,地下水中除了HCO3-含量逐渐减少,TDS和其他常量组分均呈增大趋势,水化学场对水动力场的指示作用明显;罗汉洞组地下水化学分带与水动力场分区不太吻合。
     3.利用地下水中主要离子含量和离子当量比值的变化趋势分析了各水流路径上的水文地球化学过程:研究区地下水水化学成分总体上受水动力条件和径流路径上易溶盐累积作用的影响,研究区的西南端、东部边缘和西部六盘山一带,rCa/rNa、rMg/rNa、Ca/rCl、rHCO3/rCl比值多属于高值区,具有补给区特征;而在马莲河、泾河一带上述系列比值则相对较小,属于低值区,具有径流排泄区特征;研究区rNa/rCl和rSO4/rCl比值基本上都大于1,反映了盆地南区白垩系地下水沿径流方向呈现Na富集盐化的水文地球化学过程,且硫酸盐的富集速率比岩盐快。
     4.通过对长武、彬县一带洛河组典型水流路径B12→2-6-1→水D20及水样点D30地下水化学演化特征分析,推断洛河组地下水的排泄基准面介于点水D20和水D30之间的某个位置上;罗汉洞组水流路径盐65→镇基7-Ⅰ上存在混合作用,在罗汉洞组局部地段混合作用明显,因此,地下水化学分布规律与水动力分区不吻合,这与上述聚类分析水化学场对水动力场指示结果相一致。
     5.盆地南区保安群地下水质量平衡模拟结果表明,溶滤作用是研究区地下水化学演化过程中的主要作用,在地下水径流过程中主要发生了石膏、岩盐、斜长石、钾云母、钾长石或CO2等不同程度的溶解反应和伊利石沉淀反应;阳离子交换在洛河组、环河组地下水化学演化过程中作用较强,而罗汉洞组相对较弱;混合作用多发生在薄覆盖区或裸露地段。
     6.通过盆地南区各模拟路径上的地下水单位距离长度上石膏、NaCl、斜长石的溶蚀量(mmol/L·km)研究表明,单位距离溶蚀量低的路径基本都分布在补给区,而单位距离溶蚀量高的路径多位于地下水径流排泄区,水化学模拟结果更进一步说明了地下水水化学演化规律对地下水动力场的指示作用。
     7.保安群地下水正向水文地球化学模拟结果进一步表明了影响洛河组和环河组地下水化学演化过程的主要是溶滤作用和交换作用;在罗汉洞组地下水化学演化过程中阳离子交换吸附作用较弱,以溶滤作用为主。
The Ordos Cretaceous basin is a large scale artesian water basin which is constituted by the thick layer Cretaceous foot length Bao'an group continental facies calstic rock. The basin is division to south and north basin in terms of Baiyu Mountain. In south of Baiyu Mountain, the area is 5.5892 ten thousand km2, surface water shortage, groundwater quality complexity, and the available water resource is super shortage, that effect on the Ordos Energy Base construction. So, in order to find the high quality groundwater fountain, the groundwater hydrochemical evolution mechanism study is necessity and imminence.
     The paper rely on the China Geological Survy Ministry of Land and Resources survey items "Ordos basin groundwater survey", aim at the south of Ordos Cretaceous Bao'an group groundwater, according to the hydrogeochemical theory, using the mathematical statistics, cluster analysis, hydrogeochemical simulation and so on technical and custom hydrogeological analysis, the south of basin Cretaceous Bao'an group groundwater hydrochemical evolution course and rule was studied. Through these works, some main research results were obtained, as follows:
     1. The south of basin Luo he group and Huan he group groundwater hydrochemical type is SO4·Cl—Na mostly, the water quality is bad; but, the south of basin from eastern boundary and western south boundary to Ma lian river, the groundwater hydrochemical type is from HCO3—Ca·Mg·Na、HCO3SO4—Na、HCO3SO4Cl—Na、SO4—Na and SO4·Cl—Na present level zoning phenomenon; The Luo handong group groundwater from western north to eastern south, the hydrochemical type is from SO4·Cl、HCO3·SO4·Cl to HCO3SO4、SO4, in south boundary the hydrochemical type is HCO3.
