SDF-1/CXCR4轴在肺癌转移中作用与机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的与背景肺癌是目前发病率和死亡率最高的恶性肿瘤。转移是其治疗失败和患者死亡的主要原因。已有研究表明趋化因子及其受体与肿瘤侵袭和转移密切相关,可能是通过和炎性细胞浸润相似的机制参与了肿瘤的侵袭和转移。本课题旨在研究趋化因子SDF-1及其受体CXCR4构成的特异性轴在肺癌侵袭和转移中的作用与机制,为肺癌转移的防治提供新的思路和靶点。
     材料与方法
     (1)收集临床非小细胞肺癌(NSCLC)组织标本60例,分别取癌组织、癌旁组织及正常肺组织,进行免疫组化和RT-PCR检测其CXCR4的表达,分析肺癌组织与癌旁、正常肺组织间CXCR4表达的差异;按病理类型、分化程度及临床TNM分期分别进行分组,分析CXCR4的表达与病理类型、分化程度及临床TNM分期的相关性。
     (2)体外构建pEGFP-C1-CXCR4质粒,稳定转染肺癌A549细胞系,建立CXCR4过表达的A549细胞系(CXCR4-A549)。在CXCR4的特异性配体SDF-1的诱导下,分别对CXCR4-A549与A549两组细胞进行体外趋化和侵袭实验,并建立裸鼠皮下接种肺癌细胞的动物模型,分析上调CXCR4的表达后,对肺癌细胞体外迁移能力和体内成瘤及转移的能力的影响。
     (3)为探讨SDF-1/CXCR4在肺癌侵袭和转移中的作用机制:①利用流式细胞仪检测CXCR4-A549与A549两组细胞的增殖和凋亡,分析上调CXCR4的表达后,对细胞生长周期的影响;②利用流式细胞仪检测两组细胞钙离子内流强度,分析SDF-1/CXCR4对钙离子通道活性的调控;③采用Western blot实验检测两组细胞PI3K/AKT、MAPK/ERK相关信号通路的活性,分析SDF-1/CXCR4可能激活的下游信号分子;④采用Western blot和RT-PCR检测两组细胞肿瘤转移相关基因VEGF-C、MMP-2的表达,探讨SDF-1/CXCR4与VEGF-C、MMP-2的相互作用关系。
     研究结果
     (1)免疫组化检测结果显示:肺癌组织中CXCR4的表达主要定位于胞膜和胞浆,呈棕黄色强阳性染色,其表达率为83.3%(50/60),而在正常肺和癌旁组织中则无表达;半定量RT-PCR检测肺癌组织中CXCR4 mRNA表达为83.3% (50/60),与癌旁组织38.3% (23/60)、正常肺组织31.7% (19/60)差异显著;免疫组化检测肺鳞癌和腺癌中CXCR4的表达分别为79.3%(23/29),87.1%(27/31),鳞、腺癌间无显著差异(p>0.05);在高分化癌中CXCR4的表达为76.9%(10/13),中分化癌中为82.1%(23/28),低分化癌为84.2%(16/19),虽然随分化程度降低而呈增高趋势,但三者之间无统计学差异(p>0.05);TNM分期中Ⅰ期患者CXCR4的表达率为72.7%(8/11),Ⅱ期患者为83.9%(26/31),Ⅲ期患者为88.9%(16/18),三期之间表达有显著相关性。实验结果提示CXCR4在非小细胞肺癌中的表达具有:与癌细胞类型无关,随细胞分化程度降低而增强趋势,而与临床TNM分期密切相关,分期越晚、表达越高的特征。表明CXCR4与肺癌侵袭和转移密切相关,检测CXCR4的表达有可能作为判断转移和预后的依据。
     (2)经脂质体转染A549细胞,建立了稳定转染的CXCR4-A549细胞系,Western blot检测表明,CXCR4-A549较未转染的细胞CXCR4蛋白表达明显增高,说明构建的CXCR4-A549细胞可以上调CXCR4的表达。体外侵袭实验表明,上调CXCR4表达后,CXCR4-A549细胞的侵袭能力平均升高了1.62倍(p<0.05);在SDF-1的诱导作用下,CXCR4-A549细胞趋化作用较A549细胞更为明显(p<0.05)。体内实验中,CXCR4-A549与A549细胞接种的各6只裸鼠致瘤率均为100%,平均瘤重分别为:4.37±0.96g,3.24±1.16g,两组差异显著(p<0.05)。CXCR4-A549组6只鼠肺内均可见明显转移瘤形成,而A549组仅2只肺内有瘤细胞浸润,无转移瘤形成。表明过表达CXCR4的A549细胞在SDF-1的趋化作用下,其侵袭、成瘤及转移能力均有明显增强。
     (3)流式细胞仪检测显示:与A549细胞相比,CXCR4-A549细胞周期S期和G2期的比例升高,增殖指数(PI)升高9.72%,凋亡细胞比率减少3.60%。提示SDF-1/CXCR4可以促进细胞增殖,但两组无明显差异(p>0.05)。钙离子内流实验中,用100ng/ml SDF-1诱导20s,CXCR4-A549和A5459细胞内荧光显著增强,随时间延后而迅速的下降,两组间钙离子浓度有明显差异(p<0.05),表明SDF-1的作用具有时间依赖性。Western blot检测显示,在SDF-1作用30min时,ERK与AKT磷酸化明显。提示SDF-1/CXCR4可以活化PI3K/ERK和MAPK/AKT,激活下游分子启动肺癌细胞的侵袭和转移。在上调CXCR4表达的CXCR4-A549细胞中,VEGF-C和MMP-2在mRNA和蛋白水平均明显增高,而给予SDF-1后,其增高趋势更为明显(p<0.05)。说明SDF-1/CXCR4与VEGF-C、MMP-2在肺癌侵袭和转移中具有协同作用。
     结论
     (1)通过免疫组化法检测,揭示了CXCR4在非小细胞癌中表达的基本特征是:癌组织中高于癌旁和正常肺组织;其表达与病理类型无关,随癌细胞分化程度降低而增高趋势,但与临床TNM分期密切相关,有望成为判断NSCLC转移和预后的指标之一。
     (2)成功构建CXCR4稳定表达的肺癌A549细胞系,经体外和体内实验证明,可上调CXCR4的表达;在SDF-1作用下,其体外迁移和体内成瘤、转移能力显著增强。说明SDF-1/CXCR4在肺癌侵袭和转移中发挥重要作用。
     (3)SDF-1/CXCR4轴可通过激活肺癌细胞钙离子内流、MAPK/ERK与PI3K/AKT信号通路,启动肺癌侵袭和转移过程,并与肿瘤转移相关基因MMPs、VEGF在肺癌侵袭和转移中具有协同作用。
     本研究较系统地分析了SDF-1/CXCR4与肺癌的相关性,证实了SDF-1/CXCR4在肺癌侵袭和转移中的基本作用,初步阐明了SDF-1/CXCR4在肺癌侵袭转移中的作用机制,为进一步研究肺癌转移机制和临床诊断治疗提供了有益的帮助。
Backgroud and Aims
