水通道蛋白4对成年CD1小鼠脑内神经再生的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水通道蛋白(aquaporins,AQPs)是一组广泛存在于动植物细胞膜上与水转运相关的整合蛋白,参与水分子的跨膜转运和细胞内外环境稳态的调节。迄今为止,在哺乳动物组织中已鉴定出13种水通道蛋白(AQP0-AQP12)。其中,AQP4是成年动物脑内表达量最丰富、水通透效率最高的水通道亚型,主要分布于星形胶质细胞、室管膜细胞以及成体神经干细胞(adult neural stem cell,ANSCs)。AQP4对水分子具有双向通透的特性,使其能够在生理及病理状态下快速调节细胞内外水分子的重分布。在细胞毒性脑水肿中,AQP4可促进水分子进入星形胶质细胞,加剧脑水肿;在血管源性脑水肿中,AQP4可加速水肿液从脑实质向脑脊液与血管的外排,减轻脑水肿。星形胶质细胞是脑内数量最多的细胞,参与细胞外离子缓冲、神经递质传导、生长因子释放以及神经免疫调节。应用AQP4基因敲除鼠的研究显示,AQP4不仅是脑内一种特异性的水转运孔道,而且调控星形胶质细胞功能,并广泛参与脑内微环境稳态的维持、神经传导等重要脑生理功能的调节。
     成年神经再生(adult neurogenesis)是当今神经科学研究中最活跃、进展最快的领域之一。成年动物脑中侧脑室下区(subventricular zone,SVZ)与海马齿状回颗粒细胞下区(subgranular zone,SGZ)存在ANSCs,参与脑中持续的神经再生过程。ANSCs能自我更新、持续增殖并分化成神经元、星形胶质细胞和少突胶质细胞。生理状态下,神经再生参与学习记忆、择偶行为等多种脑高级功能的形成。在病理情况下,神经再生能力的改变参与多种神经精神疾病的发生及神经修复过程。例如,抑郁症患者SGZ神经再生减弱,抗抑郁药物可通过增强SGZ神经再生产生治疗学效应;增强脑卒中后神经再生能显著改善认知与运动功能缺损。但是,目前对于调节成年神经再生过程的分子机制认识非常有限。因此,探索成年神经再生的调节机制将为发展靶向于调制神经再生的药物提供新思路,为神经干细胞移植治疗积累学术基础。
     近年来的研究发现,AQP4高度表达于SVZ、SGZ等神经再生显著的脑区,并且在鼠、猪及人类神经干细胞和神经祖细胞均有AQP4的表达。然而,AQP4是否参与调节成年神经再生?目前尚未见报道。因此,本文第一部分工作首先应用自行制备的AQP4基因敲除鼠在体研究AQP4基因敲除对SVZ/SGZ神经干细胞增殖及SVZ结构发育的影响;第二部分工作应用离体培养的小鼠SVZ ANSCs,研究AQP4基因敲除对ANSCs自我更新、增殖、迁移、分化等生物学特性的影响及其调节机制;第三部分工作在建立慢性温和应激(chronic mild stress,CMS)抑郁症模型小鼠的基础上,研究AQP4基因敲除对经典抗抑郁药物氟西汀(fluoxetine)促SGZ神经再生作用的影响及其相关的分子机制。研究结果开拓了AQP4神经生物学研究的新领域,深化对AQP4生理及病理功能的认识,揭示AQP4是调制成年神经再生的重要靶点,为研发针对神经修复的治疗药物提供新的靶标。
     第一部分AQP4基因敲除对成年CD1小鼠SVZ/SGZ神经干细胞增殖及SVZ结构发育的影响
     目的:研究、阐明AQP4在成年小鼠SVZ/SGZ神经干细胞增殖及SVZ结构发育中的作用。
     方法:应用2月龄AQP4野生型(wildtype,AQP4~+/+)及AQP4基因敲除型(AQP4 knockout,AQP4-/-)雄性CD1小鼠,经腹腔给予5-溴-2-脱氧尿嘧啶核苷(5-bromo-2-deoxyuridine,BrdU,50mg/kg,每2小时一次,共4次)24小时后麻醉、灌注固定、取脑、冰冻切片,行BrdU免疫组化。取成年小鼠侧脑室(lateral ventricle,LV)背外侧区组织固定后行锇酸染色,电镜观察SVZ细胞结构。应用出生后1、7、14、28、56日龄AQP4+/+及AQP4-/- CD1小鼠,断头取脑,石蜡包埋后切取侧脑室前脚至中脑导水管出现部位冠状切片,行HE染色及AQP4免疫组化,测定LV容积、计数SVZ细胞密度,分析SVZ AQP4表达的灰度值。取新鲜全脑组织,用干/湿比重法测定脑含水量。取2月龄小鼠,打开小脑延髓池,用滤纸(1 mm×5 mm)称重法测定不同时间点脑脊液量。
     结果:1)AQP4基因敲除显著抑制成年小鼠SVZ神经干细胞增殖,对SGZ神经干细胞增殖无显著影响。2)AQP4-/-小鼠侧脑室容积显著减小,室管膜层不连续,部分区域室管膜细胞缺失,SVZ细胞数量显著减少。3)电镜示AQP4-/-小鼠室管膜细胞下层出现大量空泡样结构。4)野生型小鼠SVZ AQP4表达在出生后发育过程中逐渐升高。5)出生1天的AQP4+/+与AQP4-/-小鼠脑含水量无统计学差异,自出生后7天起至出生后56天,AQP4-/-小鼠脑含水量显著高于AQP4+/+小鼠。6)出生1天及7天的AQP4+/+与AQP4-/-小鼠LV容积、SVZ细胞密度无统计学差异;自出生后14天起至出生后56天,AQP4-/-小鼠LV容积、SVZ细胞密度则显著低于AQP4+/+小鼠。7)AQP4基因敲除显著减少成年小鼠脑脊液产量。
     结论:AQP4基因敲除抑制成年小鼠SVZ神经干细胞增殖,破坏SVZ细胞排列结构,并减少脑脊液产量、增加脑含水量,表明AQP4参与成年小鼠SVZ神经干细胞增殖及SVZ结构形成的调控。
     第二部分AQP4基因敲除对CD1小鼠SVZ成体神经干细胞自我更新、增殖、迁移、分化的影响
     目的:研究、阐明AQP4对离体培养的小鼠SVZ成体神经干细胞自我更新、增殖、迁移、分化的影响及调控机制。
     方法:分离培养2月龄AQP4+/+及AQP4-/-雄性小鼠SVZ ANSCs,应用神经球分析法(neurosphere assay)测定两种基因型ANSCs自我更新能力;采用BrdU掺入法测定ANSCs增殖能力;采用流式细胞仪法检测ANSCs细胞周期。将神经球贴壁生长48小时后测量ANSCs放射状迁移距离。用1% FCS诱导ANSCs分化7天后,采用Tuj-(1neuron-specific class IIIβ-tubulin)与GFAP(glial fibrillary acidic protein)免疫荧光双标法测定ANSCs向神经元及星形胶质细胞表型分化的比率。将ANSCs负载钙荧光探针Fluo 3-AM后采用激光共聚焦显微镜连续扫描,记录细胞内自发性钙振荡(spontaneous calcium oscillation)以及100 mM KCl所诱发的钙瞬变(calcium transient)。应用RT-PCR及Western blotting法检测神经干细胞L型、T型电压依赖性钙通道及缝隙连接蛋白Connexin43(Cx43)的表达。
     结果:1)AQP4-/- ANSCs形成原代、第二代、第三代神经球的数量与大小以及BrdU标记阳性细胞比例均显著少于AQP4+/+ ANSCs。2)流式细胞仪检测结果显示AQP4基因敲除使凋亡期细胞比例增加,并出现G2/M细胞周期阻滞。3)AQP4-/- ANSCs放射状迁移距离显著短于AQP4+/+ ANSCs。4)AQP4基因敲除使ANSCs分化成Tuj-1阳性(神经元表型)细胞的比例显著低于AQP4+/+ ANSCs,两种基因型ANSCs分化成GFAP阳性(星形胶质细胞表型)细胞的比例无统计学差异。5)AQP4-/- ANSCs内自发性钙振荡的振幅显著低于AQP4+/+ ANSCs,频率显著快于AQP4+/+ ANSCs;AQP4-/- ANSCs经高钾诱导所产生钙瞬变峰值显著低于AQP4+/+ ANSCs。6)AQP4-/- ANSCs上L型电压依赖性钙通道Cav1.2及缝隙连接蛋白Cx43表达显著低于AQP4+/+ ANSCs。