     2. The denotation of groundwater hydrochemical field on the groundwater flow field in the south of basin Bao'an group was studied:Luo group and Huan he group groundwater hydrochemical zoning is anastomsis with hydrodynamic force partition, from recharge region to excretion region, the content of HCO3- in groundwater is decrease gradually, TDS and the others constant component present increase trend. The Luo handong group groundwater hydrochemical zoning is not anastomsis with hydrodynamic force partition.
     3. The hydrogeochemical cource in different stream path was studied using the main ion content and ion equivalent ration variation trend. The groundwater chemical compositions are effected by hydrodynamic and soluble salt cumulation. The ratio of rCa/rNa、rMg/rNa、Ca/rCl、rHCO3/rCl is higher in western south end, eastern edge and western north Liu pan Mountain, in the nature of recharge characteristic. The ratio is little in Ma lian river, Jing River, in the nature of drainage characteristic. The ratio of rNa/rCl和rSO4/rCl is more than one, which reflect the Na enrichment salinazation, and the enrichment speed of sulfate is faster than halite.
     4. Through analysis the hydrochemical characteristic of stream path B12→2-6-1→sample D20 and sample D30, conclude the drainage datum plane of Luo river group groundwater is between in sample D20 and sample D30. For there exist mixing in Luo handong group stream path from Yan 65 to Zhenji7-1, the groundwater hydrochemical zoning is not anastomsis with hydrodynamic force partition.
     5. The mass balance simulation result shows, the lixiviation is the main hydrogeochemistry in groundwater evolution. In the groundwater stream process, the gypsum, halite, plagioclase, muscovite or CO2 dissolutes differently degree and illite precipitate. The ion exchange is stronger in Luo river group and Huan river group groundwater, but in Luo handong group is weaker; The mixing is in the thin overlay region or bareness district.
     6. Through analysis the chemical denudation capacityof gypsum, halite, plagioclase in simulation path, the results show that lower the unit distance chemical denudation capacity is in the supply region and the higher the unit distance chemical denudation capacity is in the drainage region. The hydrochemical simulation results further certificate that the denotation of groundwater hydrochemical field on the groundwater flow field.
     7. The forward hydrogeochemical simulation results indicate that the influence factor of the Luo river group and Huan river group groundwater hydrochemical evolution is lixiviation and exchange. The ion exchange is weaker s in Luo handong group and the lixiviation is stronger.
引文
[1]钱会,马致远编著.水文地球化学[M].北京:地质出版社.2005
    [2](苏)比契叶娃,水文地球化学:地下水化学成分的形成[M].北京:地质出版社.1981
    [3]张宗祜,发展中的水文地质学,水文地质工程地质,1979(1)
    [4]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社.1993年5月第1版
    [5]Garrels, Thompson. A chemical model for sea water at 25℃ and one atmosphere total ressue[J]. American Journal of Science,1962,60:57-66
    [6]Garrles, R.M., Christ C L. Solution, Minerals, and Equilibria[M], New York:HarPer and RoW,1965,1—62.
    [7]Hrissi K.Karapanagilti, Chris M.Gossard, Keith A.Sabatini. model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation process [J].Journal contaminant bydrology,2001 (48):1-21.
    [8]钱会,王晓娟,李便琴.地下水系统平衡化学模型的研究现状及发展方向[J].地球科学与环境学报,2005,27(1):60-64.