     Lung cancer is the most commonly diagnosed malignancy and the leading cause of cancer-related deaths worldwide. This high mortality is probably attributable to early metastasis. The greedy invasiveness of NSCLC cells results in an extremely poor average 5-year survival rate in patients so far. Recent studies indicate that tumor cells express chemokine receptors and may use chemokine-mediated mechanisms during the metastasis process. Among the chemokines and chemokine receptors identified to date, the membranous CXC chemokine receptor 4 (CXCR4) and its ligand, stromal-cell-derived factor 1α(SDF-1αor CXCL12), has been found to play a key role in tumorigenicity, proliferation, metastasis and angiogenesis. Although the mechanisms underlying SDF-1a/CXCR4-mediated tumor invasion have been studied in many cancers, the role of SDF-1a/CXCR4 in the process of lung cancer cells proliferation and migration remains largely unknown.
     Therefore, the expression of CXCR4 in NSCLC patients was detected by RT-PCR and immunohistochemistry in this study. Based on the results, the role and mechanism of SDF-1/CXCR4 axis in metastasis of lung cancer were further studied by up-regulation expression of CXCR4 in lung cancer cells in vitro and in vivo.
     Methods
     (1) Immunohistochemical staining and RT-PCR were used to detect the expressions of CXCR4 in 60 cases of NSCLC tissues. The relationship of CXCR4 experssion in NSCLC was analyzed in the pathologic types, differentiation degrees and TNM stages.
     (2) CXCR4 stable over expression human lung cancer cell lines (A549) were established by CXCR4 transfection (CXCR4-A549). The migration and invasion assay was performed to detect the migration ability both in CXCR4-A549 and A549 cells. In vivo, CXCR4-A549 and A549 cells were injected subcutaneously into nude mice(each group in 6).Four weeks later the mice were scarified and the tumors in situ and the lungs were taken out to be examined histologically.
     (3) Th cell cycle distribution was measured by flow cytometry to analyse the effect of SDF-1/CXCR4 in the cell proliferation and atoposis. The changes of the intracellular calcium concentration after SDF-1 activation were aslo measured by flow cytometry. Western blot was used to anlayse the phosphorylation of AKT and ERK, and the expression of MMP-2 and VEGF-C.
     Results
     (1) The results of immunohistochemical staining analyzing showed that there were 50 of 60(83.3%) cases with positive staining of CXCR4 protein. Staining of CXCR4 protein was identified in the cell membrane and/or cytoplasm of cancer cells with a rate in 83.3%, but not significantly detected in the normal lung cells taken from non-cancerous regions in 38.3%, adjacent to lung cancer tissue in31.7%. Comparing the expression of CXCR4 protein bewwent adenoid (87.1%) and squamous (79.3%) carcinoma, high, medium and lower differentiation cells, there were no significant differences statistically. However, the expression of CXCR4 was significantly associated with TNM stages, stage I in 72.7%,stage II in 83.9%,stage III in 88.9%(P<0.05). Also the differential expression of CXCR4mRNA was confirmed by semi-quantitative RT-PCR in lung cancer cells and normal lung cells (P<0.05).