     结论:AQP4基因敲除抑制离体ANSCs自我更新、增殖、迁移及向神经元的分化,增强ANSCs自发性钙振荡的频率、减弱钙振荡振幅,抑制去极化所致胞内钙瞬变,表明AQP4通过调控细胞内钙动力学影响ANSCs生物学特性。
     第三部分AQP4基因敲除对氟西汀促成年CD1小鼠SGZ神经再生作用的影响
     目的:研究、阐明AQP4在氟西汀促SGZ神经再生及其抗抑郁效应中的作用与机制。
     方法:1)经腹腔单次给予2-3月龄AQP4~+/+及AQP4~-/-雄性CD1小鼠氟西汀(10mg/kg),给药后0.25、5、12小时,分别取小鼠血浆及海马组织匀浆,用高效液相色谱法(high performance liquid chromatography,HPLC)测定氟西汀及其代谢产物去氧氟西汀的含量;2)经腹腔给予正常小鼠与慢性温和应激(chronic mild stress,CMS)致抑郁症模型小鼠氟西汀(10mg/kg),每日一次,持续四周。氟西汀给药结束前三天,采用新奇抑制摄食实验(novelty-suppressed feeding test,NSF)及悬尾实验(tail suspension test,TST)测定氟西汀对正常小鼠的抗焦虑效应;采用糖水偏爱(sucrose preference)实验及TST,评价氟西汀对抑郁症模型小鼠的抗抑郁效应。3)腹腔注射BrdU(50mg/kg,每两小时一次,共四次)24小时及28天后分批处死小鼠,灌注、取脑,行BrdU免疫组化/免疫荧光双重标记,通过计数SGZ BrdU阳性细胞数,NeuN/BrdU、GFAP/BrdU阳性细胞数测定海马神经干细胞增殖、存活及分化。4)取新鲜脑组织,匀浆后分别测定PKA、PKC活性,CREB、ERK1/2、CaMKⅣ磷酸化水平及AQP4表达水平。5)分离培养成年AQP4+/+及AQP4-/- CD1雄性小鼠海马ANSCs,采用[3H]thymidine掺入法测定0.1、1μM氟西汀对海马神经干细胞增殖的影响。
     结果:1)单次氟西汀给药后0.25、5、12小时,两种基因型小鼠血浆及海马中氟西汀及去氧氟西汀的含量无统计学差异。2)AQP4基因敲除取消氟西汀的抗焦虑与抗抑郁作用。3)氟西汀能显著促进正常AQP4+/+小鼠SGZ细胞增殖,而对正常AQP4-/-小鼠SGZ细胞增殖无显著影响;氟西汀能逆转CMS造模对AQP4+/+小鼠SGZ细胞增殖的抑制作用,而对CMS造模所致AQP4-/-小鼠SGZ细胞增殖抑制无显著改善作用。4)AQP4基因敲除对BrdU标记阳性细胞存活的比例及其向神经元与星形胶质细胞分化的比例无显著影响。5)氟西汀能显著增强正常AQP4~+/+小鼠海马内CREB及CaMKⅣ磷酸化,而对正常AQP4-/-小鼠海马内CREB及CaMKⅣ磷酸化水平无显著影响;氟西汀对两种基因型正常小鼠海马ERK1/2磷酸化及PKA、PKC活性均无显著影响。6)CMS造模能抑制两种基因型小鼠海马中CREB、CaMKⅣ、ERK1/2磷酸化,抑制PKA活性,对PKC活性无显著影响;氟西汀能逆转CMS所致两种基因型小鼠海马内PKA活性及ERK1/2磷酸化水平的降低,对PKC活性无显著影响;氟西汀能逆转CMS造模所致AQP4+/+小鼠海马CREB、CaMKⅣ磷酸化水平的下降,而对AQP4-/-小鼠CREB、CaMKⅣ磷酸化水平的下降无显著改善作用。7)氟西汀能逆转CMS造模所致海马AQP4表达水平的升高。8)AQP4基因敲除显著抑制离体培养的成年小鼠SGZ海马神经干细胞增殖,并取消0.1μM、1μM氟西汀促ANSCs增殖效应。
     结论:AQP4基因敲除抑制慢性氟西汀给药的促海马神经再生作用,进而取消氟西汀的抗抑郁效应,其机制可能与其抑制CaMKⅣ-CREB信号转导通路相关;氟西汀可能是脑内AQP4的调节剂。
     综上所述,本文研究工作的主要创新之处在于:
     1.发现AQP4参与成年小鼠SVZ神经干细胞增殖及SVZ结构形成的调控,为进一步研究脑内AQP4的病理生理作用积累了学术基础。
     2.揭示AQP4是调节成年动物脑内神经再生的新靶点,为治疗神经再生障碍相关的神经精神疾病提供了新的思路。
     3.阐明AQP4通过调节CaMKⅣ-CREB信号转导通路调制氟西汀促成年海马SGZ神经再生作用及抗抑郁效应。
     4.发现氟西汀是脑内AQP4的调节剂,拓展了对脑内神经再生的分子调控及氟西汀药理作用机制的认识。
Aquaporins (AQPs) are integral membrane proteins that serve as channels in the transfer of water, and in some cases, small solutes across the membrane. So far, 13 aquaporin isoforms (AQP0-AQP12) have been identified in mammalian species. AQP4, the predominant isoform of AQPs in adult brain, is primarily expressed at the border between brain parenchyma and major fluid compartments, including astrocyte foot processes and glia limitans, as well as ependymal cells and subependymal astrocytes. The bidirectional water channel AQP4 has an important role in water homeostasis in the brain. It probably helps in the redistribution and absorption of edema fluid, because disruption of AQP4 is found to contribute to the pathophysiology of brain edema. AQP4 knockout markedly reduced brain swelling in mouse model of cytotoxic brain edema, whereas it significantly worsened outcome in mouse model of vasogenic brain edema. By using AQP4 knockout mice, increasing studies show that AQP4 is not only a specific water transporter, but also a mediator of astrocytic functions. Moreover, AQP4 is involved in regulating the homeostasis of microenvironment and neurotransmission in the brain.
