现代钙华沉积的环境替代指标及其气候环境因子控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近2000年气候与环境变化研究在全球变化研究中具有特殊的重要性。过去2000年的气候和环境变化研究,要求尽可能高的时间分辨率,在此基础上取得的气候指标统计基础,才有可能在其中寻找气候和环境变化的信息,以寻求气候演变的规律,预测未来发展趋势。
     分布于地表的钙华沉积物,以其具有的比石笋气候记录更高的分辨率和灵敏度的气候记录,成为近年来古气候研究的重要载体。然而,要想利用钙华进行高分辨率的古气候重建工作,必须从地球系统科学思想出发,全面了解钙华沉积过程中地球化学指标的变化及其控制机理。只有如此,才能更好地建立钙华沉积物环境替代指标与气候因子之间的定性和定量关系,才能为利用钙华记录重建古气候环境奠定坚实可靠的基础。
     由于气候环境因子对钙华环境替代指标的控制机理非常复杂,地域性很强,这也使得国外已有研究成果的适用范围有限,并不一定适合中国的情况,而且很多研究主要是针对大气成因类钙华的,而对于如本文要研究的深部岩溶动力系统中形成的钙华,即所谓的地热成因类钙华的环境替代指标与气候因子之间的关系则缺乏研究。
     本文采用水化学仪器自动记录、现场测定、取样进行实验室测试相结合的方法,通过水化学和碳氧稳定同位素组成时空动态的综合分析,对云南白水台地区现代钙华沉积的环境替代指标与气候因子关系进行了全面系统的研究,得出以下主要结论:
     (1)白水台地区冬、夏季风期间降雨云团可能存在不同的源区,即,夏季降水的源区主要是印度洋和孟加拉湾,而冬季降水的气团则主要受大陆内部气团影响。雨水氧同位素与降雨量有很好的线性负相关关系,反映了大气降水的降水量效应。
     (2)通过对白水台引水渠道及钙华池内钙华氧同位值(δ~(18)O)季节变化的分析发现,大气降水的降水量效应(P)以及降水云团不同源区的转换,是控制白水台热成因类钙华中δ~(18)O季节变化的原因。白水台地区的钙华δ~(18)O的季节变化是春夏季(雨季)偏负,而秋冬季(早季)偏止。δ~(18)O与P的定量关系是P每增加100mm,钙华δ~(18)O偏负0.70‰;温度(T)对白水台钙华δ~(18)O的影响系数较O'neil方程小1倍左右,即T每增加1℃,钙华δ~(18)O偏负0.1‰。
     (3)通过对白水台引水渠道和钙华池中钙华δ~(13)C值的季节变化分析发现,雨水及雨后形成的坡面流是控制白水台地区钙华δ~(13)C值季节变化的主要原因。在雨季雨后形成的坡面流(δ~(13)C受土壤CO_2的影响,因而偏低)进入引水渠道,对引水渠道水进行了稀释,因而造成雨季形成的钙华δ~(13)C值偏负。从而使钙华δ~(13)C值呈现出春夏季(雨季)偏负,而秋冬(旱季)偏正的季节变化。
     (4)通过对白水台引水渠道和钙华池内钙华沉积速率的季节变化研究发现,降雨量是控制白水台地区钙华沉积速率快慢的主要因素。在雨季,稀释效应造成的钙华沉积速率的降低超过了温度升高导致的钙华沉积速率的增加,从而使白水台地区钙华沉积速率呈现出在雨季(春夏季)降低、秋冬季(旱季)升高的反常现象,这与在日本大气成因类钙华中发现的规律正好相反。
     (5)建立了白水台钙华年层的肉眼识别标准,即白水台地区一个钙华年层包括薄的疏松褐色层和厚的致密浅色层。
     (6)钙华池内水生植物在春夏季(雨季)较强的光合作用使钙华δ~(13)C值偏正的影响小于雨季雨后形成的坡面流进入钙华池对池水的稀释使钙华δ~(13)C值偏负的影响,因此受水生植物影响的钙华池内的钙华δ~(13)C值的季节变化也主要是受降雨量控制,从而呈现出春夏季(雨季)偏负,而秋冬(旱季)偏正的季节变化。夏季较强的光合作用虽然能够加快钙华的沉积速率,但是由于雨季时雨水及坡面流对池水更强的稀释作用,使得受水生生物影响的各钙华池内的钙华沉积速率的季节变化同不受水生生物影响的钙华池内的钙华沉积速率的季节变化类似,反映的都主要是降雨量对钙华沉积速率的控制,均表现为春夏季(雨季)沉积速率低于秋冬季(旱季)。
The information on climatic and environmental change in the past 2000a is very important to the investigation of the global change.The latter program requires information with higher time resolution so as to find out how climate and environment change,to reveal the regulation of the climate evolution,and to forecast the future climate change.
     Travertine and tufa in karst areas are one of the most important geological archives for the study of past climate changes because of their high resolution and sensitive record of climate and environment.However,before one uses the travertine or tufa to reconstruct the paleo-climate changes,one must understand the climatic implication of proxies in travertine or tufa and their controlling mechanisms.
