Ca~(2+)/CaM 在拟南芥茉莉酸信号通路中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ca~(2+)是细胞响应多种刺激反应的重要第二信使。植物受到生物和非生物胁迫以及激素刺激时,胞质游离钙离子浓度([Ca~(2+)]_i)升高。茉莉酸(JA)信号也可能通过触发[Ca~(2+)]_i升高而调节细胞的生理生化反应。前人有关JA与Ca~(2+)关系的研究有两种观点,一种认为JA可以诱导胞内游离钙离子浓度的升高,且钙离子是来源于胞内钙库中的钙离子的释放而非胞外钙离子的流入;另一种观点认为JA不能诱导胞内游离钙离子浓度的变化。
     尽管JA与胞质游离钙离子有关,但直接测定细胞[Ca~(2+)]_i的变化还鲜见报道。我们将Ca~(2+)敏感的酯化荧光探针Fluo-3/AM低温下装载到10 d的拟南芥叶细胞后,利用激光共聚焦显微镜直接测定了JA刺激对细胞中[Ca~(2+)]_i变化的影响。结果表明JA处理后1 min内就可诱导[Ca~(2+)]_i增加,并于5 min时达到最大。在所试验的范围内,JA的最适浓度为100 μ mol/L。
     为探究JA诱导的钙动员的来源、钙调素(CaM)的影响以及Ca~(2+)/GaM在JA信号通路中的作用,本文研究了不可过膜的质膜钙通道抑制剂(nifedipine、verpamil)、IP_3受体拮抗剂(heparin)等对JA诱导的[Ca~(2+)]_i升高的影响;同时还利用上述拮抗剂、钙调素(CaM)拮抗剂(W-5、W-7)、TMB-8及不同浓度CaCl_2处理10 d的拟南芥幼苗,检测了药物处理对茉莉酸反应基因(JR1或VSP)表达的影响。结果表明:
     1)不可过膜的质膜钙通道抑制剂尼群地平(nifedipine)可以抑制JA诱导的[Ca~(2+)]i升高,且药剂浓度和[Ca~(2+)]i之间存在剂量关系。250 μ mol/L尼群地平对[Ca~(2+)]_i升高的抑制作用最强;而另一个抑制剂异博定(verapamil)对JA诱导的[Ca~(2+)]i升高则没有显著的影响。IP_3受体拮抗剂肝素(heparin)预处理既可降低胞质的基态荧光强度,也可降低JA诱导的胞质钙离子荧光强度的增加。拟南芥叶细胞经不同浓度肝素预处理后,再用100 μ mol/L JA处理时,其胞内钙离子荧光强度仅升高至与不做任何处理的对照的水平。
     2)尼群地平可抑制JA诱导的茉莉酸反应基因JR1的表达且具有浓
    
     ca2+/caM在拟南芥茉莉酸信号通路中的作用
    度依赖性,而异博定对尸了的表达则没有显著影响。在实验所使用的浓
    度范围内,肝素和TMB一8均可促进莉酸反应基因尸1的表达。
    3)钙调素拮抗剂W一7可以抑制尸1及拭夕尸的表达,而对CaM亲和性
    较低的W一7同系物W一5在同样浓度下对了刀了及只夕尸的表达则没有明显的
    影响。
    4)外源10 mmol/L及50 mmol/L CaC12处理也可部分诱导尸1的表
    达。说明外源Ca卜参与了JA的信号转导。
     从以上实验可以推知:JA可以诱导拟南芥叶细胞【CaZ,]主升高,胞
    外钙和胞内钙库共同参与了JA诱导的钙动员和信号转导。尼群地平敏感
    的质膜钙通道对JA诱导的JR基因起正调节作用,使基因表达上调,而
    IP3敏感的胞内钙库中的Ca卜则对其起负调节作用。Ca卜可能通过钙离子
    结合蛋白CaM或其相关蛋白参与调节JA反应基因的表达。对拟南芥JA
    信号传导过程中可能存在精细的 Ca2+调控机制进行了讨论。
In plant Ca2+ ion acts as an important secondary messenger responding to a variety of environmental stimuli. The increase of cytoplasmic free Ca2+ ([ Ca2+]i) is involved in the signaling network triggered by some stimuli such as biotic and abiotic stress and phytohormones as well. It is possible that exogenous jasmonic acid (JA) can trigger the physiological and biochemical reactions in the cell by the increase of [ Ca2*]i. It has been reported that JA could induce the raising of [ Ca2+]i due to the release of Ca2+ from intracellular store rather than the influx of extracellular Ca2+ from apoplast. Another evidence, however, showed that JA has no effect on the [Ca2+], change.
    Although there is a relationship between JA stimulation and [Ca2+]i increase, very few evidence has been obtained with a direct measurement of [ Ca2+]i after JA treatment. In the present study, the [Ca2+]i was directly detected by means of fluorescence method in the leaf cell of 10-d -old seedlings in Arabidopsis. After the application of exogenous JA in different concentrations, the Ca2+ fluorescence in the leaf pre-loaded with Fluo-3/AM was measured by confocal laser scanning microscopy (CLSM). The results showed that fluorescence was observed within 1 min after JA treatment and reached a peak at 5 min. The optimun concentration of JA was 100 μmol/L.
    To evaluate the role of apoplast Ca2+ and calmodulin (CaM) in JA signaling, pharmacological effectors of Ca2+ influx across the plasma membrane, antagonist of IPs receptor and antagonist of CaM were used for the investigation. Moreover, the expression of JA response gene, JR1 and VSP, was also investigated. The main results were as follows:
    1) With the pretreatment of nifedipine, a nonpermeable L-type channel blocker, the fluorescence of [Ca2+]i induced by JA was inhibited in a dose dependent manner in the leaves and 250μmol/L nifedipine was most effective. Verapamil, another nonpermeable L-type channel blocker, had no significant effect on JA triggered increase of [Ca2+]i. Both basal level and JA-induced increase of [Ca2+]i were reduced upon pretreatment with heparin, an antagonist of IP3 receptor, and the level of [Ca2+]i only reached
    