     The study of neurogenesis in the adult brain is the most exciting and fastest moving areas of neuroscience today. Adult neurogenesis mainly distributes in the subgranular zone (SGZ) of hippocampal dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. Neurogenesis is controlled by proliferation, differentiation, and migration of adult neural stem cells (ANSCs), which retain the potential to produce neurons, astrocytes, and oligodendrocytes. Under physiological condition, neurogenesis is thought to involve certain brain’s function, such as learning, memory, and mating behavior. Now, it has been demonstrated that neurogenesis is involved the pathogenesis of neuropsychiactric diseases and the fuction recovery after brain injury. For instance, promoting endogenous neurogenesis could improve neurological function in different stroke models. Chronic stress inhibits neurogenesis in SGZ, while antidepressants exert their therapeutic effects by increasing hippocampal neurogenesis. Therefore, promoting adult neurogenesis has been regarded as a prospective strategy for the treatment of neuropsychiatric diseases.
     It is reported that AQP4 is extensively expressed in the brain regions such as SVZ and SGZ, where adult neurogenesis is found. Notably, AQP4 is the main subtype of AQPs in ANSCs. However, whether AQP4 participates the regulation of the biology of ANSCs and whether it is involved the adult neurogenesis under pathologic conditions remains unknown. In the present study, we first investigated the role of AQP4 in the cell proliferation and cyto-architecture of subventricular zone by using AQP4 knockout mice. Then, ANSCs from SVZ were cultured to study the role of AQP4 in cell self-renewal, proliferation, migration, and differentiation. Finally, AQP4 knockout mice were used to investigate whether AQP4 is involved in fluoxetine-induced enhancement of adult hippocampal neurogenesis under both basal and CMS-induced depressive conditions. The results revealed here will be beneficial to knowing the neurobiology of AQP4 in adult neurogenesis and provide a new target for developing therapeutic options for neuropsychiatric diseases.
     Part I. Effects of AQP4 knockout on cell proliferation in SVZ/SGZ and cyto-architecture of SVZ
     AIM: To investigate the role of AQP4 on cell proliferation in SVZ/SGZ and cyto-architecture of SVZ METHODS: Two-month-old wildtype (AQP4~+/+) and AQP4 knockout (AQP4~-/-) mice were injected intraperitoneally four times with BrdU (5-hydroxytryptamine, 50 mg/kg, i.p. q2h×4), and killed 24 hours after the last injection. The total number of BrdU-positive cells in the SVZ and SGZ were obtained stereologically by using the optical fractionator method. Dorsolateral parts (1.0×1.0mm) of the wall of lateral ventricles were post-fixed in 2% osmium and trimmed, and examined with electron microscope. AQP4+/+ and AQP4-/- mice at different age (postnatal 1 day, PN1, PN7, PN14, PN28, and PN56) were anesthetized and killed by cervical dislocation. Serial coronal sections through the rostro-caudal extent of the lateral ventricular (LV) were obtained by using a microtome. Sections were stained by hematoxylin-eosin (HE) or AQP4 immunohistochemistry. The cell density in SVZ and LV volume was determined by HE stained sections. The water content of forebrain was evaluated by wet-to-dry weight ratio with fresh forebrain tissues. Cerebrospinal fluid (CSF) production was evaluated by placing a piece of 1 mm×5 mm filter paper into cisterna magna and weighing.
     RESULT: 1) AQP4 knockout significantly inhibited ANSCs proliferation in SVZ, but had no effect in SGZ. 2) In AQP4-/- mice, the volume of LV was significantly decreased, the ependymal layer was discontinuity, and cellular amount in subependymal layer was decreased. 3) Transmission electron micrograph showed many vacuolus in the SVZ of AQP4-/- mice. 4) The expression of AQP4 in SVZ increased during the postnatal development in AQP4+/+ mice. 5) The brain water content did not differ significantly between these two genotypic mice at PN1; since PN7 to PN56, the brain water content of AQP4-/- mice was significant higher than that of AQP4+/+ mice. 6) The cell density in SVZ did not differ significantly between these two genotypic mice at PN1 and PN7. Since PN14 to PN56, the brain water content of AQP4-/- mice was significant higher than that of AQP4+/+ mice. 6) The CSF production in adult AQP4-/- mice was significant lower than that of AQP4+/+ mice.
     CONCLUSION: AQP4 knockout inhibites the proliferation of ANSCs in SVZ, disrupts the cyto-architecture of SVZ, decreases the CSF production, and increases the brain water conten. These results indicate that AQP4 is involved in the regulation of cell proliferation, structure formation of SVZ.
     PartⅡ. Effects of AQP4 knockout on the self-renewal, proliferation, migration, and differentiation of adult neural stem cells in vitro
     AIM: To investigate the effects and mechanisms of AQP4 on self-renewal, proliferation, migration, and differentiation of ANSCs in vitro. METHODS: ANSCs of 2-month-old AQP4+/+ and AQP4-/- mice were isolated and cultered from SVZ tissue. The self-renewal of ANSCs was measured by neurosphere assay. BrdU incorporation was used to investigate the proliferation of ANSCs, and cell cycle was determined by flow cytometry. Selected AQP4+/+ and AQP4-/- neurospheres with similar size were placed on coated 24-hole plate. The radial migration of ANSCs out of neurospheres was assayed 48 hours after plantation. Phenotypic Differentiation of ANSCs was determined by Tuj-1 (neuron-specific class IIIβ-tubulin) and GFAP (glial fibrillary acidic protein) double immunofluorescence after 7 days culture with 1% FCS. Intracellular spontaneous calcium oscillations and calcium transients induced by high concentration KCl were assayed by Fluo-3 calcium image. The expression of L-type and T-type votage-sensitive calcium channels and connexin 43 on ANSCs were determined by RT-PCR or western blot. RESULT: 1) The number and size of primary, secondary, and tertiary neurospheres generated from AQP4-/- ANSCs were significantly fewer and smaller than that of AQP4+/+ ANSCs. 2) The BrdU-positive cell in AQP4-/- ANSCs were significantly less than that of AQP4+/+ ANSCs. 3) AQP4 knockout increased basal apoptosis and induced G2/M arrest in ANSCs. 4) AQP4 knockout significantly attenuated radial migration of ANSCs out of neurospheres. 5) The proportion of Tuj-1-positive cells in AQP4-/- ANSCs culture was significantly lower than that of AQP4+/+ ANSCs culture after 7-day differentiation. The proportion of GFAP-positive cells did not differ significantly in both genotypic ANSCs cultures. 6) AQP4 knockout altered the spontaneous calcium oscillations by frequency enhancement and amplitude suppression, and suppressed KCl-induced calcium transient. 7) AQP4 knockout downregulated the expression of L-type voltage-gated calcium channel CaV1.2 subtype and the connexin43 in ANSCs.