     The climatic implication of proxies in travertine or tufa and their controlling mechanisms are generally complicated and of site-specific.Therfore,the direct application of previous studies at one site to another site may be problematic.Moreover,the previous studies focused mainly on the meteogene tufa records and paid little attention to thermogene travertine records.
     To understand the climatic implication of proxies in travertine and their controlling mechanisms,a case study at Baishuitai of Yunnan was conducted.The methods of one hydrologic year hydrochemical data logging,in-situ titrating and experiment and laboratory sample analysis were used to understand the spatial-temporal variations in geochemistry and stable isotopes of water and modern travertine at Baishuitai.The following conclusions were obtained through the study:
     (1) Two vapour sources of precipitation during summer and winter monsoon have been recognized at Baishuitai.One is from the Indian Ocean and Bengal Bay during summer,and the other from the inner continent during winter.The precipitation amount effect on rainwaterδ~(18)O is significant at Baishuitai.
     (2) Theδ~(18)O of travertine was lower in summer rainy season and higher in winter dry season.The remarkable seasonal variations inδ~(18)O of travertine were due to the precipitation amount effect and the change of vapour sources of precipitation.The quantitative relationship between the travertineδ~(18)O and the precipitation amount was that the travertineδ~(18)O decreased by 0.7‰when the precipitation amount increased by 100mm.The temperature effect coefficient on the travertineδ~(18)O,being -0.1‰/℃was smaller than that in O'neil Equation.
     (3) The lower travertineδ~(13)C values in travertine-depositing canal and travertine-depositing pools during the warm and rainy seasons were related to the dilution of overland flows after rainfall,which was mainly influenced by soil water,and so had lowerδ~(13)C values.
     (4) The deposition rate of travertine decreased in warm and rainy seasons because of the dilution of the rainfall and the overland flows after rainfall,which had lower concentration of [Ca~(2+)]and[HCO_3~-].Obviously,the dilution effect to decrease the deposition rate of travertine is stronger than the temperature effect to increase the deposition rate of travertine.
     (5) The seasonal travertine laminas were distinguished with the color change.The thin brown porous lamina was formed in the warm and rainy season,while the thick dense white lamina was formed in the dry season.
     (6) The effect of aquatic plants to increase theδ~(13)C values and the deposition rate of travertine was weaker than the dilution effect.Therefore,theδ~(13)C values of travertine and the deposition rate of travertine were lower in warm and rainy season than in dry season.
引文
[1]张兰生,方修琦,任国玉.全球变化[M]:高等教育出版社,2000,1-320.
    [2]朱诚,谢志仁,申洪源,等.全球变化科学导论[M].南京大学出版社,2003.
    [3]PAGES.Paleoclimates of the Northern and Southern Hemispheres[M].PagesSeries,95-1,Bem:Pagespress,1995.1-92.
    [4]林海.中国全球变化研究的战略思考[J].地学前缘,1997,4(1-2):9-15.
    [5]Kalis A J.,Merkt J,Wunderlich J..Environmental changes during the Holocene climatic optimum in central Europe - human impact and natural causes[J].Quaternary Science Reviews,2003,22:33-79.
    [6]刘东生,郭正堂,韩家懋,丁仲礼..前国际古全球变化研究的主要科学问题和任务--极地-赤道-极地大断面[J].地学前缘,1997.
    [7]Gupta A K,AndersonD M & Overpeck J T.Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean[J].Nature,2003,421:354-357.
    [8]Thompson L.G,Davis M.E.,Mosley-Thompson E.,Sowers T.A.,Henderson K.A.,Zagorodnov V.S.,Lin P.-N.,Mikhalenko V.N.,Campen R.K,Bolzan J.F,Cole-Dai J.,and Francou B.A 25,000-Year Tropical Climate History from Bolivian Ice Cores[J].Science,1998,282(5395):1858-1864.
    [9]卫克勤,林瑞芬.祁连山敦德冰芯氧同位素剖面的古气候信息探究[J].地球化学,1994,23(4):311-320.
    [10]姚檀栋,施雅风,秦大河,焦克勤等..古里雅冰芯中末次间冰期以来气候变化记录研究[J].中国科学(D),1997,27(5):447-452.
    [11]姚檀栋,杨志红,焦克勤,皇翠兰等.近2000年来气候环境变化的冰芯记录研究[J].地学前缘,1997,4(1-2):95-100.
    [12]姚檀栋。徐柏青,段克勤,王宁练等.青藏高原达索普冰芯2 ka来温度与甲烷浓度变化记录[J].中国科学,2002,32(4):346-352.
    [13]邵雪梅.树轮年代学的若干进展[J].第四纪研究,1997,3:265-270.
    [14]康兴成,Graumlich L J,Sheppard P,青海都兰地区1835年来的气候变化-来自树轮资料[J].第四纪研究,1997,17(1):70-75.
    [15]Briffa K.R.,Osbom T.J.,Schweingruber EH..Large-scale temperature inferences from tree rings:a review[J].Global and Planetary Change,2004,40:11-26.
    [16]袁道先.现代岩溶学和全球变化研究[J].地学前缘,1997,4(1-2):17-25.
    [17]Yuan Daoxian et al,Timing,Duration,and Transitions of the Last Interglacial Asian Monsoon[J].Science,2004,304(23):575-578.