     (2) A stable p-EGFP-C1 expressive plasmid with a CXCR4 sequence was constructed and transfected into A549 cells. With a hogh expression of CXCR4, it demonstrated the CXCR4-A549 cells were able signifcantly to increase expression of the protine by Western blotting analysis. The migration of A549-CXCR4 cells was increased 1.62 times than that of of A549 cells (P<0.05). The chemotactic activity in both of both A549-CXCR4 and A549 cells induced by SDF-1 were improved, but the former much more than the latter in vitro (P<0.05). To assay the tumor formation and metastasis ability induced by over expression of CXCR4 in vivo, twelve nude mice were resepectively inoculated subcutaneously with CXCR4-A549 cells and A549 cells (six mice in each group). The mean weight of the tumors respectively was 4.37±0.96g and 3.24±1.16g in A549-CXCR4 and A549 group (P<0.05). Moreover, the metastatic tumors were affirmatively formed microscopically and pathologically in 6 mice iduced by A549-CXCR4 cells group. In contrast, there were no typical metastatic tumors formed just only 2 mice with invasive tumor cells within the lungs in A549 cells group. It was suggestted the ability of prolifation and invasion of lung cancer cells with CXCR4 over expression.
     (3) Compared with A549 control cells, CXCR4 over expression increased the proportion of the cells in G2 and S phase in CXCR4-A549 cells and the proliferation index was added 9.72% and proportion of the cells apoptosis was decreased 3.60%. But there was no significant difference between CXCR4-A549 and A549 cells. Subsequently, though intracellular calcium was increased rapidly in a time-dependent mode while both CXCR4-A549 and A549 cells stimulated with SDF-1. However, the mean fluorescence in CXCR4-A549 cells was stronger than that in A549 cells. There was a significant difference in MMP-2 and VEGF-C expression between CXCR4-A549 and A549 cells by Western blot and RT-PCR analysis. These results indicated that regulation of CXCR4 expression was corelated to MMP-2 and VEGF-C activity in lung cancer cells. Phosphorylation of AKT and ERK was strongly increased after stimulation with SDF-1 in 100ng/ml during maximum 30 min. It was suggested that MAPK and PI3K pathway activated by SDF-1 with CXCR4 might be cooperated in metastasis of lung cater cells.
     Conclusions
     (1) There were no significant differences in expression of CXCR4 protein between histological types or differentiation degrees of the lung cancer cells. However, it was significantly associated with TNM stages.
     (2) CXCR4 over expression was functionally actived by SDF-1a. Sequently, migration and invasion of lung cancer cells were promoted the in vivo and in vitro either.
     (3) The calcium channel might cooperated with MAPK/ERK pathway activated by SDF-1/CXCR4 axis and PI3K/AKT pathway resulting in the activity of downstream mediators, MMP-2 and VEGF-C activity in metastasis of lung cater cells.
     Based on the results in this study, the role and mechanism of SDF-1/CXCR4 axis in metastasis of lung cancer both in vitro and in vivo were aproached. SDF-1a/CXCR4 axismay be a potential target for NSCLC therapy.
引文
1. Weir HK Thun MJ, Hankey BF, Ries LA, Howe HL, Wingo PA, Jemal A, Ward E, Anderson RN, Edwards BK. Annual report to the nation on the status of cancer, 1975-2000, featuring the uses of surveillance data for cancer prevention and control. J Natl Cancer Inst. 2003;95(17): 1276-99.
    2. McCracken M, Olsen M, Chen MS Jr, Jemal A, Thun M, Cokkinides V, Deapen D, Ward E. Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA Cancer J Clin. 2007;57(4): 190-205.
    3. Yang L, Parkin DM, Ferlay J, Li L, Chen Y. Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev. 2005;14(1): 243-50.
    4. Gaorav P. Gpta, Joan Massague. Cancer metastasis: building a framework. Cell. 2006;127(17):679-95.
    5. Gerhard Christofori. New signals from the invasive front. Nature. 2006;441(25):444-50.
    6. Bacolod MD, Schemmann GS, Giardina SF, Paty P, Notterman DA, Barany F. Emerging paradigms in cancer genetics: some important findings from high-density single nucleotide polymorphism array studies. Cancer Res. 2009;69(3):723-7.
    7. Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci. 2008;99(8):1501-6.
    8. Jin T, Xu X, Hereld D. Chemotaxis, chemokine receptors and humandisease. Cytokine. 2008 ;44(1):1-8.
    9. Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine. 2008;43(3):374-9.
    10. Otsuka S, Bebb G. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer. J Thorac Oncol. 2008;3(12):1379-83.
    11. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan, ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50-6.
    12. Philip MM. Chemokines and the molecular of cancer metastasis. N Engl J. 2001;345(11): 833-835.
    13. Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett. 2008;267(2):226-44.
    14. Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA. Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer. 2006;42(6):768-78.