    
    
    the level of the control which not treated with heparin and JA.
    2) After JA treatment, the JA response genes JR1 and VSP increased their expression markedly in 10d-old seedings. Nifedipine inhibited the JA-induced JR1 expression in a dose dependent manner, while verapamil had no effect on it. In the range of concentration used in the experiment, heparin and TMB-8, antother antagonist of IP3 receptor, had the positive effect on JA-triggered JR1 expression and the gene expression were up-regulated.
    3) W-7, an antagonist of CaM, inhibited the expression of JR1 and VSP, but W-5, a less potent analog of W-7, was found to be incapable of inhibiting the expression of JR1 and VSP under the same concentrations as W-7.
    4) The application of exogenous Ca2+ ion could mimic the JA partially to induce the gene expression of JR1 and support another evidence that apoplastic Ca2+ was involved in the JA response.
    The data reported here demonstrate that JA can trigger the increase of cytoplasmic free Ca2+ concentration. Apoplast Ca2+ and the intracellular Ca2+ store contributed to the rising of [Ca2*]j in JA signaling pathway. Nifedipine sensitive plasma membrane Ca2+ channel is a positive regulator of JA-induced [Ca2+]i increase and the gene expression of JR1, but the Ca2+ mobilized from IP3 sensitive calcium stores is a negative regulator of JR1 expression. Ca2+ exerts its functions through activate the CaM or CaM related proteins. Fine processes involved in modulation of the JA-triggered Ca2+ signaling network was discussed.
引文
1 Allen GJ, and Sanders D. Two voltage-gated, calcium release channels co-reside in the vacuolar membrane of broad bean guard cells. The Plant Cell 1994, 6: 685~94.
    2 Baldwin IT, Zhang ZP, Diab N, Ohnmeiss TE, McClond ES, Lynds GY, and Schmelz EA. Quantification, corrections and manipulations of wound induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 1997, 201(4): 397~404.
    3 Bergery DR, Orozco-Cárdenas M, Moura DS, and Ryan CA. A wound-and systemin-inducible polygalacturonase in tomato leaves. Proc. Natl. Acd. Sci. USA 1999,96: 1756~1760.
    4 Bergey DR, and Ryan CA. Wound and systemin-inducible calmodulin gene expression in tomato leaves. Plant Mol. Biol. 1999,40: 815~823.
    5 Blume B, Nürnberger T, Nass N, and Scheel D. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. The Plant Cell 2000, 12:1425~1440.
    6 Blumwald E, Aharon GS, and Lam BCH. Early signal transduction pathway in plant pathogen interactions. Trends Plant Sci. 1998,3:342~346.
    7 Braam J, and Davis RW. Rain wind and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 1990, 60: 357~364.
    8 Brini M, Marsault R, Bastianutto C, Alvarez J, Pozzan T, and
    