    [18]Zhang Meiliang,Yuan DaoXian,Lin Yushi et al.,A 6000 year high resolution climatic record from a stalagmite Xianshui cave in Guilin,China[J].The Holocene.2004,14(5):697-702.
    [19]覃嘉铭,袁道先,林玉石等.桂林44kaB.P.石笋同位环境解释[J].地球学报-中国地质科学院院报,2000,21(4):407-416.
    [20]覃嘉铭,林玉石,张美良,李红春.桂林全新世石笋高分辨率δ-(13)C记录及其古生态意义[J].第四纪研究,2000,20(4):351-358.
    [21]覃嘉铭,袁道先,陈海,林玉石,张美良,王福星,王华,新仙女木及全新世早中期气候突变事件--贵州茂兰石笋氧同位素记录[J].中国科学(D),2004,34(1):69-74.
    [22]王兆荣.袁道先.林玉石.张美良.周杰.刘卫国,中国洞穴石笋年代学和古气候研究[J].自然杂志,2000,22(6):336-339.
    [23]蔡演军.彭子成.安芷生.张兆峰.曹蕴宁,贵州七星洞全新世石笋的氧同位素记录及其指示的季风气候变化[J].科学通报,2001,46(16):1398-1402.
    [24]彭子成.张兆峰.蔡演军.张美良.林玉石.刘桂建,贵州七星洞晚更新世晚期石笋的古气候环境记录[J].第四纪研究,2002,22(3):273-282.
    [25]张美良.袁道先.林玉石.覃嘉铭,云南宣威4.6万年以来洞穴石笋古气候变化记录[J].沉积学报,2002,20(1):124-128.
    [26]Wang Y.J.,Cheng H.,Edwards R.L.,An Z.S.,Wu J.Y.,Shen C.-C.,and Dorale J.A.A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave[J],China.Science,2001,294(5550):2345-2348.
    [27]李洪春.顾德隆,陈文寄,李铁英.利用洞穴石笋的δ~(18)O和δ~(13)C重建3000a以米北京地区古气候和古环境--石花洞研究系列之三[J].地震地质,1997,19(1):77-86.
    [28]刘东生.谭明.秦小光.赵树森等.洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J].第四纪研究,1997,(1):41-51.
    [29]谭明,侯居峙,程海.定量重建气候历史的石笋年层方法[J].第四纪研究,2002,22(3):209-219
    [30]Fleitmann D,Burns S J,Mudelsee M,NeffU,Kramers J,Mangini A,Matter A.Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman[J].Science,300:1737-1739.
    [31]Frisia S,Borsato A,Preto N and McDermott F.2003.Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate,[J]Earth and Planetary Science Letters,2003,216(3):411-424.
    [32]陈拓,秦大河,唐兴成等.树轮氢、氧同位素研究进展[J].地球科学进展,1998,13(4):382-386.
    [33]Feng Xiahong,Samuel Epstein.Climatic Implications of an 8000 2-Year Hydrogen Isotope Time Series from Bristleco Pine Trees[J].Science,1994,265:1079-1081.
    [34]Gray J,Thompson E Natural Variations in the ~(18)O Content of Cellulose.In:Jacoby G C,eds.Carbon Dioxide Effects:Resand Assessment Program,Proc Int Meeting on Stable Isotopes in Tree-ring Res.New York:Lamont-Doherty Geol Observ Columbia Univ,1980,84-92.
    [35]余克服,陈特固,黄鼎成,赵焕庭,钟晋梁,刘东生.中国南沙群岛滨珊瑚δ~(18)O的高分辨气候纪录[J],科学通报,2001,46(14):1199-1203.
    [36]刘启明,王世杰,欧阳自远.高分辨率气候环境变化研究中的石笋微层[J].地球科学进展,2002.17(3):396-401.
    [37]Roberts MS,Smart PL and Baker A.Annual trace element variations in a Holocene speleothem[J]. Earth and Planetary Science Letters.1998,154:237-246.
    [38]Lauritzen SE,Kihle J,Annually resolved stable isotope data from speleothem calcite by laser ablation[J].Karst Waters Special Publication.1996,2:84-86.
    [39]Perrette,Y.,Delannoy,J.,Bolvin,H.,Cordormier,M.,Destombes,J.,Zhilinskaya,E.A.,Aboukais,A.,Comparative study of a stalagmite sample by stratigraphy,laser induced fluorescence spectroscopy,EPR spectrometry and reflectance imaging[J].Chemical Geology,2000,162,221-243.
    [40]Borsato,A.,Frisia,S.,Fairchild,I.J.,Somogyi,A.,Susini,J.,Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence:Implications for incorporation of environmentally significant species[J].Geochimica et Cosmochimica Acta.2007,71,1494-1512.
    [41]王先锋,刘东生,梁汉东,等.石笋物质组成的二次离子质谱初步分析及其气候意义.第四纪研究,1999,(1):59-66.
    [42]秦小光,刘东生,谭明,等,北京石花洞石笋微层灰度变化特征及其气候意义-Ⅰ.微层显微结构[J].中国科学(D),1998,28(1):91-96.
    [43]秦小光,刘东生,谭明,等,北京石花洞石笋微层灰度变化特征及其气候意义-Ⅱ.灰度的年际变化[J].中国科学(D),2000,30(3):239-248.