    [9]Chapelle F.H Groundwater geochemistry and calcite cementation of the Aquia Aquifer in SouthernMaryland[J]. Water Resources Research [J],1983,19(2):545-558
    [10]Kenoyer Wisconsin G.L, Bowse C.J. Groundwater chemical evolution in a sandy silicate aquifer in Northerml. Patterns and rates of change[J]. Water Resources Research, 1992,28(2):579~589
    [11]Herman J.S. The eoect of aunit on the geochemical evolution of groundwater in the upper Floridian aquifer system[J]. Journal of Hydrology.1994.153:139-155
    [12]李雨新,钱会.地下水化学组分存在形式计算方法.水文地质工程地质[M],1991(6):25-28
    [13]王东胜,曾溅辉.地下水化学组分存在形式的计算及其意义.水文地质工程地质,1999(6):48-51.
    [14]Pieter J.stuyfzand.Pattens in goundwater chemistry resulting from goundwaert flow [J].Hydrogology Joumal.Volume7, Numberl/February 18,1999,15-27.
    [15]Plummer L N, Busby J F, Lee R W et al. Geochemical Modeling of the Madison Aquifer in Parts of Montana, Wyoming and South Dakota[M]. Water Resources Research. 1990,26(9):1981-2014
    [16]Weidman C, Jones.G. Development of the mollusc Arctica islandica as a palae ocean ographic tool for reconstructing annual and seasonal records of Delta super 14C and delta super 18O in the mid-to-high-latitude North Atlantic ocean[C]. The International Symposium on Applications of Isotope Techniques in Studying Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, Vienna, Austria,1993, 04/19-23:461-470
    [17]Thomas James M, Welch Alan H, Preissler Alan M. Geochemical evolution of ground water in Smith Creek Valley, A hydrologically closed basin in central Nevada US. [J], APPL GEOCHEM..1989,4(5):493-510
    [18]Wicks C.M., Herman J.S. The effect of a unit on the geochemical evolution of groundwater in the upper Floridian aquifer system[J]. Journal of Hydrology [J]. 1994,153:139-155
    [19]Sasamoto H, Yui M, Arthur R C, Hydrochemical characteristics and groundwater evolution modeling sedimentary rocks of the Tono mine, Japan[J], Physics and Chemistry of the Earth,2004,29:43-54.
    [20]]Heigeson HC.Evaluation of irreversible reactions in geochemical Processes involving minerals and aqueous solutions.I.Thermodynamic reactions[J]. Goechim Cosmochim, Acta,1968,32:853-877.
    [21]Thorstenson D C, Fisher DW, Croft MG,1979, The geochemistry of the Fox Hills-Basal Hell Creek aquifer in southwestern North Dakota and northwestern South Dakota, Water Resour Res [J] 15:1479-1498.
    [22]. Plummer, L.N. and Back, W.W.1980, The mass balance approach--Application to interpreting the chemical evolution of hydrologic systems:American Journal of Science [J], v.280, p.130-142.
    [23]Parkhurst, D. L., Plummer, L.N., and Thorstenson, D.C.,1982, BALANCE--A computer program for calculating mass transfer for geochemical reactions in ground wate[R]r:U.S. Geological Survey Water-Resources Investigations Report 82-14,29-30.
    [24]Plummer, L.N., Prestemon, E.C., and Parkhurst, D.L.,1991, An interactive code (NETPATH) for modeling net geochemical reactions along a flow path [R]:U.S. Geological Survey Water-Resources Investigations Report 91-4087,227-228.
    [25]Plummer, L.N., Prestemon, E.C., and Parkhurst, D.L.,1994, An interactive code (NETPATH) for modeling net geochemical reactions along a flow path[R], version 2.0:U.S. Geological Survey Water-Resources Investigations Report 94-4169,130 p.
    [26]Wolery, T. J.,1979, Calculation of chemical equilibrium between aqueous solution and minerals--The EQ3/6 software package[R]:Lawrence Livermore National Laboratory Report UCRL-52658, Livermore, CA.
    [27]Delany, J.M., Puigdomenech, I. and Wolery, T.J.,1986. Precipitation kinetics option for the EQ6 geochemical reaction path code. Lawrence Livermore National Laboratory, University of California, Livermore,44-45.