    Rizzuto R. Transfected aequorin in the measurement of cytosolic Ca~(2+) concentration. J. Biol. Chem. 1995,270:9896~9903.
    9 Brini M, and Pasti L. Targeting of aequorin for calcium monitoring in intracellular compartments. J. Biolumin Chemilumin 1994,9:177~184.
    10 Bush DS, and Jones RL. Measuring intracellular Ca~(2+) levels in The Plant Cells using the fluorescent probes, indo-1 and fura-2. Plant Physiol. 1990,93:841~845.
    11 Bush DS. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plantpysiol. Plant Mol. Biol. 1995,46, 95~122.
    12 Callaham DA, and Hepler PK. Measurement of free calcium in The Plant Cells. In: McCormack JG Cobbold PH. Cellular Calcium: A Practical Approach. Oxford IRL Press 1991,383~410.
    13 Chandra S, and Low PS. Role of phosphorylation in elicitation of the oxidative burst in aequorin-transformed tobacco cells. J. Biol. Chem. 1995, 272: 28274~28280.
    14 Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, and Luan S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 2002,129: 661~677.
    15 Clapham DE. Calcium signaling. Cell 1995, 80: 259~268.
    16 Cork RJ. Problems with the application of quin-2 AM to measuring cytoplasmic calcium in Plant Cells. The Plant Cell Environ. 1986,9:157~160.
    17 Creelman RA, and Mullet JE. Biosynthesis and action of
    
    jasmonates in plants. Annu Rev Plant Physiol Plant Mol. Biol. 1997,48: 355~381.
    18 Creelman RA, and Mullet JE. Jasmonic acid distribution and acton in plants: Regulation during developmnet and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 1995,92: 4114~4119.
    19 Dammann C, Rojo E, and Sanchez-Serrano JJ. Absicisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J. 1997,11:773~782.
    20 Doares SH, Narvaez-Vasquez JE, Conconi A, and Ryan CA. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant physiol. 1995, 108: 1741~1745.
    21 Ecker JR. The ethylene signal transduction pathway in plants. Science 1995,268:667~675.
    22 Ehrhardt DW, Wais R, and Long SR. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 1996, 85,673~681.
    23 Elliott DC, and Petkoff HS. Measurement of cytoplasmic free calcium in plant protoplast. Plant Sci. 1990,67:125~131.
    24 Engelberth J, Koch T, Kühnemann F, and Boland W. Channel forming peptaibols are a novel class of potent elicitors of plant secondary metabolism and tendril coiling. Angewandte Chemie 2000,112:1928~1930.
    25 Farmer EE, and Ryan CA. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors
    
    in plant leaves. Proc. Natl. Acd. Sci. USA 1990,87: 7713~7716.
    26 Farmer EE, Weber H, and Vollenweider S. Fatty acid signalling in Arabidopsis. Planta 1998,206: 167~174.
    27 Felle HH, Kondorosi E, Kondorosi A, and Schultze M. Elevation of the cytosolic free [Ca~(2+)] is indispensible for the transduction of the nod factor signal in alfalfa. Plant Physiol. 1999,121,273~280.
    28 Fingrut O, and Flescher E. Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 2002,16: 608~616.
    29 Gelli A, and Blumwald E. Hyperpolarization-actevated Ca~(2+) permeable channels in the plasma membrane of tomato cells. J. Membr. Biol. 1997a, 155:35~45.
    30 Gelli A, Higgins VJ, and Blumwald E. Activation of plant plasma membrane Ca~(2+) permeable channels by race-specific fungal elicitors. Plant Physiol. 1997b, 113: 269~279.
    31 Gilroy S, Read ND, and Trewavas AJ. Elevation of cytosolic calcium by caged calcium or caged inositol triphosphate initiates stomatlal closure. Nature 1990,346: 769~771.
    32 Haley A, Russel AJ, Wood N, Allen AC, Knight M, Campbell AK, and Trewavas AJ. Effects of mechanical signaling on plant cell cytosolic calcium. Proc. Natl. Acad. Sci. USA 1995,92:4124~4128.
    33 Harmon AC, Gribskov M, and Harper JF. CDPKs-a kinase for every Ca2+ signal? Trends Plant Sci. 2000, 5: 154~159.
    34 Hell M, and Bostock RM. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences.
    