    [44]T.an M,Baker A,Genty D,Smith C,Esper J,Cai B,2006.Applications of stalagmite laminae to paleoclimate reconstructions:Comparison with dendrochronology/climatology[J].Quaternary Science Reviews,25(17):2103-2117.
    [45]李红春.顾德隆.Dorte Paulsen.王非.陈文寄.尹功明.程海.R.L.Edwards,陕南石笋稳定同位素记录中的古气候和古季风信息[J].地震地质,2000,22(S1):63-78.
    [46]Burns,S.J.,Fleitmann,D.,Matter,A.,Neff,U.,Mangini,A.,2001.Speleothem evidence from Oman for continental pluvial events during interglacial periods[J].Geology 29,623-626.
    [47]Bums,S.J.,Fleitmann,D.,Mudelsee,M.,Neff,U.,Mangini,A.,Matter,A.,2002.A 780-year annually-resolved record of Indian Ocean monsoon variation in a speleothem from south Oman[J].Journal of Geophysical Research 107,NO.D20,4434,doi:10.1029/2001JD001281.
    [48]Neff,U.Burns,S.J.,Mangini,A,Mudelsee,M.,Fleitmann,D.and Matter,A.,Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago[J].Nature,2001,411,290-293.
    [49]刘再华,林玉石,戴亚男等.水化学和钙华碳氧稳定同位素在古环境重建中的应用-以贵州荔波小七孔景区响水河为例[J].第四纪研究,2004,24(4):447-454.
    [50]刘再华,K Yoshimura,Y Inokura,M Noto,曹云.四川黄龙沟天然水中的深源CO_2与大规模的钙华沉积[J],地球与环境,2005,33(2):1-10.
    [51]刘再华,游省易,李强,等.云南白水台钙华景区的水化学和碳氧同位素特征及其在古环境重建研究中的意义[J].第四纪研究,2002,22(5):459-467.
    [52]Matsuoka,J.,Kano,A.,Oba,T.,Watanabe,T.,Sakai,S.,and Seto,K.,Seasonal variation of stable isotopic compositions recorded in a laminated tufa,SW Japan[J].Earth and Planetary Science Letters,2001, 192:31-44.
    [53]Kano,A.,Kawai,T.,Matsuoka,J.and Ihara,T.High-resolution records of rainfall events from clay bands in tufa[J].Geology,2004,32:793-796.
    [54]Kano,A.,Matsuoka,J.,Kojo,T.,and Fujii,H.,Origin of annual laminations in tufa deposits,southwest Japan[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2003,191:243-262.
    [55]Ihlenfeld,Norman M D,Gagan M K,Drysdale R N,Maas R,Webb J,Climatic significance of seasonal trace element and stable isotope variations in a modern freshwater tufa[J].Geochimica et Cosmochimica Acta,2003,67(13):2341-2357.
    [56]袁道先,刘再华等.碳循环与岩溶地质环境[M].北京:科学出版社.2003.
    [57]刘再华,何师意,袁道先等.土壤中的CO_2及其对岩溶作用的驱动[J].水文地质工程地质,1998,(4):42-45.
    [58]Deines P,Langmuir D,Harmon R S.Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate water[J].Geochimica et Cosmochimica Acta,1974,38:1147-1164.
    [59]李红春等,高分辨率洞穴石笋稳定同位素应用之一--京津地区5000a米的气候变化-δ~(18)O 记录[J].中国科学(D)缉,1998,28(1):91-96.
    [60]Pentecost,A.,Spiro,B.,Stable carbon and oxygen isotope composition of calcites associated with modem freshwater cyanobacteria and alga[J].Geomicrobiol.J.1990,8:17-26.
    [61]Freytet,P.,Plet,A..Modem freshwater microbial carbonates:the Phormidium stroma -tolites (tufa-travertine) of southeastern Burgundy(Paris Basin,France).1996,34:219-238.
    [62]Janssen,A.,Swennen,R.,Podoor,N.,Keppens,E.,Biological and diagenetic influence in recent and fossil tufa deposits from Belgium[J].Sediment.Geol.1999.126:75-95.
    [63]Dreybrodt,W.Buhmann,D.,A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion.Chem[J].Geol.1991,90:107-122.
    [64]Genty,D.,Quinif,Y.,Annually laminated sequences in the internal structure of some Belgian stalagmites importance for paleoclimatology[J].J.Sediment.Res.1996,66:275-288.
    [65]Lebron I & DL,Kineics and mechanisms of precipitation of calcite as affected by P_(co2) and organic ligands at 25℃[J].Geochimica et Cosmochimica Acta,1998,62(3):405-416.
    [66]Liu,Zaihua,Yuan,Daoxian,He,shiyi.Geochemical feature of the geothermal CO_2-water-carbonate rock system and analysis on its CO_2 sources examples from Huanglong Ravine and kangding,Sichuan,and Xiage,Zhongdian,Yunnan[J].Sci.China.Ser.D:Earth Sci.2000,43(6),569-576.
    [67]刘再华,袁道先,何师意,不同岩溶动力系统的碳氧稳定同位素利地球化学特征及其意义--以我国几个典型岩溶地区为例[J].地质学报,1997,71(3):281-288.