    [28]Wolery, T. J., Jackson, K.J., Bourcier, W.L., Bruton, C.J., Viani, B.E., Knauss, K.G., and Delany, J.N., 1990, Current status of the EQ3/6 software package for geochemical modeling, in Melchior, D.C., and Bassett, R.L., eds., Chemical Modeling of Aqueous Systems Ⅱ:Washington D. C., American Chemical Society Symposium Series 416,104-116.
    [29]Wolery, T. J.,Daveler S A. EQ6, A computer grogream for reation path moderling of aqueous geochemical systems:theoretical manual, user's guide, and related documentation(version7.0) Lawrence Livermore National Laboratory, UCRL-MA-110662,1992.
    [30]Parhurst D.L, Thorstenson D.C, Plummer L.N. PHREEQE-A computer program for geochemical calculations[R]. U.S.Geol.Surv.Water Resource Invest Rept.1980:80-96
    [31]Parhurst D.L, Appelo C.A.J. User's guide to PHREEQC(Version2)—A computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations[R] U.S. Geol..Surv. Water atesour. Invest. Rept.99,1999: 42-59
    [32]Plummer L N, Parkhurst D L, Thorstenson D C. Development of reaction models for ground-water system[M]. Geochim.Cosmochim.1982:665-686
    [33]Plummer L N, Parkhurst D L, Fleming G W and Dunkle S A. A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines[M]. U.S. Geological Survey.1988
    [34]Plummer L N, Parkhust D L, PHREEQC-a computer program for geochemical calculations[R], USGS, Water Resource Investigations Report,1990,80-96.
    [35]Plummer L N, Prestemon E C, Parkhurst D L. An interactive code (NETPATH) for geochemical reactions along a flow PATH[R], U.S. Geological Survey Water-Resources Investigations Report.1991:90-4078.
    [36]Murphy EM, Schramke J A, Estimation of miccrobial respiration rates in groundwater by geochemical modeling constrained with stable isotopes [J]. Geochemical Cosmochimica Acta,1998,62:3395-3406.
    [37]Igarashi T, Oyama T, Deteroration of water quality in a reservior receiving pyrite-bearing rock drainage and its geochemical modeling[J], Engineering Geology,1999,55:45-55.
    [38]Tempel R N, Shevenell L A, Lechler P, et al. Geochemical modeling approach to predicting arsenic concentrations in a mine pit lake. Applied Geochemisty [J], 2000,15:475-492.
    [39]Susan X Meng,J Barry Maynard.Use of statistical analysis to formulate conceptual models of geochemical behavior:water chemical data from the Botucatu aquifer in Sao Paulo state, Brazil[J] Journal of Hydrology[J].2001,250:78-97.
    [40]N.Subba Rao.Geochemistry of groundwater in parts of Guntur district,Andhra Pradesh,India[J].Environmental Geology [J],2002,(41):552-562.
    [41]Geelhoed J S, Meeussen J C L, Hillier S, et al. Identification and geochemical modeling of processes controlling of Cr(VI) and other major elements from chromite ore processing residue[J]. Geochimica et Cosmochimical Acta,2002,66:3927-3942.
    [42]E.Lakshmanan, R.Kannan, M.Senthil Kumar.Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district,Tamil Nadu,India [J].Environmental Geosciences,2003,10(4):157-166.
    [43]Sracek O, Bhattachary P, Jacks G, et al. Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry [J],2004, 19:169-180.
    [44]Plummer L N, Bexfield L M, Andetholm SK, Sanford W E, Busenberg E,2004, Hydrochemieal tracers in the Middle Rio Grande Basin, USA:.Conceptualization of groundwater flow. Hydrogeol [J]12(4):359-388.
    [45]PierreD.Giyn, L.NielPlummer,2005, Geoehemistry and the understanding of ground water systems, Hydrogeology Journal [J], (39) 13:263-87.