    Annals of Botany 2002,89:503~512
    35 Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, and Cho MJ. Involvement of specific calmodulin isoforms in salicylic acid- independent activation of plant diease resistance responses. Proc. Natl. Acad. Sci. USA 1999,96:766~771.
    36 Holdaway-clarke T, Overall RL, Hepler PK, and Waker NA. Physiological increases in cytoplasmic free calcium close higher plant plasmodesmata. In Proceedings of the 35th Australian Societyd of Plant Physiologist Annual Conference, Sydney, Australia. 1995, P9.
    37 Howe GA. Cyclopentenone signals for plant defense: Remodeling the jasmonic acid response. Proc. Natl. Acd. Sci. USA 2001,98: 12317~12319.
    38 Hrabak EM, Dickmann LJ, Satterlee JS, and Sussman MR. Characteri- zation of eight new members calmodulin- like domain protein kinase gene family from Arabidopisis thaliana. Plant Mol. Biol. 1996,31:405~412.
    39 Im CS, Matters GL, and Beale SI. Calcium and calmodulin are involved in blue light induction of the gsa gene for an early chlorophyll biosynthesis step in chlamydomonas. Plant Cell 1996,8:2245~2253.
    40 Janzik I, Macheroux P, Amrhein N, and Schaller A. LeSBT1, a subtilase from tomato plants, overexpression in insect cells, purification, and characterization. Journal of Biological Chemistry 2000,275: 5193~5199.
    
    
    41 Kenton P, Mur LAJ, and Draper J. A requirement for calcium and protein phosphatase in the jasmonate-induced increase in tobacco leaf acid phosphatase specific activity. J. Exp. Bot. 1999,50(337): 1331~1341.
    42 Kim ME, Lee SH, Kim JK, Chun HJ, Choi MS, Chung MS, Moon BE, Kang CH, Park CY, Yoo JH, Kang YH, Koo SC, Koo YD, Jung JC, Kim ST, Schulze-Lefert P, Lee SY, and Cho MJ. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein, isolation and characterization of a rice Mlo homologue. J. Biol. Chem. 2002,277: 19304~19314.
    43 Knight H, Trewavas AJ, and Knight MR. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. The Plant Cell 1996,8, 489~503.
    44 Knight H, Trewavas AJ, and Knight MR. Calcium signaling in Arabidopsisthaliana responding to drought and salinity. Plant J. 1997, 12: 1067~1078.
    45 Lecourieux D, Mazars C, Pauly N, Ranjeva R, and Pugin A. Anaylsis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginigolia cells. The Plant Cell 2002, 14: 2627~2641.
    46 Lee SH, Kim MC, Heo WD, Kim JC, Chung WS, Park CY, Park HC, Cheong YH, Kim CY, Lee KJ, Bahk JD, Lee SY, and Cho MJ. Competitive binding of calmodulin isoforms to calmodulin-binding proteins: implication for the function of calmodulin isoforms in plants. Biochim Biophys Acta 1999,1433: 56~67.
    
    
    47 León J, Rojo E, and Sanchez-Serrano JJ. Wound signalling in plants. J. Exp. Bot. 2001, 52: 1~9.
    48 León J, Rojo E, Titarenko E, and Sanchez-Serrano JJ. Jasmonic acid-dependent and independent wound signal transduction pathways are differentially regulated by Ca~(2+)/calmodulin in Arabidopsis thaliana. Mol. Gen. Genet. 1998, 258: 412~419.
    49 Li C, Liu GH, Xu CC, Lee GI, Bauer P, Ling HQ, Ganal MW, and Howe GA. The tomato suppressor of prosystemin-mdeiated responses2 gene expression encodes a fatty acid desaturase requited for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. The Plant Cell 2003, in press.
    50 Li L, Li C, Lee GI, and Howe GA. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl.Acd. Sci. USA 2002, 99: 6416.
    51 Liechti R, and Farmer EE. The jasmonate pathway. Science 2002, 296: 1649~1650.
    52 Malhó R, Moutinho A, Van DLA, and Trewavas. AJ. Spatial character—istics of calcium signaling: The calcium wave as a basic unit in The Plant Cell calcium signaling. Philos Trans R Soc Lond 1998, B353: 1463~14Y3.
    53 McAinsh MR, and Hetherington AM. Encoding specificity in Ca~(2+) signaling systems. Trends in Plant Sci. 1998, 3:32~36.
    54 McAinsh MR, Webb AAR, Taylor JE, and Hetherington AM. Stimulusinduced oscillations in guard cell cytosolic free calcium. The Plant Cell 1995, 7:1207~1219.
    
    
    55 Mcconn M, Creelman RA, Bell E, Mullet JE, and Browse J. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acd. Sci. USA 1997, 94:6473~6477.
    56 Miller DD, Callaham DA, Gross DJ, and Hepler PK. Free Ca~(2+) gradient in growing pollen tubes of Lilium. J. Cell Sci. 1992, 101: 7~12.
    57 Mithfer A, Ebel J, Bhagwat AA, Boller T, and Neuhaus-Url G. Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with b-glucan or chitin elicitors. Planta 1999, 207:566~574.
    58 Mφller SG, and Chua N-H. Interactions and intersections of plant signalling pathways. J. Mol. Biol. 1999, 293: 219~234.
    59 Moyen C, Hammond-kosack KE, Jones J, Knight MR, and Johannes E. Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca~(2+) mobilization from intra- and extracellular compartments, Plant Cell and Environment 1998, 21: 1101~1111.
    60 Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, and Chu NH. Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J. 1997, 16:2554~2564.
    61 O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, and Bowles DJ. Ethylene as a signal mediating the wound response of tomato plants. Science 1996, 274: 1914~1917.
    62 Parekh AB, and Penner R. Store depletion and calcium influx. Physiol. Rev. 1997, 77: 901~930.
    