    15. Bechara C, Chai H, Lin PH, Yao Q, Chen C. Growth related oncogene-alpha (GRO-alpha): roles in atherosclerosis, angiogenesis and other inflammatory conditions. Med Sci Monit. 2007;13(6):87-90
    16. Bizzarri C, Beccari AR, Bertini R, Cavicchia MR, Giorgini S, Allegretti M. ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets. Pharmacol Ther. 2006;112(1):139-49.
    17. Vangelista L, Secchi M, Lusso P. Rational design of novel HIV-1 entry inhibitors by RANTES engineering. Vaccine. 2008;26(24):3008-15.
    18. Ansari AW, Heiken H, Moenkemeyer M, Schmidt RE. Dichotomous effectsof C-C chemokines in HIV-1 pathogenesis. Immunol Lett. 2007;110(1):1-5.
    19. Streit WJ, Davis CN, Harrison JK. Role of fractalkine (CX3CL1) in regulating neuron-microglia interactions: development of viral-based CX3CR1 antagonists. Curr Alzheimer Res. 2005;2(2):187-9.
    20. Stievano L, Piovan E, Amadori A. C and CX3C chemokines: cell sources and physiopathological implications. Crit Rev Immunol. 2004;24(3):205-28.
    21. Bonecchi R, Galliera E, Borroni EM, Corsi MM, Locati M, Mantovani A. Chemokines and chemokine receptors: an overview. Front Biosci. 2009;14:540-51.
    22. Patel M, McInnes IB, Graham G. Atypical chemokine receptors in inflammatory disease. Curr Mol Med. 2009;9(1):86-93.
    23. Robert T, Silvio G. G-protein-coupled receptors and cancer. Nature reviews. 2007;7:79-94.
    24. He W, Neil S, Kulkarni H, Wright E, Agan BK, Marconi VC, Dolan MJ, Weiss RA, Ahuja SK. Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host Microbe. 2008;4(1):52-62.
    25. Korthol A, King JS, Keizer-Gunnink I, Harwood AJ, Van Haastert PJ. Phospholipase C regulation of phosphatidylinositol 3,4,5-trisphosphate-mediated chemotaxis. Mol Biol Cell. 2007. 18(12): 4772-9.
    26. Zhang X, Jin B, Huang C. The PI3K/Akt pathway and its downstream transcriptional factors as targets for chemoprevention. Curr Cancer Drug Targets. 2007;7(4):305-16.
    27. Chambard JC. Lefloch R, Pouysségur J, Lenormand P. ERK implication incell cycle regulation. Biochim Biophys Acta. 2007;1773(8):1299-310.
    28. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007. 282(28): 20059-63.
    29. Melnikova VO, Bar-Eli M. Bioimmunotherapy for melanoma using fully human antibodies targeting MCAM/MUC18 and IL-8. Pigment Cell Res. 2006;19(5):395-405.
    30. Zanchi C, Zoja C, Morigi M, Valsecchi F, Liu XY, Rottoli D, Locatelli M, Buelli S, Pezzotta A, Mapelli P, Geelen J, Remuzzi G, Hawiger J. Fractalkine and CX3CR1 mediate leukocyte capture by endothelium in response to Shiga toxin. J Immunol. 2008;181(2):1460-9.
    31. Gao C, Huan J, Tang J, Li W. Stromal-derived factor-1 up-regulated the expression of MIC on mouse keratinocyte stem cells. Transplant Proc. 2008;40(10):3653-5.
    32. Meurens F, Whale J, Brownlie R, Dybvig T, Thompson DR, Gerdts V. Expression of mucosal chemokines TECK/CCL25 and MEC/CCL28 during fetal development of the ovine mucosal immune system. Immunology. 2007;120(4):544-55.
    33. Feng N, Jaimes MC, Lazarus NH, Monak D, Zhang C, Butcher EC, Greenberg HB. Redundant role of chemokines CCL25/TECK and CCL28/MEC in IgA+ plasmablast recruitment to the intestinal lamina propria after rotavirus infection. J Immunol. 2006;176(10):5749-59.
    34. He S, Cao Q, Yoneyama H, Ge H, Zhang Y, Zhang Y. MIP-3alpha and MIP-1alpha rapidly mobilize dendritic cell precursors into the peripheral blood. J Leukoc Biol. 2008;84(6):1549-56.
    35. Varani S, Frascaroli G, Homman-Loudiyi M, Feld S, Landini MP, S?derberg-Nauclér C. Human cytomegalovirus inhibits the migration ofimmature dendritic cells by down-regulating cell-surface CCR1 and CCR5. J Leukoc Biol. 2005;77(2):219-28.
    36. Stevenson NJ, Addley MR, Ryan EJ, Boyd CR, Carroll HP, Paunovic V, Bursill CA, Miller HC, Channon KM, McClurg AE, Armstrong MA, Coulter WA, Greaves DR, Johnston JA. CCL11 blocks IL-4 and GM-CSF signaling in hematopoietic cells and hinders dendritic cell differentiation via suppressor of cytokine signaling expression. J Leukoc Biol. 2009;85(2):289-97.