     CONCLUSION: AQP4 knockout inhibites ANSCs self-renewal, proliferation, migration and neuronal differentiation in vitro. Moreover, AQP4 knockout alters the spontaneous calcium oscillation in ANSCs by enhancement of frequency and decrement of amplitude, and inhibites depolarization-induced calcium transient. These findings show that AQP4 is involved in the regulation of the basic properties of ANSCs by modulating the intracellular calcium dynamics.
     PartⅢ. Effects of AQP4 knockout on fluoxetine-induced enhancement of SGZ neurogenesis
     AIM: To investigate the effects and mechanisms of AQP4 in fluoxetine-induced enhancement of SGZ neurogenesis and the antidepressive effects of fluoxetine METHODS: 1) Two to three-month-old AQP4+/+ and AQP4-/- mice were received a single i.p. injection of fluoxetine (10mg/kg). Concentrations of fluoxetine and its metabolite norfluoxetine in the plasma and hippocampus were measured at 0.25h, 5 h, and 12 h after fluoxetine injection by high performance liquid chromatography (HPLC). 2) AQP4+/+ and AQP4-/- CD1 male mice were subjected to daily i.p. injection of fluoxetine for 4 weeks under normal condition or followed by chronic mild stress (CMS). The anxiolytic effects of fluoxetine under normal condition were measured by novelty-suppressed feeding test (NSF) and tail suspension test (TST). The antidepressive effects of fluoxetine under stress were evaluated by sucrose preference test and TST. 3) BrdU was administrated to both genotypic mice followed 4-week fluoxetine treatment. Neurogenesis was evalutated by counting the BrdU-positive cells and NeuN/BrdU or GFAP/BrdU-positive cells in the SGZ. 4) Fresh hippocampal homogenates were used to determine the activities of PKA, PKC, the phosphoralations of CREB, ERK1/2, and CaMKⅣ, and the expression of AQP4. 5) The effects of fluoxetine (0.1, 1μM) on the proliferation of hippocampal ANSCs were assayed by [3H]thymidine incorporation.
     RESULT: 1) The serum concentration or hippocampal content of fluoxetine and norfluoxetine did not differ significantly between AQP4+/+ and AQP4-/- mice at 0.25h, 5h, and 12h after single fluoxetine administration. 2) AQP4 knockout abolished anxiolytic and antidepressive effects of fluoxetine. 3) Under basal condition, 4-week treatment of fluoxetine increased the hippocampal neurogenesis in AQP4+/+ mice but failed in AQP4-/- mice. CMS procedure significantly inhibited hippocampal neurogenesis in both genotypic mice. Fluoxetine reversed CMS-induced hippocampal neurogenesis inhibition in AQP4+/+ mice, but the same treatment had no effect on AQP4-/- mice. 4) AQP4 knockout had no effect on the survival and differentiation of BrdU-positive cells in SGZ. 5) Under basal condition, fluoxetine treatment significantly enhanced phosphorylation of CREB and CaMKⅣin AQP4+/+ mice but not in AQP4-/- mice. The same treatment had no significant effect on the phosphorylation of ERK1/2 and the activities of PKA and PKC. 6) In both genotypic mice, CMS procedure significantly inhibited the phosphorylation of CREB, ERK1/2, CaMKⅣ, and the activity of PKA, but did not alter the activity of PKC. Four-week fluoxetine treatment reversed CMS-induced inhibition of ERK1/2 phosporylation and PKA activity, but did not alter the aictivity of PKC in both genotypic mice. Fluoxetine could restored CMS-induced decrement of CREB and CaMKⅣphosphorylation in AQP4+/+ mice, but failed in AQP4-/- mice. 7) Chronic fluoxetine treatment inhibited CMS-induced upregulation of hippocampal AQP4 expression in AQP4+/+ mice. 8) AQP4 knockout inhibited proliferation of ANSCs and abolished the pro-proliferative effects of fluoxetine in vitro.
     CONCLUSION: AQP4 knockout cancels the antidepressive effects of fluoxetine by abolishing fluoxetine-induced enhancement of hippocampal SGZ neurogenesis. The underlying mechanism is attributed to that AQP4 knockout inhibites CaMKⅣ-CREB signal transduction. Moreover, fluoxetine may be a potential mediator for AQP4 expression.
     In summary, the present work provides direct evidences for the first time that AQP4 plays an important role in adult neurogenesis.
     1) AQP4 knockout inhibites the proliferation of ANSCs in SVZ, disrupts the cyto-architecture of SVZ, decreases the CSF production, and increases the brain water conten, which indicate that AQP4 is involved in the regulation of cell proliferation, structure formation of SVZ.
     2) AQP4 knockout inhibites ANSCs self-renewal, proliferation, migration and neuronal differentiation in vitro. Moreover, AQP4 knockout alters the spontaneous calcium oscillation in ANSCs by enhancement of frequency and decrement of amplitude, and inhibites depolarization-induced calcium transient. These findings show that AQP4 is involved in the regulation of the basic properties of ANSCs by modulating the intracellular calcium dynamics.
     3) AQP4 knockout cancels the antidepressive effects of fluoxetine by abolishing fluoxetine-induced enhancement of hippocampal SGZ neurogenesis. The underlying mechanism contributes to that AQP4 knockout inhibites CaMKⅣ-CREB signal transduction.
     4) Fluoxetine may be a potential mediator for AQP4 expression.
引文
1. Sheng HP, Huggins RA. A review of body composition studies with emphasis on total body water and fat. Am J Clin Nutr. 1979;32:630-647.
    2. Huang C, Thompson TE. Properties of lipid bilayer membranes separating two aqueous phases: water permeability. J Mol Biol. 1966;15:539-554.
    3. Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A. 1991;88:11110-11114.
    4. Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992;256:385-387.
    5. Moon C, Preston GM, Griffin CA, Jabs EW, Agre P. The human aquaporin-CHIP gene. Structure, organization, and chromosomal localization. J Biol Chem. 1993;268:15772-15778.
    6. Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem. 1999;68:425-458.
    7. Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1. Nature. 2000;407:599-605.
    8. Tait MJ, Saadoun S, Bell BA, Papadopoulos MC. Water movements in the brain: role of aquaporins. Trends Neurosci. 2008;31:37-43.
    9. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 2005;19:76-78.
    10. Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159-163.
    11. Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291-1293.
    12. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202:473-477.
    13. Takahashi T, Fujihara K, Nakashima I, et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain. 2007;130:1235-1243.
    14. Hinson SR, Pittock SJ, Lucchinetti CF, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology. 2007;69:2221-2231.
    15. Fan Y, Zhang J, Sun XL, et al. Sex- and region-specific alterations of basal amino acid and monoamine metabolism in the brain of aquaporin-4 knockout mice. J Neurosci Res. 2005;82:458-464.