    [46]T.N.Narasimhan,2005, HydrogeologyinNorthAmeriea:Pastandfuture[J], Hydrogeology Journal,13:7·24.
    [47Glynn, P.D.,1991, MBSSAS:A code for the computation of Margules parameters and equilibrium relations in binary solid-solution aqueous-solution systems:Computers and Geosciences[J], v.17, no. 7, p.907-966.
    [48]Tebes-Stevens, C., Valocchi A.J., VanBriesen J.M., Rittmann B.E.,1998, Multicomponent transport with coupled geochemical and microbiological reactions--model description and example simulations: Journal of Hydrology[J], v.209, p.8-26.
    [49]曾溅辉,地下水地球化学模拟.地质论评[J],1993(6):490—495.
    [50]陈宗宇,水文地球化学模拟研究的现状.地球科学进展[J],1995,13:278—282.
    [51]沈照理,王焰新,水一岩相互作用研究的回顾与展望,中国地质大学学报[J],2002(2):127-133.
    [52]文冬光,沈照理,钟佐燊.地球化学模拟及其在水文地质中的应用[J].地质科技情报.1995,14(1):99-104.
    [53]文冬光,沈照理,钟佐巢.水一岩相互作用的地球化学模拟理论及应用[M].中国地 质大学出版社.1998年12月第1版.
    [54]陈家玮,杨瑞琰,鲍征宇,地球化学反应模型的发展及其应用.地质科技情报[J],2002(2):101-104.
    [55]陈芸,高明.水一岩作用模型及其在水一玄武岩反应中研究中的应用.南京大学学报,1994(1):118—123.
    [56]艾瑶,高明.玄武岩地区水一岩作用的数值模拟.水文地质工程地质[J],1998(:3)916.[95]
    [57]曾溅辉,氟的水文地球化学行为及其数值模拟一以河北邢台山前平原浅层地下水系统为例,中国地质科学院[D],1994.
    [58]郭永海,沈照理,钟佐燊.河北平原地下水化学环境演化的水文地球化学模拟[J].中国科学(D辑).1997(3):360-365
    [59]郭永海,沈照理.河北平原深层碱性淡水形成的水文地球化学模拟——以保定、沧州地区为例.地球科学—中国地质大学学报[J].2002,27(2):157-162
    [60王广才,陶澍,沈照理等.平顶山矿区岩溶水系统水文地球化学模拟及其应用[J].中国科学.1998,28(3):245-249
    [61]王广才等.水一岩化学平衡模拟中误差传递及灵敏度分析.水文地质工程地质[J],1999(6):31-34.
    [62]王广才,陶澍,沈照理等.平顶山矿区岩溶水系统水—岩相互作用的随机水文地球化学模拟[J].水文地质工程地质.2000,3:9-12
    [63]王焰新,马腾,罗朝晖等.山西柳泉域水—岩相互作用地球化学模拟[J].地球科学.1998,23(5):519-522
    [64]王焰新,郭华明,阎世龙等著.浅层孔隙地下水系统环境演化及污染敏感性研究—以山西大同盆地为例[M],北京:科学出版社2004年1月第1版
    [65]王焰新,马腾,罗朝晖,李永敏.山西柳林泉域水—岩相互作用地球化学模拟.地球科学——中国地质大学学报[J].1999(5),519-523
    [66]马腾,王焰新,邓安利等.岩溶水系统演化与全球变化研究——以山西为例.[M]武汉:中国地质大学出版社,2005.
    [67]孙连发,王焰新,马腾,等.应用泉钙华环境记录和地下水流动系统探讨娘子关泉群演变历史.地球科学[J],1997,22(6):648-651.
    [68]王焰新,沈照理,Strontium hydrogeochemistry of thermal groundwaters from Baikal and Xinzhou2001, Science in China, Ser. E, Vol44.Supp.13-143.
    [69]王焰新,孙连发,罗朝辉等.指示娘子关泉群水动力环境的水化学·同位素信息分析.水文地质工程地质[J],1997,24(3):1-5.