    37. Yamazaki T, Nagata K, Kobayashi Y. Cytokine production by M-CSF- and GM-CSF-induced mouse bone marrow-derived macrophages upon coculturing with late apoptotic cells. Cell Immunol. 2008;251(2):124-30.
    38. Burger M, Hartmann T, Burger JA, Schraufstatter I. KSHV-GPCR and CXCR2 transforming capacity and angiogenic responses are mediated through a JAK2-STAT3-dependent pathway. Oncogene. 2005;24(12):2067-75.
    39. Bechara C, Chai H, Lin PH, Yao Q, Chen C. Growth related oncogene-alpha (GRO-alpha): roles in atherosclerosis, angiogenesis and other inflammatory conditions. Med Sci Monit. 2007;13(6):87-90.
    40. Ghosh S, Spagnoli GC, Martin I, Ploegert S, Demougin P, Heberer M, Reschner A. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol. 2005;204(2):522-31.
    41. Yates CC, Whaley D, Y-Chen A, Kulesekaran P, Hebda PA, Wells A. ELR-negative CXC chemokine CXCL11 (IP-9/I-TAC) facilitates dermal and epidermal maturation during wound repair. Am J Pathol. 2008;173(3):643-52.
    42. Rubie C, Frick VO, Wagner M, Schuld J, Gr?ber S, Brittner B, Bohle RM, Schilling MK. ELR+ CXC chemokine expression in benign and malignant colorectal conditions. BMC Cancer. 2008;8:178.
    43. Decock J, Paridaens R, Ye S. Genetic polymorphisms of matrix metalloproteinases in lung, breast and colorectal cancer. Clin Genet. 2008. 73(3): 197-211.
    44. Lock JG, Wehrle-Haller B, Str?mblad S. Cell-matrix adhesion complexes: master control machinery of cell migration. Semin Cancer Biol. 2008.18(1): 65-76.
    45. Erdogan M, Karadeniz M, Ozbek M, Ozgen AG, Berdeli A. Interleukin-10 gene polymorphism in patients with papillary thyroid cancer in Turkish population. J Endocrinol Invest. 2008;31(9):750-4.
    46. Chaput N, Conforti R, Viaud S, Spatz A, Zitvogel L. The Janus face of dendritic cells in cancer. Oncogene. 2008;27(45):5920-31.
    47. Rafei M, Hsieh J, Fortier S, Li M, Yuan S, Birman E, Forner K, Boivin MN, Doody K, Tremblay M, Annabi B, Galipeau J. Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood. 2008;112(13):4991-8.
    48. Dubeykovskaya Z, Dubeykovskiy A, Solal-Cohen J, Wang TC. Secreted trefoil factor 2 activates the CXCR4 receptor in epithelial and lymphocytic cancer cell lines. J Biol Chem. 2009;284(6):3650-62.
    49. Matsuo Y, Ochi N, Sawai H, Yasuda A, Takahashi H, Funahashi H, Takeyama H, Tong Z, Guha S. CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int J Cancer. 2009;124(4):853-61.
    50. Gelmini S, Mangoni M, Serio M, Romagnani P, Lazzeri E. The critical roleof SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J Endocrinol Invest. 2008;31(9):809-19.
    51. Wang Z, Ma Q, Liu Q, Yu H, Zhao L, Shen S, Yao J. Blockade of SDF-1/CXCR4 signalling inhibits pancreatic cancer progression in vitro via inactivation of canonical Wnt pathway. Br J Cancer. 2008;99(10):1695-703.
    52. Singh S, Bond VC, Powell M, Singh UP, Bumpers HL, Grizzle WE, Lillard JW Jr. CXCR4-gp120-IIIB interactions induce caspase-mediated apoptosis of prostate cancer cells and inhibit tumor growth. Mol Cancer Ther. 2009;8(1):178-84.
    53. Shim H, Oishi S, Fujii N. Chemokine receptor CXCR4 as a therapeutic target for neuroectodermal tumors. Semin Cancer Biol. 2009;19(2):123-34.
    54. Sasaki K, Natsugoe S, Ishigami S, Matsumoto M, Okumura H, Setoyama T, Uchikado Y, Kita Y, Tamotsu K, Hanazono K, Owaki T, Aikou T. Expression of CXCL12 and its receptor CXCR4 in esophageal squamous cell carcinoma. Oncol Rep. 2009;21(1):65-71.
    55. Matsuo Y, Ochi N, Sawai H, Yasuda A, Takahashi H, Funahashi H, Takeyama H, Tong Z, Guha S. CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int J Cancer. 2009;124(4):853-61.
    56. Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Kodama R, Sanke T, Nakamura Y. Cytoplasmic CXCR4 expression in breast cancer: induction by nitric oxide and correlation with lymph node metastasis and poor prognosis. BMC Cancer. 2008;8:340.
    57. Ehtesham M, Mapara KY, Stevenson CB, Thompson RC. CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Lett. 2009;274(2):305-12.
    58. Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia. 2009;23(1):43-52
    59. Belmadani A, Jung H, Ren D, Miller RJ. The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles. Differentiation. 2009;77(4):395-411.