    16. Fan Y, Kong H, Shi X, et al. Hypersensitivity of aquaporin 4-deficient mice to
    1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine and astrocytic modulation. Neurobiol Aging. 2008;29:1226-1236.
    17. Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T. Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry. 2004;9:406-416.
    18. Salaria S, Chana G, Caldara F, et al. Microarray analysis of cultured human brain aggregates following cortisol exposure: implications for cellular functions relevant to mood disorders. Neurobiol Dis. 2006;23:630-636.
    19. Tochigi M, Iwamoto K, Bundo M, Sasaki T, Kato N, Kato T. Gene expression profiling of major depression and suicide in the prefrontal cortex of postmortem brains. Neurosci Res. 2008;60:184-191.
    20. Li Z, Gao L, Liu Q, et al. Aquaporin-4 knockout regulated cocaine-induced behavior and neurochemical changes in mice. Neurosci Lett. 2006;403:294-298.
    21. Nicchia GP, Frigeri A, Liuzzi GM, Svelto M. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J. 2003;17:1508-1510.
    22. Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat Methods. 2005;2:825-827.
    23. Zeng XN, Sun XL, Gao L, Fan Y, Ding JH, Hu G. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci. 2007;34:34-39.
    24. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci. 2005;118:5691-5698.
    25. Nicchia GP, Srinivas M, Li W, Brosnan CF, Frigeri A, Spray DC. New possible roles for aquaporin-4 in astrocytes: cell cytoskeleton and functional relationship with connexin43. FASEB J. 2005;19:1674-1676.
    26. La Porta CA, Gena P, Gritti A, Fascio U, Svelto M, Calamita G. Adult murine CNS stem cells express aquaporin channels. Biol Cell. 2006;98:89-94.
    27. Cavazzin C, Ferrari D, Facchetti F, et al. Unique expression and localization of aquaporin-4 and aquaporin-9 in murine and human neural stem cells and in their glial progeny. Glia. 2006;53:167-181.
    28. Schwartz PH, Nethercott H, Kirov, II, Ziaeian B, Young MJ, Klassen H. Expression of neurodevelopmental markers by cultured porcine neural precursor cells. Stem Cells. 2005;23:1286-1294.
    29. Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005;28:223-250.
    30. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264:1145-1148.
    31. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci. 2002;22:629-634.
    32. Jessberger S, Toni N, Clemenson GD, Jr., Ray J, Gage FH. Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci. 2008;11:888-893.
    33. Rochefort C, Gheusi G, Vincent JD, Lledo PM. Enriched odor exposureincreases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci. 2002;22:2679-2689.
    34. Shapiro LA, Ng KL, Zhou QY, Ribak CE. Olfactory enrichment enhances the survival of newly born cortical neurons in adult mice. Neuroreport. 2007;18:981-985.
    35. Veyrac A, Sacquet J, Nguyen V, Marien M, Jourdan F, Didier A. Novelty determines the effects of olfactory enrichment on memory and neurogenesis through noradrenergic mechanisms. Neuropsychopharmacology. 2009;34:786-795.
    36. Rossi C, Angelucci A, Costantin L, et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci. 2006;24:1850-1856.
    37. Komitova M, Mattsson B, Johansson BB, Eriksson PS. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke. 2005;36:1278-1282.
    38. Galvan V, Bredesen DE. Neurogenesis in the adult brain: implications for Alzheimer's disease. CNS Neurol Disord Drug Targets. 2007;6:303-310.
    39. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266-270.
    40. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41:683-686.
    41. Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437:1370-1375.
    42. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000;28:713-726.
    43. Hoglinger GU, Rizk P, Muriel MP, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci. 2004;7:726-735.
    44. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampalneurogenesis. J Comp Neurol. 2000;425:479-494.
    45. Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol. 2006;80:129-164.
    46. Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci. 2004;24:8354-8365.
    47. Kim EJ, Simpson PJ, Park DJ, Liu BQ, Ronnett GV, Moon C. Leukemia inhibitory factor is a proliferative factor for olfactory sensory neurons. Neuroreport. 2005;16:25-28.
    48. Bannerman DM, Rawlins JN, McHugh SB, et al. Regional dissociations within the hippocampus--memory and anxiety. Neurosci Biobehav Rev. 2004;28:273-283.
    49. Drapeau E, Montaron MF, Aguerre S, Abrous DN. Learning-induced survival of new neurons depends on the cognitive status of aged rats. J Neurosci. 2007;27:6037-6044.
    50. Kee N, Teixeira CM, Wang AH, Frankland PW. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci. 2007;10:355-362.
    51. Van Den Eede F, Van Broeckhoven C, Claes SJ. Corticotropin-releasing factor-binding protein, stress and major depression. Ageing Res Rev. 2005;4:213-239.
    52. Gould E, Cameron HA, Daniels DC, Woolley CS, McEwen BS. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci. 1992;12:3642-3650.
    53. Krugers HJ, van der Linden S, van Olst E, et al. Dissociation between apoptosis, neurogenesis, and synaptic potentiation in the dentate gyrus of adrenalectomized rats. Synapse. 2007;61:221-230.
    54. Yu IT, Lee SH, Lee YS, Son H. Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochem Biophys ResCommun. 2004;317:484-490.
    55. Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrie P. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry. 2004;9:278-286, 224.
    56. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci. 1997;17:2492-2498.
    57. Montaron MF, Drapeau E, Dupret D, et al. Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging. 2006;27:645-654.
    58. Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus. 2006;16:239-249.
    59. Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805-809.
    60. Gronli J, Bramham C, Murison R, et al. Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol Biochem Behav. 2006;85:842-849.
    61. Gass P, Riva MA. CREB, neurogenesis and depression. Bioessays. 2007;29:957-961.
    62. Venero JL, Machado A, Cano J. Importance of aquaporins in the physiopathology of brain edema. Curr Pharm Des. 2004;10:2153-2161.
    63. Del Bigio MR. The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia. 1995;14:1-13.
    64. Gilmore JH, Bouldin TW. Analysis of ependymal abnormalities in subjects with schizophrenia, bipolar disorder, and depression. Schizophr Res. 2002;57:267-271.
    65. Parent JM. Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist. 2003;9:261-272.
    66. Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev. 2003;13:543-550.
    67. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2:260-265.
    68. Nico B, Ribatti D, Frigeri A, et al. Aquaporin-4 expression during development of the cerebellum. Cerebellum. 2002;1:207-212.
    69. Amiry-Moghaddam M, Frydenlund DS, Ottersen OP. Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience. 2004;129:999-1010.
    70. Milhorat TH, Hammock MK, Fenstermacher JD, Levin VA. Cerebrospinal fluid production by the choroid plexus and brain. Science. 1971;173:330-332.
    71. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci. 2003;4:991-1001.
    72. Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22:367-378.
    73. Gato A, Moro JA, Alonso MI, Bueno D, De La Mano A, Martin C. Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol. 2005;284:475-484.
    74. Lu DC, Zhang H, Zador Z, Verkman AS. Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J. 2008;22:3216-3223.
    75. Gage FH. Mammalian neural stem cells. Science. 2000;287:1433-1438.
    76. Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neural stem cells. Science. 2000;288:1660-1663.