    [70]李义连,王焰新,周来茹等.地下水矿物饱和度的水文地球化学模拟分析——以娘子关泉域岩溶水为例[J].2002,21(1):32-36
    [71]李义连,王焰新,张江华等.娘子关泉域岩溶水硫酸盐污染的地球化学模拟分析.地球科学[J].2000,25(5):468-471
    [72]郑西来,刘洪俊.山东氧化铝场地下水系统的环境地球化学反应模型.地球化学[J],1990(3):270—276
    [73]周翠英,彭泽英,尚伟等.论岩土工程中水一岩相互作用研究的焦点问题.岩土力学[J],2002(1):124—128.
    [74]汤连生,王思敬.水一岩土化学作用与地质灾害防治.中国地质灾害与防治学报[J],1999(3):61-69.
    [75]汤连生,王思敬.水一岩化学作用对岩体变形破坏力学效应的研究进展.地球科学进展[J],1999(5):433—439.
    [76]冯启言,韩宝平.任丘油田水文地球化学演化与水一岩作用研究[M].中国矿业大学出版社.2001年7月第1版.
    [77]张宗祜,沈照理,钟佐燊等.华北平原地下水环境演化[M].北京:地质出版社.2000年2月.
    [78]叶浩,王贵玲.宁夏南部月亮山西麓地下水化学特征研究[J].地球学报.2001,22(4):330-334.
    [79]郭永海,沈照理.河北平原深层碱性淡水形成的水文地球化学模拟——以保定、沧州地区为例.地球科学—中国地质大学学报[J].2002,27(2):157-162
    [80]王丽.运城盆地水文地球化学演化规律研究[D].北京:北京师范大学.2003
    [81]张建立,潘懋,贾国东等.大庆齐家水源地水文地球化学环境的模拟[J].地球学报.2003,24(3):267-272
    [82]吕广罗,蔡德嵩,陈玲芬等.韩城矿区奥灰水化学特征及形成机制探讨[J].中国煤田地质.2003,15(4):27-30.
    [83]郭清海,山西太原盆地孔隙地下水系统演化与相关环境问题成因分析[D].中国地质 大学(武汉)博士论文,2005,41-67.
    [84]董维红.反向水文地球化学模拟技术在鄂尔多斯白垩系自流水盆地深层地下水14C年龄校正中的应用[D].吉林:吉林大学.2005
    [85]于艳青,余秋生,张发旺等.应用水文地球化学方法分析郑家泉域水文地质条件[J].水文地质工程地质,2005,5(4):17-19
    [86]阿里木.吐尔逊,坝基老化岩——水——化学作用数值模拟研究,河海大学[D],2005
    [87]李广玉,胶州湾水环境痕量元素形态的地球化学模拟及意义,山东科技大学,硕士论文,2005
    [88]反向模拟方法在鄂尔多斯盆地环河组地下水演化中的应用,高文斌,长安大学,硕士学位论文,2005
    [89]鄂尔多斯盆地南区洛河组地下水演化水文地球化学模拟,曹德福,长安大学,硕士学位论文,2005
    [90]栾长青,唐益群,高文冰等.鄂尔多斯白垩系环河含水岩组中的地球化学反向模拟[J].自然灾害学报地球学报,2007,16(4):169-173
    [91]苏春莉.大同盆地区域水文地球化学与高砷地下水成因研究[D].中国地质大学(武汉)博士论文,2006.
    [92]孙敬,山西省忻州盆地地下热水系统与水文地球化学模拟研究[D],中国地质大学(武汉)硕士论文,2006:50—83.
    [93]韩冬梅,忻州盆地第四系地下水流动系统分析与水化学场演化模拟,中国地质大学[D],2007.
    [94]程东会,北京城近郊区地下水硝酸盐氮和总硬度水文地球化学过程及数值模拟,中国地质大学[D],2007.