    60. Tavor S, Eisenbach M, Jacob-Hirsch J, Golan T, Petit I, Benzion K, Kay S, Baron S, Amariglio N, Deutsch V, Naparstek E, Rechavi G. The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia. 2008;22(12):2151-5158.
    61. Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res. 2007;67(2):651-8.
    62. Thomas RM, Kim J, Revelo-Penafiel MP, Angel R, Dawson DW, Lowy AM. The chemokine receptor CXCR4 is expressed in pancreatic intraepithelial neoplasia. Gut. 2008;57(11):1555-60.
    63. Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006l;60(6):273-6
    64. Kryczek I, Wei S, Keller E, Liu R, Zou W. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol. 2007;292(3):C987-95.
    65. Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, Moons L, Wei S, Zou L, Machelon V, Emilie D, Terrassa M, Lackner A, Curiel TJ, Carmeliet P, Zou W. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 2005;65(2):465-72.
    66. Wragg A, Mellad JA, Beltran LE, Konoplyannikov M, San H, Boozer S, Deans RJ, Mathur A, Lederman RJ, Kovacic JC, Boehm M. VEGFR1/CXCR4-positive progenitor cells modulate local inflammation and augment tissue perfusion by a SDF-1-dependent mechanism. J Mol Med. 2008;86(11):1221-32.
    67. Struckmann K, Mertz K, Steu S, Storz M, Staller P, Krek W, Schraml P, Moch H. pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma. J Pathol. 2008;214(4):464-71.
    68. Sutton A, Friand V, Brulé-Donneger S, Chaigneau T, Ziol M, Sainte-Catherine O, PoiréA, Saffar L, Kraemer M, Vassy J, Nahon P, Salzmann JL, Gattegno L, Charnaux N. Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol Cancer Res. 2007;5(1):21-33.
    69. Brule S, Charnaux N, Sutton A, Ledoux D, Chaigneau T, Saffar L, Gattegno L. The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology. 2006;16(6):488-501.
    70. Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD, Cher ML. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate. 2006;66(1):32-48.
    71. BartoloméRA, Ferreiro S, Miquilena-Colina ME, Martínez-Prats L, Soto-Montenegro ML, García-Bernal D, Vaquero JJ, Agami R, Delgado R, Desco M, Sánchez-Mateos P, TeixidóJ. The chemokine receptor CXCR4 and the metalloproteinase MT1-MMP are mutually required duringmelanoma metastasis to lungs. Am J Pathol. 2009;174(2):602-12.
    72. Lili J, Yuchen S, Zhengtao W. The chemokine SDF-1alpha suppresses fibronectin-mediated in vitro lymphocytes adhesion. Mol Cells. 2006;22(3):308-13.
    73. Mendes-da-Cruz DA, Silva JS, Cotta-de-Almeida V, Savino W. Altered thymocyte migration during experimental acute Trypanosoma cruzi infection: combined role of fibronectin and the chemokines CXCL12 and CCL4. Eur J Immunol. 2006;36(6):1486-93.
    74. Jiang YP, Wu XH, Xing HY, DU XY. Role of CXCL12 in metastasis of human ovarian cancer. Chin Med J (Engl). 2007;120(14):1251-5.
    75. Miura K, Uniyal S, Leabu M, Oravecz T, Chakrabarti S, Morris VL, Chan BM. Chemokine receptor CXCR4-beta1 integrin axis mediates tumorigenesis of osteosarcoma HOS cells. Biochem Cell Biol. 2005;83(1):36-48.
    76. Sipkins DA, Wei X, Wu JW, Runnels JM, C?téD, Means TK, Luster AD, Scadden DT, Lin CP. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 200 16;435(7044):969-73.
    77. L?ubli H, Stevenson JL, Varki A, Varki NM, Borsig L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 2006;66(3): 1536-42.
    78. Moyer RA, Wendt MK, Johanesen PA, Turner JR, Dwinell MB. Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution in model intestinal epithelia. Lab Invest. 2007;87(8):807-17.
    79. Freedman RS, Ma Q, Wang E, Gallardo ST, Gordon IO, Shin JW, Jin P, Stroncek D, Marincola FM. Migration deficit in monocyte-macrophages inhuman ovarian cancer. Cancer Immunol Immunother. 2008;57(5):635-45.
    80. Wang J, He L, Combs CA, Roderiquez G, Norcross MA. Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther. 2006;5(10):2474-83.
    81. Retz MM, Sidhu SS, Blaveri E, Kerr SC, Dolganov GM, Lehmann J, Carroll P, Simko J, Waldman FM, Basbaum C. CXCR4 expression reflects tumor progression and regulates motility of bladder cancer cells. Int J Cancer. 2005;114(2):182-9.
    82. Retz M, Sidhu SS, Lehmann J, Tamamura H, Fujii N, Basbaum C. New HIV-drug inhibits in vitro bladder cancer migration and invasion. Eur Urol. 2005;48(6):1025-30.
    83. Clark JC, Dass CR, Choong PF. A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol. 2008;134(3):281-97.
    84. Oda Y, Yamamoto H, Tamiya S, Matsuda S, Tanaka K, Yokoyama R, Iwamoto Y, Tsuneyoshi M. CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol. 2006;19(5):738-45.