    77. Taupin P. The therapeutic potential of adult neural stem cells. Curr Opin Mol Ther. 2006;8:225-231.
    78. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci. 2006;7:395-406.
    79. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11-21.
    80. McCarty NA, O'Neil RG. Calcium signaling in cell volume regulation. Physiol Rev. 1992;72:1037-1061.
    81. Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci. 2005;118:3225-3232.
    82. Galizia L, Flamenco MP, Rivarola V, Capurro C, Ford P. Role of AQP2 in activation of calcium entry by hypotonicity: implications in cell volume regulation. Am J Physiol Renal Physiol. 2008;294:F582-590.
    83. Singec I, Knoth R, Meyer RP, et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods. 2006;3:801-806.
    84. Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev. 2005;19:1438-1443.
    85. Chojnacki A, Shimazaki T, Gregg C, Weinmaster G, Weiss S. Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J Neurosci. 2003;23:1730-1741.
    86. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962-967.
    87. Clapham DE. Calcium signaling. Cell. 2007;131:1047-1058.
    88. Schuster S, Marhl M, Hofer T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem. 2002;269:1333-1355.
    89. Dupont G, Combettes L, Leybaert L. Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol. 2007;261:193-245.
    90. Scemes E, Duval N, Meda P. Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci. 2003;23:11444-11452.
    91. Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998;392:933-936.
    92. Kupzig S, Walker SA, Cullen PJ. The frequencies of calcium oscillations areoptimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade. Proc Natl Acad Sci U S A. 2005;102:7577-7582.
    93. Kawano S, Otsu K, Kuruma A, et al. ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium. 2006;39:313-324.
    94. Tomida T, Hirose K, Takizawa A, Shibasaki F, Iino M. NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J. 2003;22:3825-3832.
    95. Dai B, Saada N, Echetebu C, Dettbarn C, Palade P. A new promoter for alpha1C subunit of human L-type cardiac calcium channel Ca(V)1.2. Biochem Biophys Res Commun. 2002;296:429-433.
    96. Santana LF. NFAT-dependent excitation-transcription coupling in heart. Circ Res. 2008;103:681-683.
    97. Glover D, Little JB, Lavin MF, Gueven N. Low dose ionizing radiation-induced activation of connexin 43 expression. Int J Radiat Biol. 2003;79:955-964.
    98. Uhlen P, Burch PM, Zito CI, Estrada M, Ehrlich BE, Bennett AM. Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Proc Natl Acad Sci U S A. 2006;103:2160-2165.
    99. Weisskopf MG, Bauer EP, LeDoux JE. L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci. 1999;19:10512-10519.
    100. Wang DD, Krueger DD, Bordey A. Biophysical properties and ionic signature of neuronal progenitors of the postnatal subventricular zone in situ. J Neurophysiol. 2003;90:2291-2302.
    101. D'Ascenzo M, Piacentini R, Casalbore P, et al. Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation. Eur J Neurosci. 2006;23:935-944.
    102. Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42:535-552.
    103. Luo CX, Zhu XJ, Zhang AX, et al. Blockade of L-type voltage-gated Ca channel inhibits ischemia-induced neurogenesis by down-regulating iNOS expression in adult mouse. J Neurochem. 2005;94:1077-1086.
    104. Kahl CR, Means AR. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev. 2003;24:719-736.
    105. Takuwa N, Zhou W, Takuwa Y. Calcium, calmodulin and cell cycle progression. Cell Signal. 1995;7:93-104.
    106. Ramsdell JS. Voltage-dependent calcium channels regulate GH4 pituitary cell proliferation at two stages of the cell cycle. J Cell Physiol. 1991;146:197-206.
    107. Uehara Y, Kawabata Y, Hirawa N, et al. OPC-13340, a new dihydropyridine calcium channel blocker attenuates rapid vascular smooth muscle cell growth in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1992;20:408-415.
    108. Benoff S, Goodwin LO, Millan C, Hurley IR, Pergolizzi RG, Marmar JL. Deletions in L-type calcium channel alpha1 subunit testicular transcripts correlate with testicular cadmium and apoptosis in infertile men with varicoceles. Fertil Steril. 2005;83:622-634.
    109. Marshall J, Dolan BM, Garcia EP, et al. Calcium channel and NMDA receptor activities differentially regulate nuclear C/EBPbeta levels to control neuronal survival. Neuron. 2003;39:625-639.
    110. Nakase T, Naus CC. Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta. 2004;1662:149-158.
    111. Cheng A, Tang H, Cai J, et al. Gap junctional communication is required to maintain mouse cortical neural progenitor cells in a proliferative state. Dev Biol. 2004;272:203-216.
    112. Duval N, Gomes D, Calaora V, Calabrese A, Meda P, Bruzzone R. Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. J Cell Sci. 2002;115:3241-3251.
    113. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003;83:1359-1400.
    114. Chanson M, Kotsias BA, Peracchia C, O'Grady SM. Interactions of connexins with other membrane channels and transporters. Prog Biophys Mol Biol. 2007;94:233-244.
    115. Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007;22:778-784.
    116. Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7:179-193.
    117. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645-660.
    118. Cameron HA, Woolley CS, McEwen BS, Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56:337-344.
    119. Mirescu C, Gould E. Stress and adult neurogenesis. Hippocampus. 2006;16:233-238.
    120. Coyne JC, Thompson R. Refining diathesis-stress models of depression or introducing ptolemaic epicycles? Commentary on Santor. Cogn Behav Ther. 2003;32:68-74.
    121. Asberg M, Thoren P, Traskman L, Bertilsson L, Ringberger V. "Serotonin depression"--a biochemical subgroup within the affective disorders? Science. 1976;191:478-480.
    122. Malagie I, Trillat AC, Jacquot C, Gardier AM. Effects of acute fluoxetine on extracellular serotonin levels in the raphe: an in vivo microdialysis study. Eur J Pharmacol. 1995;286:213-217.
    123. Segman RH, Shapira B, Gorfine M, Lerer B. Onset and time course of antidepressant action: psychopharmacological implications of a controlled trial of electroconvulsive therapy. Psychopharmacology (Berl). 1995;119:440-448.
    124. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7:137-151.
    125. Malberg JE, Blendy JA. Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci. 2005;26:631-638.
    126. Chiou SH, Chen SJ, Peng CH, et al. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell. Biochem Biophys Res Commun. 2006;343:391-400.
    127. Alvarez JC, Bothua D, Collignon I, Advenier C, Spreux-Varoquaux O. Determination of fluoxetine and its metabolite norfluoxetine in serum and brain areas using high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl. 1998;707:175-180.
    128. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl). 1997;134:319-329.
    129. Bodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ. The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology (Berl). 1988;95:298-302.
    130. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571-625.
    131. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl). 1987;93:358-364.
    132. Jacobs BL, Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry. 2000;5:262-269.
    133. Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology. 2004;29:450-460.
    134. Djavadian RL. Serotonin and neurogenesis in the hippocampal dentate gyrus of adult mammals. Acta Neurobiol Exp (Wars). 2004;64:189-200.