    [68]Yiming Huang and Ian J,Fairchild.Partition of Sr~(2+) and Mg~(2+) into calcite under karst-analogue experimental conditions[J].Geochimica of Cosmochimica Acta,2001,65(1):47-62.
    [69]Yiming Huang,Richard A.Dauce,Influence of Mg~(2+) on the kinetics of calcite precipitation and calcite crystal morphology chemical[J].Geology,2000,163:129-138.
    [70]Pauline Treble,J.M.C.Shelley,John Chapple,Comparison of high resolution sub-annual records of trace element in a modem modem(1911-1992) speleothem with instrumental climate data from southwest Australia[J].Earth and Planetary Science Letters,2003(216):141-153.
    [71]Chaoyong Hu et al.Adsorbed silica in stalagmite carbonate and its relationship to past rainfall[J].Geochimica et Cosmochimica Acta,2005,69(9):2285-2292.
    [72]Pedley,H.M.,Andrews,J.,Ordonez,S.,Garcia del Cura,M.A.,Gonzales Martin,J.A.,Taylor,D.,Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain[J].Palaeogeogr,Palaeoclimatol.,Palaeoecol.1996,121,239-257.
    [73]Kempe,S.,Kazmierczak,L,Landmann,G.,Konuk,T.,Reimer,A.,Lipp,A.,Largest known microbialites discovered in Lake Van,Turkey[J].Nature 1991,349:605-608.
    [74]T.;Karlsson,Haraiclur R.;Paces,James B.Paleohydrologic record of spring deposits in and around the Pleistocene pluvial lake Tecopa,Southeastem Califernia[J].Nelson,Stophen Geol.Soc.Am.Bull.2001,113(5),659-670.
    [75]Zaihua,L.,Svensson,U.,Dreybrodt,W.,Daoxian,Y.,D.,Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine,China:field measurements theoretical prediction of deposition rates[J].Geochim.Acta 1995,59:3087-3097.
    [76]Pentecost A,The Quatemary travertine deposits of Europe and Asia Minor[J].Quatemary Science Reviews,1995,14(10):1005-1028.
    [77]Ford T D and Pedleyb H M,1996.A review of tufa and travertine deposits of the world[J].Earth-Science Reviews,41(3-4):117-175.
    [78]Pentecost A and Zhang Z.A review of Chinese travertines[J].Cave Karst Sci.,2001,28:15-28.
    [79]Martina Merz-Prei,Robert Riding,Cynobaterial tufa calcificationg in two freshwater streams:ambient environment,chemical thresholds and biological processes[J].Sedimentary Geology 1999(126):103-124.
    [80]Herman,J.S.,Lorah,M.M.,CO_2 outgassing and calcite precipitation in Falling Spring Creek,Virginia,U.S.A[J].Chem.Geol.1987.62:251-262.
    [81]R.Drysdale,S.Lucas,K.Carthew.The influence of diurnal temperatures on the hydrochemistry of a tufa-depositing stream[J].Hydrological Processes,2003.
    [82]Martine Merz-Preiβ,Robert riding.Cyanobacterial tufa calcification in two freshwater stream:ambient environment,chemical thresholds and biological processes[J].Sedimentary Geology.1999,126:1103-1124.
    [83]Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperatures above 90℃:Evidence from Kenya and New Zealand[J].Can.J.Earth Sci.1996,33(1)72-83.
    [84]刘再华,李强,孙海龙,汪进良.云南白水台钙华水池中水化学日变化及其生物控制的发现[J].水文地质工程地质,2005(6):10-15.
    [85]Janssen,A,;Swennen,R,;Rodoor,N,;Keppens,E.Biological and diagenetic influence in Recent and fossil tufa deposits from Belgium[J].Sediment,Geol.1999,126(1-4),75-95.
    [86]Folk,R.L.,SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks[J].Sediment.Petrol.1993,63,990-999.
    [87]L.J.Plant,W.A.House,,Precipitation of calcite in the presence of inorganic phosphate,Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001(1):1-11.
    [88]张英俊,程星,祝安.石灰华沉积机制的实验研究[J].中国岩溶,1994,13(3):197-205.
    [89]程星.薄水效应初论[J].中国岩溶,1994,13(3):207-212.
    [90]Plummer L N,Wigley T M L,Parkhurst D L.The kinetics of calcite dissolution in CO_2-water systems at 5-60℃ and 0.0-1.0 atm CO_2[J].Am.J.Sci.,1978,278:179-216.
    [91]Liu Z H and Dreybrodt W.Dissolution kinetics of calcium carbonate minerals in H_2O-CO_2solutions in turbulent flow:the role of the diffusion boundary layer and the slow reaction H_2O+CO_2(?)H~++HCO_3~-[J].Geochimica et Cosmochimica Acta,1997,61(14):2879-2889.
    [92]Dreybrodt W,Buhmann D,Michaelis J & Usdoswski E.Geochemically controlled calcite precipitation by CO_2 outgassing:Field measurements of precipitation rates to theoretical predictions[J].Chem.Geol.,1992,97:287-296.
    [93]Giegenengack.R.and E.K.Ralph,On the Validity of Radiocarbon Dates of Calcareous Tufa,Eos,Transaction,American Geophysical Union,1973,54(4),493.