    85. Ryser MF, Ugarte F, Lehmann R, Bornh?user M, Brenner S. S1P(1) overexpression stimulates S1P-dependent chemotaxis of human CD34+ hematopoietic progenitor cells but strongly inhibits SDF-1/CXCR4-dependent migration and in vivo homing. Mol Immunol. 2008;46(1):166-71.
    86. Hartmann TN, Grabovsky V, Pasvolsky R, Shulman Z, Buss EC, Spiegel A,Nagler A, Lapidot T, Thelen M, Alon R. A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J Leukoc Biol. 2008;84(4):1130-40.
    87. Salvucci O, Bouchard A, Baccarelli A, Deschênes J, Sauter G, Simon R, Bianchi R, Basik M. The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat. 2006;97(3):275-83.
    88. Wagner PL, Hyjek E, Vazquez MF, Meherally D, Liu YF, Chadwick PA, Rengifo T, Sica GL, Port JL, Lee PC, Paul S, Altorki NK, Saqi A. CXCL12 and CXCR4 in adenocarcinoma of the lung: association with metastasis and survival. J Thorac Cardiovasc Surg. 2009;137(3):615-21
    89. Tavernier-Tardy E, Cornillon J, Campos L, Flandrin P, Duval A, Nadal N, Guyotat D. Prognostic value of CXCR4 and FAK expression in acute myelogenous leukemia. Leuk Res. 2009;33(6):764-8.
    90. Kang H, Watkins G, Douglas-Jones A, Mansel RE, Jiang WG. The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast. 2005;14(5):360-7.
    91. Kuratsu J, Yoshizato K, Yoshimura T, Leonard EJ, Takeshima H, Ushio Y. Quantitative study of monocyte chemoattractant protein-1 (MCP-1) in cerebrospinal fluid and cyst fluid from patients with malignant glioma. J Natl Cancer Inst. 1993;85(22):1836-9.
    92. Bonecchi R, Galliera E, Borroni EM, Corsi MM, Locati M, Mantovani A. Chemokines and chemokine receptors: an overview. Front Biosci. 2009;14:540-51.
    93. Gelmini S, Mangoni M, Serio M, Romagnani P, Lazzeri E. The critical roleof SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J Endocrinol Invest. 2008;31(9):809-19.
    94. Chang CC, Chen SC, Hsieh YH, Chen YC, Chen TY, Chu YH, Ma HJ, Chou MC, Tsai HT, Yang SF. Stromal cell-derived factor-1 but not its receptor, CXCR4, gene variants increase susceptibility and pathological development of hepatocellular carcinoma. Clin Chem Lab Med. 2009;47(4):412-8.
    95. Shimizu Y, Dobashi K, Imai H, Sunaga N, Ono A, Sano T, Hikino T, Shimizu K, Tanaka S, Ishizuka T, Utsugi M, Mori M. CXCR4+FOXP3+CD25+ lymphocytes accumulate in CXCL12-expressing malignant pleural mesothelioma. Int J Immunopathol Pharmacol. 2009;22(1):43-51.
    96. Wagner PL, Hyjek E, Vazquez MF, Meherally D, Liu YF, Chadwick PA, Rengifo T, Sica GL, Port JL, Lee PC, Paul S, Altorki NK, Saqi A. CXCL12 and CXCR4 in adenocarcinoma of the lung: association with metastasis and survival. J Thorac Cardiovasc Surg. 2009;137(3):615-21.
    97. Gelmini S, Mangoni M, Castiglione F, Beltrami C, Pieralli A, Andersson KL, Fambrini M, Taddei GL, Serio M, Orlando C. The CXCR4/CXCL12 axis in endometrial cancer. Clin Exp Metastasis. 2009;26(3):261-8
    98. Retz MM, Sidhu SS, Blaveri E, Kerr SC, Dolganov GM, Lehmann J, Carroll P, Simko J, Waldman FM, Basbaum C. CXCR4 expression reflects tumor progression and regulates motility of bladder cancer cells. Int J Cancer. 2005;114(2):182-9.
    99. Eisenhardt A, Frey U, Tack M, Rosskopf D, Lümmen G, Rübben H, Siffert W. Expression analysis and potential functional role of the CXCR4 chemokine receptor in bladder cancer. Eur Urol. 2005;47(1):111-7.
    100.Harper SJ, Bates DO. VEGF-A splicing: the key to anti-angiogenic therapeutics?. Nat Rev Cancer. 2008;8(11):880-7.
    101.Ji RC. Lymph node lymphangiogenesis: a new concept for modulating tumor metastasis and inflammatory process. Histol Histopathol. 2009;24(3):377-84.
    102.Martin MD, Matrisian LM. The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev. 2007;26(3-4):717-24.
    103.Stetler-Stevenson WG. The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer Metastasis Rev. 2008;27(1):57-66.
    104.Burger JA, Stewart DJ. CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opin Investig Drugs. 2009;18(4):481-90.