    135. Raymond JR, Mukhin YV, Gelasco A, et al. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther. 2001;92:179-212.
    136. Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology. 2001;25:836-844.
    137. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33:88-109.
    138. Hook SS, Means AR. Ca2+/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol. 2001;41:471-505.
    139. Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell. 1996;87:1203-1214.
    140. Vizuete ML, Venero JL, Vargas C, et al. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema. Neurobiol Dis. 1999;6:245-258.
    141. Li J, Patil RV, Verkman AS. Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci. 2002;43:573-579.
    142. Li J, Verkman AS. Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem. 2001;276:31233-31237.
    143. Papadopoulos MC, Verkman AS. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem. 2005;280:13906-13912.
    1. Gould E. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci. 2007;8:481-488.
    2. Altman J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec. 1963;145:573-591.
    3. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124:319-335.
    4. Kaplan MS. Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol. 1981;195:323-338.
    5. Rakic P. Limits of neurogenesis in primates. Science. 1985;227:1054-1056.
    6. Goldman SA, Nottebohm F. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A. 1983;80:2390-2394.
    7. Alvarez-Buylla A, Nottebohm F. Migration of young neurons in adult avian brain. Nature. 1988;335:353-354.
    8. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci. 1997;17:2492-2498.
    9. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A. 1998;95:3168-3171.
    10. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A. 1999;96:5263-5267.
    11. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313-1317.
    12. Ninkovic J, Gotz M. Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Curr Opin Neurobiol. 2007;17:338-344.
    13. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26:13007-13016.
    14. Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437:1370-1375.
    15. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000;28:713-726.
    16. Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C, et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci. 2006;9:331-339.
    17. Hoglinger GU, Rizk P, Muriel MP, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci. 2004;7:726-735.
    18. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425:479-494.
    19. Rossi C, Angelucci A, Costantin L, et al. Brain-derived neurotrophic factor(BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci. 2006;24:1850-1856.
    20. Komitova M, Mattsson B, Johansson BB, Eriksson PS. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke. 2005;36:1278-1282.
    21. Galvan V, Bredesen DE. Neurogenesis in the adult brain: implications for Alzheimer's disease. CNS Neurol Disord Drug Targets. 2007;6:303-310.
    22. Hattori S, Hashimoto R, Miyakawa T, et al. Enriched environments influence depression-related behavior in adult mice and the survival of newborn cells in their hippocampi. Behav Brain Res. 2007;180:69-76.
    23. Rochefort C, Gheusi G, Vincent JD, Lledo PM. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci. 2002;22:2679-2689.
    24. Shapiro LA, Ng KL, Zhou QY, Ribak CE. Olfactory enrichment enhances the survival of newly born cortical neurons in adult mice. Neuroreport. 2007;18:981-985.
    25. Veyrac A, Sacquet J, Nguyen V, Marien M, Jourdan F, Didier A. Novelty determines the effects of olfactory enrichment on memory and neurogenesis through noradrenergic mechanisms. Neuropsychopharmacology. 2009;34:786-795.
    26. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266-270.
    27. Koehl M, Meerlo P, Gonzales D, Rontal A, Turek FW, Abrous DN. Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin. FASEB J. 2008;22:2253-2262.
    28. Trejo JL, Llorens-Martin MV, Torres-Aleman I. The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci. 2008;37:402-411.
    29. During MJ, Cao L. VEGF, a mediator of the effect of experience on hippocampalneurogenesis. Curr Alzheimer Res. 2006;3:29-33.
    30. Bjornebekk A, Mathe AA, Brene S. The antidepressant effect of running is associated with increased hippocampal cell proliferation. Int J Neuropsychopharmacol. 2005;8:357-368.
    31. Sundberg M, Savola S, Hienola A, Korhonen L, Lindholm D. Glucocorticoid hormones decrease proliferation of embryonic neural stem cells through ubiquitin-mediated degradation of cyclin D1. J Neurosci. 2006;26:5402-5410.
    32. Wong EY, Herbert J. Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience. 2006;137:83-92.
    33. Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrie P. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry. 2004;9:278-286, 224.
    34. Coe CL, Kramer M, Czeh B, et al. Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry. 2003;54:1025-1034.
    35. Nacher J, Rosell DR, Alonso-Llosa G, McEwen BS. NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci. 2001;13:512-520.
    36. Jiang W, Wolfe K, Xiao L, Zhang ZJ, Huang YG, Zhang X. Ionotropic glutamate receptor antagonists inhibit the proliferation of granule cell precursors in the adult brain after seizures induced by pentylenetrazol. Brain Res. 2004;1020:154-160.
    37. Nacher J, McEwen BS. The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus. 2006;16:267-270.
    38. Brazel CY, Nunez JL, Yang Z, Levison SW. Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience. 2005;131:55-65.
    39. Ge S, Pradhan DA, Ming GL, Song H. GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci. 2007;30:1-8.
    40. Bolteus AJ, Bordey A. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci. 2004;24:7623-7631.
    41. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645-660.
    42. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron. 2005;47:803-815.
    43. Brezun JM, Daszuta A. Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur J Neurosci. 2000;12:391-396.
    44. Jacobs BL, Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry. 2000;5:262-269.
    45. Nandam LS, Jhaveri D, Bartlett P. 5-HT7, neurogenesis and antidepressants: a promising therapeutic axis for treating depression. Clin Exp Pharmacol Physiol. 2007;34:546-551.
    46. Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805-809.
    47. Galea LA, Spritzer MD, Barker JM, Pawluski JL. Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus. 2006;16:225-232.
    48. Tanapat P, Hastings NB, Reeves AJ, Gould E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci. 1999;19:5792-5801.
    49. Galea LA, McEwen BS. Sex and seasonal differences in the rate of cell proliferation in the dentate gyrus of adult wild meadow voles. Neuroscience. 1999;89:955-964.
    50. Ormerod BK, Galea LA. Reproductive status influences the survival of new cells in the dentate gyrus of adult male meadow voles. Neurosci Lett. 2003;346:25-28.
    51. Ormerod BK, Lee TT, Galea LA. Estradiol initially enhances but subsequently suppresses (via adrenal steroids) granule cell proliferation in the dentate gyrus of adult female rats. J Neurobiol. 2003;55:247-260.
    52. Banasr M, Hery M, Brezun JM, Daszuta A. Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus. Eur J Neurosci. 2001;14:1417-1424.
    53. Shingo T, Gregg C, Enwere E, et al. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science. 2003;299:117-120.
    54. Mak GK, Enwere EK, Gregg C, et al. Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci. 2007;10:1003-1011.
    55. Joels M. Role of corticosteroid hormones in the dentate gyrus. Prog Brain Res. 2007;163:355-370.
    56. Krugers HJ, van der Linden S, van Olst E, et al. Dissociation between apoptosis, neurogenesis, and synaptic potentiation in the dentate gyrus of adrenalectomized rats. Synapse. 2007;61:221-230.