    [94]Srdoc D.,Horvatincic N.,Obelic,B.,Sliepcevic A.Radiocarbon dating of tufa in palaeoclimate study.In:Stuiver M.and Kra R.S.,eds.,Proceedings of 11~(th) InteRNational ~(14)C Conference:Radiocarbon 1983,25(2):421-427.
    [95]Pazdur A.,Pazdur M.F.and Szule J.,Stable isotopes of the Holocene calcareous tufa in southern Poland as palaeoclimatic indicator[J].Quaternary Research 30:177-189.
    [96]Lao,Y.,L.V.Benson,Uranium-series age estimates and paleoclimiatic significance of Pleistocene tufas from the Lahontan Basin,California and Nevada[J].Quaternary Research(New York),1988,30(2)165-176.
    [97]M.Soligo,P.Tuccimei,R.Barberi,M.C.Delitala,E.Miccadei,A.Taddeucci,U/Th dating of freshwater travertine from Middle Velino Valley(Central Italy):paleoclimatic and geological implication[J].Palaeogeography,Palaeoclimatology,Palaeoecology 2002(184):147-161.
    [98]Gray R.O'Brien,Darrell S.Kaufrnan,Warren D.Sharp,Viorel Atudorei et al.Oxygen isotope composition of annually banded modern and mid-Holocene travertine and evidence of paleomonsoon floods,Grand Canyon,Arizona,USA[J].Quaternary Research..2006(65):366-379.
    [99]刘星.云南石林地区钙华的ESR测年及其地质意义[J].中国岩溶,1998,17(1):9-14.
    [100]Li Yilian,Wang Yanxin,Deng Anli.Paleoclimate record and paleohydrological analysis of travertine from the Niangziguan Karst Springs,northern China[J].Science in China(series E ),2001,44.
    [101]Liu Zaihua,Zhang Meiliang,Li Qiang,You Shengyi.Hydrochemical and isotope characteristics of spring water and travertine in the Baishuitai area(SW China) and their meaning for paleoenvironmental reconstruction[J].Environmental Geology,2003,44(6):698-704.
    [102]刘再华,戴亚南,林玉石.水化学和钙华碳氧稳定同位素方法在古环境重建中的应用[J].第四纪研究,2004,24(4):447-454.
    [103]刘再华,李红春,游镇锋,万乃容,孙海龙,刘香玲.云南白水台现代内生钙华微层的特征及其古气候重建意义[J].地球学报,2006,27(5):479-486.
    [104]Liu Zaihua,Li Hongchun,You Chengfeng,WanNaijung,Sun Hailong,2006.Thickness and stable isotopic characteristics of modem seasonal climate-controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai,SW China:implications for paleoelimate reconstruction[J].Environmental Geology,51(2):257-265.
    [105]游省易,李强,刘再华.云南白水台钙华景区水的物理化学动态变化研究[J].中国岩溶,2003,22(2):110-117.
    [106]Wigly T M L.WATSPEC:A computer Program for Determining Equilibrium Speciation of Aqueous Solutions[M].London:British Geomorphological Research Group,1997,1-48.
    [107]Liu Zaihua,Groves C,Yuan D,Meiman J,Jiang G and He S.Hydrochemieal variations during flood pulses in the southwest china peak cluster karst:Impacts of CaCO_3-H_2O-CO_2 interactions[J].Hydrological Processes,2006,18:2423-2437.
    [108]Liu Zaihua,Li Qiang,Wang Jingliang.Season,diurnal and storm-scale hydrochemical variations of typical epikarst spring in subtropical karst aeras of SW China:CO_2 and dilution effects[J].Journal of Hydrology,2006.
    [109]Bemer R A.Early Diagenesis--A Theoretical Approach[M].Princeton:Princeton University Press,1980,1-241.
    [110]Morse J W.The kinetics of calcium carbonate dissolution and precipitation[A].Reeder R I.Carbonate:Mineralogy and Chemistry[C].Washington D C:Mineralogical Society America,1983,227-264.
    [111]Dreybrodt W,Buhmann D,Michaelis J,et al.Geochemically controlled calcite precipitation by CO_2outgassing:Field mearsurements of precipitation rates in comparison to theoretical predictions[J].Chem Geol,1992,97(3/4):285-294.
    [112]Herman J S,Lorah M M.CO_2 outgassing and calcite precipitation in Falling Spring Creek,Virginia,USA[J].Chem Geol,1987,62(3/4):251-262.
    [113]Liu Z,Svensson U,Dreybrodt W,et al.Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine,China:Field measurements and theoretical prediction of deposition rates[J].Geochim Cosmoehim Acta,1995,59(15):3087-3097.
    [114].Dreybrodt W.Deposition of calcite from thin films of natural calcareous and the growth of speleothems[J].Chem Geol,1980,29(1/2):89-105.
    [115]White W B.Cave minerals and speleothems[A].Ford T D,Cullingford C H D.The Science of Speleology[C].London:Academic Press,1976,267-327.
    [116]Holmgren K,Karlén W,Shaw P A.Paleoclimatic significance of the stable isotopic composition and petrology of a Late Pleistocene stalagmite from Botswana[J].Quat Res,1995,43(3):320-328.