    105.Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF. Chemokine expression in melanoma metastases associated with CD8+T-cell recruitment. Cancer Res. 2009;69(7):3077-85.
    106.Ma X, Norsworthy K, Kundu N, Rodgers WH, Gimotty PA, Goloubeva O, Lipsky M, Li Y, Holt D, Fulton A. CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model. Mol Cancer Ther. 2009;8(3):490-8.
    107.Mailloux AW, Young MR. NK-dependent increases in CCL22 secretion selectively recruits regulatory T cells to the tumor microenvironment. J Immunol. 2009;182(5):2753-65.
    108.Jin T, Xu X, Hereld D. Chemotaxis, chemokine receptors and human disease. Cytokine. 2008;44(1):1-8.
    109.Seymour JR, Marcos, Stocker R. Chemotactic response of marine micro-organisms to micro-scale nutrient layers. J Vis Exp. 2007;(4):203.
    110.Robledo MM, Bartolome RA, Longo N, Rodríguez-Frade JM, Mellado M, Longo I, van Muijen GN, Sánchez-Mateos P, TeixidóJ. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem. 2001;276(48):45098-105.
    111.Huang SC, Sheu BC, Chang WC, Cheng CY, Wang PH, Lin S. Extracellular matrix proteases - cytokine regulation role in cancer and pregnancy. Front Biosci. 2009;14:1571-88.
    112.Duffy MJ, McGowan PM, Gallagher WM. Cancer invasion and metastasis: changing views. J Pathol. 2008;214(3):283-93.
    113.Kleinman HK, Jacob K. Invasion assays. Curr Protoc Cell Biol. 2001;Chapter 12:Unit 12.2.
    114.Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15(5):378-86.
    115.Nguyen DX, Bos PD, MassaguéJ. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274-84.
    116.Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239-52.
    117.Hunter KW, Crawford NP, Alsarraj J. Mechanisms of metastasis. Breast Cancer Res. 2008;10 Suppl 1:S2.
    118.Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006;60(6):273-6.
    119.Luker KE, Luker GD. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett. 2006;238(1):30-41.
    120.Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F. The chemokineSDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280(42):35760-6.
    121.Kimura R, Ishida T. The human SDF1 gene polymorphism is located on a mutational hot spot that was identified by the hominoid genome study. Hum Biol. 2001;73(6):891-5.
    122.Gelmini S, Mangoni M, Castiglione F, Beltrami C, Pieralli A, Andersson KL, Fambrini M, Taddei GL, Serio M, Orlando C. The CXCR4/CXCL12 axis in endometrial cancer. Clin Exp Metastasis. 2009;26(3):261-8.
    123.Raffaghello L, Cocco C, Corrias MV, Airoldi I, Pistoia V. Chemokines in neuroectodermal tumour progression and metastasis. Semin Cancer Biol. 2009;19(2):97-102.
    124.Gelmini S, Mangoni M, Serio M, Romagnani P, Lazzeri E. The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J Endocrinol Invest. 2008;31(9):809-19.
    125.Shen XY, Wang SH, Liang ML, Wang HB, Xiao L, Wang ZH. The role and mechanism of CXCR4 and its ligand SDF-1 in the development of cervical cancer metastasis. Ai Zheng. 2008;27(10):1044-9.
    126.Wolf K, Friedl P. Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis. 2009;26(4):289-98.
    127.Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Curr Opin Cell Biol. 2005;17(5):559-64.
    128.Guyon A, Skrzydelski D, Rovère C, Apartis E, Rostène W, Kitabgi P, Mélik Parsadaniantz S, Nahon JL. Stromal-cell-derived factor 1alpha /CXCL12 modulates high-threshold calcium currents in rat substantia nigra. Eur J Neurosci. 2008;28(5):862-70.
    129.Massa A, Casagrande S, Bajetto A, Porcile C, Barbieri F, Thellung S, ArenaS, Pattarozzi A, Gatti M, Corsaro A, Robello M, Schettini G, Florio T. SDF-1 controls pituitary cell proliferation through the activation of ERK1/2 and the Ca2+-dependent, cytosolic tyrosine kinase Pyk2. Ann N Y Acad Sci. 2006;1090:385-98.
    130.Shahabi NA, McAllen K, Sharp BM. Stromal cell-derived factor 1-alpha (SDF)-induced human T cell chemotaxis becomes phosphoinositide 3-kinase (PI3K)-independent: role of PKC-theta. J Leukoc Biol. 2008;83(3):663-71.
    131.Leelawat K, Leelawat S, Narong S, Hongeng S. Roles of the MEK1/2 and AKT pathways in CXCL12/CXCR4 induced cholangiocarcinoma cell invasion. World J Gastroenterol. 2007;13(10):1561-8.
    132.Robey RB, Hay N. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009;19(1):25-31.
    133.Sheng S, Qiao M, Pardee AB. Metastasis and AKT activation. J Cell Physiol. 2009;218(3):451-4.
    134.Franke TF. PI3K/Akt: getting it right matters. Oncogene. 2008;27(50):6473-88.
    135.Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res. 2005;65(21):9891-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700