    [95]余秋生,张发旺,韩占涛等.地球化学模拟在南北古脊梁岩溶裂隙水系统划分中的应用[J].地球学报,2005,26(4):375-380
    [96]罗奇斌,康卫东,谢延玲等.靖边地区白垩系洛河组地下水水文地球化学模拟[J].地下水,2008,30(6):22-24
    [97]姜凌,干旱区绿洲地下水水化学成分形成及演化机制研究——以阿拉善腰坝绿洲为例,长安大学[D],2009
    [98]侯光才,张茂省.鄂尔多斯盆地地下水资源与可持续利用.西安:陕西科学技术出版社.2004,10.
    [99]王德潜,刘方,孙永明,等.鄂尔多斯盆地地下水勘查报告,西安地质矿产研究所,2002.
    [100]谢渊,王剑,等.鄂尔多斯白垩系含水层沉积学初探[J].水文地质工程地质,2003,30(3):
    [101]谢渊,王剑,江新胜等.鄂尔多斯盆地白垩系沙漠相沉积特征及其水文地质意义[J].沉积学报,2004,23(11):1094-1102.
    [102]李云峰,王玮, 侯光才等.鄂尔多斯白垩系自流水盆地深层地下水流动系统初步推断[A],鄂尔多斯盆地地下水勘查与开发利用学术研讨会论文集[C],陕西科学技术出版社,2004:104-110
    [103]李云峰,冯建国,王玮等.鄂尔多斯盆地白垩系含水层系统分析[J],西北地质,2004,37(2),P90-96
    [104]袁东.聚类分析在水环境质量评价中的应用进展[J].四川轻工学院学报.2003(16):50-53
    [105]罗薇,邵秘华,周立新.聚类分析功能在大连港水域环境质量评价中的应用[J].环境科学.2004(4):51-55
    [106]郭光武,古明宏,任光翔.聚类分析在地方性氟中毒病区分类研究中的应用[J].现代地.2005(18):34-36
    [107]张绪美,董元华,石竣哲.聚类分析在太湖水质参数评价中的应用[J].现代地质.2006(6):58-65
    [108]三味工作室编写.SPSSV10.0 for Windows实用基础教程[M].北京:北京希望电子出版社,2001:94-115
    [109]李云峰,徐中华,王玮等.鄂尔多斯白垩系自流水盆地地下水水化学形成规律研究[A],鄂尔多斯盆地地下水勘查与开发利用学术研讨会论文集[C],陕西科学技术出版社,2004:191-216
    [110]李云峰,李金荣,徐中华等,鄂尔多斯盆地南区白垩系地下水排泄基准研究[A],中国西部环境问题与可持续发展国际学术研讨会会议论文集[C],中国环境科学出版社出版,2004:552-556
    [111]Yunfeng Li, Zhonghua Xu, Jiangxia Wang, et al. Guidelines to locate and protect high-quality groundwater in Baiyu Mountain area of China[J]. Environmental Geology, 2005,47(5):647-652.
    [112]Yunfeng Li, Weifeng Wan, Yaoguo Wu,Hui Qu, Guangcai Hou, Application of hydrochemical signatures to delineating portable groundwater resources in Ordos Basin, China. Environmental Geology[J] 2005.10.23
    [113]鄂尔多斯盆地洛河组地下水地球化学模拟[J].干旱区资源与环境,2009,23(10):143-148.
    [114]鄂尔多斯盆地南区环河组地下水水岩作用研究[J].干旱区资源与环境,2009,23(9):160-168.
    [115]李云峰,王疆霞,徐中华等, 白于山地区白垩系地下水劣质成因探讨[A],鄂尔多斯盆地地下水勘查与开发利用学术研讨会论文集[C],陕西科学技术出版社,2004:244-248
    [116]. Yunfeng Li, Jiangxia Wang, Yaoguo Wu, et al. Mass balance simulation and its application to refining flow field in Binchang area, China. Environmental Geology[J], 2007,52(4):739~745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700