    [117]Dermiston R F,González L A,Asmerom Y,et al.Speleothem carbon isotopic records of Holocene environment in the Ozark Highlands,USA[J].Quat Int,2000,67(1):21-27.
    [118]Matsuoka J,Kano A,Oba T,et al.Seasonal variation of stable isotopic compositions recorded in a laminated tufa,SW Japan[J].Earth Planet Sci Lett,2001,192(1):31-44.
    [119]Frappier A,Sahagian D,Gonzalez L A,et al.El Ni(?)o events recorded by stalagmite carbon isotopes [J].Science,2002,298(5593):565.
    [120]Minissale A,Kerrick D M,Magro G,et al.Geochemistry of Quaternary Travertines in the region north of Rome(Italy):Structural,hydrological and paleoclimatic implications[J].Earth Planet Sci Lett,2002,203(2):709-728.
    [121]Horvatincic N,Bronic I K,Obelic B.Differences in the ~(14)C age,δ~(13)C andδ~(18)O of Holocene tufa and speleothem m the dinaric Karst[J].Palaeogeogr Palaeoclimatol Palaeoecol,2003,193(1):139-157.
    [122]Kano A,Matsuoka J,Kojo T,et al.Origin of annual laminations in the tufa deposits,southwest Japan [J].Palaeogeogr Palaeoclimatol Palaeoecol,2003,191(2):243-162.
    [123]Vaks A,Bar-Matthews M,ayalon A,et al.Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located ju the rain shadow in Israel[J].Quat Res,2003,59(2):182-193.
    [124]Turner J V.Kinetic fractionation of carbon-13 during calcium carbonate precipitation[J].Geochim Cosmochim Acta,1982,46(7):1183-1191.
    [125]Michaelis J,Usdowski E,Menschel G.Partitioning ofδ~(13)C and δ~(12)C on the degassing of CO_2 and the precipitation of calcite--Rayleigh-type fractionation and a kinetic model[J].Am J Sci,1985,285(4):318-327.
    [126]Romanek C S,Grossman E L,Morse J W.Carbon isotopic fractionation in synthetic aragonite and calcite:Effect of temperature and precipitation rate[J].Geochim Cosmochim Acta,1992,56(1):419-430.
    [127]刘再华,Dreybrodt W.方解石沉积速率控制的物理化学机制及其古环境重建意义[J].中国岩溶,2002,21(4):252-257.
    [128]Usdowski E,Hoefs J,Menschel G.Relationship between δ~(13)C andδ~(18)O Fractionation and changes in major element composition in a Recent calcite-depositing spring--A model of chemical variations with inorganic CaCO_3 precipitation[J].Earth Planet Sci Lett,1979,42(2):267-276.
    [129]Dandurand J L,Gout R,Hoefs J,et al.Kinetically controlled variations of major componenes and carbon and oxygen isotope in a caleite-preeipiting spring[J].Chen Geol,1982,36(3/4):299-315.
    [130]Suarez D L.Calcite supersaturation and precipitation kinetics in the Lower Colorado River,All-American Cannal and East Highline Canel[J].Water Resour RES,1983,19(3):653-661.
    [131]Herman J S,Lorah M M.Calcite precipitation rates in the fields:Mearsurement and prediction for a travertine-depositing[J].Geochin Cosmochim Acta,1988,52(10):2347-2355.
    [132]Spiro B,Pentecost A.One day in the life of a stream:A diurnal inorganic carbon mass balance for a travertine-depositing stream(Waterfall Beek,Yorkshire)[J].Geomicrobiol J,1991,9(1):1-11.
    [133]Dietzel M,Usdowski E,Hoefs J.Chemical and ~(13)C/~(12)C- and ~(18)O/~(16)O-isotope evolution of alkaline drainanage water and the precipitation of calcite[J].Appl Geochem,1992,7(2):177-184.
    [134]Pentecost A.Geochemistry of carbon in six travertine-depositing water of Italy[J].J Hydrol,1995,167(1-4):263-278.
    [135]Merz-Preiβ M,Riding R.Cyanobacteria tufa calcification in two freshwater stream:Ambient environment,chemical thresholds and biological process[J].Sediment Geol,1999,126(1-4):103-124.
    [136]Fouke B W,Farmer J D,Des Maraid D J,et al.Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs(Angel Terrace,Mammoth Hot Springs,Yellowstone National Park,USA)[J].J Sediment Res,2000,70(3):565-585.
    [137]Drysdale R N,Taylor M P,Ihlenfeld C.Factor controlling the chemical evolution of travertine-depositing rivers of the Barkely karst,north Australia[J].Hydrol Proc,2002,16(15):2941-2962.
    [138]刘再华,袁道先,何师意,等.四川黄龙沟景区钙华的起源和形成机理研究[J].地球化学,2003,32(1):1-10.
    [139]Jacobson,R.L.,Usdowski,E.,1975.Geochemical controls on a calcite precipitating spring[J].Contrib.Mineral.Petrol.51,65-74.
    [140]Suarez,D.L.,1983.Calcite supersaturation and precipitation kinetics in the lower Colorado River,All American-Canal and East Highland Canal[J].Water Resour.Res.19,653-661.