    57. Montaron MF, Drapeau E, Dupret D, et al. Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging. 2006;27:645-654.
    58. Yu IT, Lee SH, Lee YS, Son H. Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochem Biophys Res Commun. 2004;317:484-490.
    59. Lemaire V, Koehl M, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci U S A. 2000;97:11032-11037.
    60. Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci. 1997;17:5820-5829.
    61. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36:1021-1034.
    62. Ghashghaei HT, Weimer JM, Schmid RS, et al. Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex.Genes Dev. 2007;21:3258-3271.
    63. Martinowich K, Lu B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology. 2008;33:73-83.
    64. Young KM, Merson TD, Sotthibundhu A, Coulson EJ, Bartlett PF. p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. J Neurosci. 2007;27:5146-5155.
    65. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116-1127.
    66. Louissaint A, Jr., Rao S, Leventhal C, Goldman SA. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron. 2002;34:945-960.
    67. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111:1843-1851.
    68. Cao L, Jiao X, Zuzga DS, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet. 2004;36:827-835.
    69. Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H. Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci. 2000;20:1446-1457.
    70. Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci. 2004;24:8354-8365.
    71. Kim EJ, Simpson PJ, Park DJ, Liu BQ, Ronnett GV, Moon C. Leukemia inhibitory factor is a proliferative factor for olfactory sensory neurons. Neuroreport. 2005;16:25-28.
    72. Bannerman DM, Rawlins JN, McHugh SB, et al. Regional dissociations within the hippocampus--memory and anxiety. Neurosci Biobehav Rev. 2004;28:273-283.
    73. Raber J, Rola R, LeFevour A, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res.2004;162:39-47.
    74. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus. 2002;12:578-584.
    75. Ko HG, Jang DJ, Son J, et al. Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory. Mol Brain. 2009;2:1.
    76. Bruel-Jungerman E, Laroche S, Rampon C. New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci. 2005;21:513-521.
    77. Jessberger S, Clark RE, Broadbent NJ, et al. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem. 2009;16:147-154.
    78. Leuner B, Gould E, Shors TJ. Is there a link between adult neurogenesis and learning? Hippocampus. 2006;16:216-224.
    79. Drapeau E, Montaron MF, Aguerre S, Abrous DN. Learning-induced survival of new neurons depends on the cognitive status of aged rats. J Neurosci. 2007;27:6037-6044.
    80. Ge S, Yang CH, Hsu KS, Ming GL, Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron. 2007;54:559-566.
    81. Kee N, Teixeira CM, Wang AH, Frankland PW. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci. 2007;10:355-362.
    82. Gould E, Cameron HA, Daniels DC, Woolley CS, McEwen BS. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci. 1992;12:3642-3650.
    83. Mirescu C, Gould E. Stress and adult neurogenesis. Hippocampus. 2006;16:233-238.
    84. Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997;54:597-606.
    85. D'Sa C, Duman RS. Antidepressants and neuroplasticity. Bipolar Disord. 2002;4:183-194.
    86. Malberg JE, Blendy JA. Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci. 2005;26:631-638.
    87. Minger SL, Ekonomou A, Carta EM, Chinoy A, Perry RH, Ballard CG. Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med. 2007;2:69-74.
    88. Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol. 2006;59:81-91.
    89. Curtis MA, Faull RL, Eriksson PS. The effect of neurodegenerative diseases on the subventricular zone. Nat Rev Neurosci. 2007;8:712-723.
    90. Winner B, Rockenstein E, Lie DC, et al. Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging. 2008;29:913-925.
    91. Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience. 2004;127:319-332.
    92. Gage FH, Coates PW, Palmer TD, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A. 1995;92:11879-11883.
    93. Suhonen JO, Peterson DA, Ray J, Gage FH. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature. 1996;383:624-627.
    94. O'Keeffe FE, Scott SA, Tyers P, et al. Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson's disease. Brain. 2008;131:630-641.
    95. Sharma R, McMillan CR, Niles LP. Neural stem cell transplantation and melatonin treatment in a 6-hydroxydopamine model of Parkinson's disease. J Pineal Res. 2007;43:245-254.
    96. Emborg ME, Ebert AD, Moirano J, et al. GDNF-secreting human neuralprogenitor cells increase tyrosine hydroxylase and VMAT2 expression in MPTP-treated cynomolgus monkeys. Cell Transplant. 2008;17:383-395.
    97. Li QJ, Tang YM, Liu J, et al. Treatment of Parkinson disease with C17.2 neural stem cells overexpressing NURR1 with a recombined republic-deficit adenovirus containing the NURR1 gene. Synapse. 2007;61:971-977.
    98. Ebert AD, Beres AJ, Barber AE, Svendsen CN. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson's disease. Exp Neurol. 2008;209:213-223.
    99. Muraoka K, Shingo T, Yasuhara T, et al. Comparison of the therapeutic potential of adult and embryonic neural precursor cells in a rat model of Parkinson disease. J Neurosurg. 2008;108:149-159.
    100. Winkler J. Human neural stem cells improve cognitive function of aged brain. Neuroreport. 2001;12:A33.
    101. Roberts TJ, Price J, Williams SC, Modo M. Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington's disease. Neuroscience. 2006;139:1187-1199.
    102. Wu S, Sasaki A, Yoshimoto R, et al. Neural stem cells improve learning and memory in rats with Alzheimer's disease. Pathobiology. 2008;75:186-194.
    103. Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000;97:12846-12851.
    104. Noble M. Can neural stem cells be used to track down and destroy migratory brain tumor cells while also providing a means of repairing tumor-associated damage? Proc Natl Acad Sci U S A. 2000;97:12393-12395.
    105. Staflin K, Honeth G, Kalliomaki S, Kjellman C, Edvardsen K, Lindvall M. Neural progenitor cell lines inhibit rat tumor growth in vivo. Cancer Res. 2004;64:5347-5354.
    106. Kim SK, Kim SU, Park IH, et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 2006;12:5550-5556.
    107. Jeon JY, An JH, Kim SU, Park HG, Lee MA. Migration of human neural stem cells toward an intracranial glioma. Exp Mol Med. 2008;40:84-91.
    108. Jin-Qiao S, Bin S, Wen-Hao Z, Yi Y. Basic fibroblast growth factor stimulates the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury. Brain Dev. 2008.
    109. Peng J, Xie L, Jin K, Greenberg DA, Andersen JK. Fibroblast growth factor 2 enhances striatal and nigral neurogenesis in the acute
    1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neuroscience. 2008;153:664-670.
    110. Kilic E, Kilic U, Bacigaluppi M, et al. Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice. J Pineal Res. 2008;45:142-148.
    111. Kolodziej A, Stumm R, Becker A, Hollt V. Endogenous opioids inhibit ischemia-induced generation of immature hippocampal neurons via the mu-opioid receptor. Eur J Neurosci. 2008;27:1311-1319.
    112. Henry RA, Hughes SM, Connor B. AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci. 2007;25:3513-3525.
    113. Baldauf K, Reymann KG. Influence of EGF/bFGF treatment on proliferation, early neurogenesis and infarct volume after transient focal ischemia. Brain Res. 2005;1056:158-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700