    [141]Herman,J.S.,Lorah,M.M.,1987.CO_2 outgassing and calcite precipitation in Falling Spring Creek,USA[J].Geochim.Cosmochim.Acta 62,251-262.
    [142]Dreybrodt,W.,Buhmann,D.,Michaelis,J.,Usdoswski,E.,1992.Geochemically controlled calcite precipitation by CO_2 outgassing:Field measurements of precipitation rates to theoretical predictions.Chem[J].Geol.97,287-296.
    [143]Merz-Preiss,M.,Riding,R.,1999.Cyanobacterial tufa calcification in two freshwater streams:ambient environment,chemical thresholds and biological processes[J].Sediment.Geol.126,103-124.
    [144]Craig H.Isotopic variation waters[J].Science,1961,133:1702-1703.
    [145]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    [146]Dansgaard W.Stable isotopes in precipitation[J].Tellus,1964,16:436-468.
    [147]卫克勤,林瑞芬.论季风气候对我国雨水同位素组成的影响.地球化学,1994,23(1):33-46.
    [148]章新平,孙维贞,刘晶淼.西南水汽通道上昆明站降水中的稳定同位素[J].长江流域资源与环境,2005,14(5):665-669.
    [149]Yapp C J.A model for the relationship between precipitation D/H ratios and precipitation intensity[J].Geophys.Res.,1982,87(C2):9614-9620.
    [150]田立德,姚檀栋,蒲健辰,等.拉萨夏季降水中稳定同位素变化特征.冰川冻土.,1997,19(4):295-301.
    [151]章新平,施雅凤,姚檀栋.青藏高原东北部降水中δ~(18)O的变化特征[J].中国科学(B辑),1995,25(5):540-547.
    [152]章新平,姚檀栋.我国降水中δ~(18)O的分布特点[J].地理学报,1998,53(4):356-364.
    [153]Rozanski,K.,Araguas,L,Gonfiantini,R.Isotopic patterns in modem global precipitation.In:Climatic Change in Continental Isotopic Records(ed.A.G.U.).Geophysical Monograph 78.1993:1-36.
    [154]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧同位素研究[J].科学通报,1983,13:801-806.
    [155]田立德,姚檀栋,Stievenard M,等.中国西部降水中δD的初步研究[J].冰川冻土,1998,20(2):175-179.
    [156]刘再华,袁道先,何师意,张美良,张加桂.地热CO2-水-碳酸盐岩系统的地球化学特征及其CO_2来 源[J].中国科学(D辑),2000,30(2):209-214.
    [157]袁道先,刘再华等.中国岩溶动力系统[M].北京:地质出版社,2002:1-275.
    [158]刘再华,Wolfgang Dreybrodt.岩溶作用动力学与环境[M].地质出版社,2007:1-237.
    [159]O'Neil J R,Clayton R N,Mayeda T K.Oxygen isotope fractionation in divalent metal carbonates[J].Journal of Chemical Physics,1969,51:5547-5558.
    [160]Hendy C H.The isotope gepchemistry of speleothems-Ⅰ:The calculation of the effects of different modes of formation on the isotope composition of speleothems and their applicaility as paleclimatic indicators[J].Geochim Cosmochim Ac-ta,1971,35:801-824.
    [161]Epstein S,Buchsbaum R,Lowenstam HA,et al.Revised carbonate-water isotopic temperature scale[J].Bull Geol SocAmer,1953,64:1315-1326.
    [162]刘再华,游省易,李强,等.碳酸钙沉积溪流中地球化学指标的空间分布和日变化研究[J].地球化学,2004,33(3):269-278.
    [163]潘根兴,何师意,曹建华,等.桂林丫吉村表层带岩溶土壤系统中δ~(13)C值的变异[J].科学通报,2001,46(22):1919-1922.
    [164]Buhmann D,Dreybrodt W.The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas.1.Open system[J].Chem.Geol.,1985,48:189-211.
    [165]Drake J J,Wigley T M L.The effect of climate on the chemistry of carbonate groundwaters[J].Water Resour.Res.,1975,11:958-962.
    [166]林清,王绍令.沉水植物稳定碳同位素组成和影响因素分析[J].生态学报,2001,21(5):806-809.
    [167]Schneider,J.Carbonate Construction and Decomposition by Epilithic and Endolithic Microorganisms In Salt and Freshwater[M].Berlin:Fossil algae,Springer-Verlag.1977,248-260.
    [168]Schneider,J.Algae Micro- reef-Coated Grains from Freshwater Environment[M].Berlin:Coated Grains,Springer-Verlag.1983,284-298.
    [169]Atkin CA,Patterson B D and Graham D.Plant carbonic anhydrase:distribution of types among species[J].Plant.Pysiol,1972,50:214-217.
    [170]Fridlyand L E and Kaler V L.Possible CO2 concentration mechanism in chloroplasts of C3 plants Role of carbonic anhydrase[J].Gen.Pysiol.Biophys,1987,6:611-617.
    [171]李为,余龙江等.微生物及其碳酸酐酶对岩溶土壤系统钙镁元素淋火的影响[J].中国岩溶,2004,23(1):1-6.
    [172]Pedley,M.,Andrews,J.,Ordonez,S.,Garcia del Cura,M.A.Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britai[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1996,121:239-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700