    
    63 Pearce G, Strydom D, Johnson S, and Ryan C. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 1991, 253:895~898.
    64 Pea-Cortés H, Albrecht T, Prats WE, and Willmitzer L. Aspirin prevent wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 1993, 191: 123~128.
    65 Reymond P, and Farmer EE. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1998, 1: 404~411.
    66 Roberts DM, and Harmon AC. Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43:375~414.
    67 Rojo E, León J, and Sanchex-Serano JJ. Cross-talk between wound-signalling and insect feeding in Arabidopsis. Plant J. 1999, 20: 135~142.
    68 Rojo E, Titarenko E, León J, Berger S, Vancanneyt G, and Sanchez-Serrano J J. Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wound signal transduction pathways in Arabidopsis thaliana. Plant J. 1998, 13: 153~165.
    69 Rudd JJ, and Franklin-Tong VE. Calcium signalling in plant. Cell. Mol. Life Sci. 1999, 55:214~232.
    70 Ryan CA, and Moura DS. Systemic wound signaling in plants: A new perception. Proc. Natl. Acd. Sci. USA 2002, 99:6519~6520
    71 Sanders D, Brownlee C, and Harper JF. Communicating with calcium. The Plant Cell 1999, 11:691~706.
    
    
    72 Sanders D, Pelloux J, Brownlee C, and Harper JF. Calcium at the crossroads of signaling. The Plant Cell 2002, S401~S407.
    73 Sano H, and Ohashi Y. Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc. Natl. Acd. Sci. USA 1995, 92: 4138~4144.
    74 Schumaker KS, and Sze H. Inositol 1,4,5-Trisphosphate release Ca2+ from vacuolar membrane vesicles of oat roots. J. Biol. Chem. 1987, 262(9): 3944~3946.
    75 Schuster S, Marhl M, and Hfer. Modelling of simple and complex calcium oscillations-From single-cell responses to intercellular signaling. Eur. J. Biochem. 2002, 269:1333~1355.
    76 Snedden WA, and Fromm H. Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 2001, 151: 35~66.
    77 Staxen I, Montgomery L, Hetherington AM, and McAinsh MR. Do oscillations in cytoplasmic calcium encode the ABA signal in stomatal guard cells? Plant Physiol. 1996, 111(suppl): 151~164.
    78 Stelmach BA, Muller A, Hennig P, Laudert D, Andert L, and Weiler EW. Quantitation of the octadecanoid 12-oxo- phytodienoic acid, a signalling compound in plant mechano- transduction. Phytochemistry 1998, 47: 539~546.
    79 Stintzi A, Weber H, Reymond P, Browse J, and Farmer EE. Plant defense in the absence of jasmonic acid: The role of cyclopentenones. Proc. Natl. Acd. Sci. USA 2001, 98: 12837~12842.
    80 Subbaiah CC, Bush DS, and Sachs MM. Elevation of cytosolic calcium procedures anoxic gene expression in maize suspension
    
    culture cells. Plant cell 1994, 5: 1747~1762.
    81 Thornburg RWLX. Wounding Nicotiana tabacum leaves causes a decline in endogenous indole-3-acetic acid levels. Plant Physiol. 1991, 96: 802~805.
    82 Thuleau P, Schroeder JI, and Ranjeva R. Recent advances in the regulation of plant calcium channels: Evidence for regulation by G-proteins, the cytoskeleton and second messengers. Curr. Opin. Plant Biol. 1998, 1:424~427.
    83 Titarenko E, Rojo E, León, J, and Sánchez-Serrano JJ. Jasmonic Acid-Dependent and-Independent Signaling Pathways Control Wound-Induced Gene Activation in Arabidopsis thaliana, Plant Physiol. 1997, 115:817~826.
    84 Trewavas AJ, and Malhó R. Signal perception and transduction: the origin of the phenotype. The Plant Cell. 1997, 9:1181~1196.
    85 Trewavas AJ. Le Calc ium C'est La Vie:calcium makes waves. Plant Physiol. 1999, 120:1~6.
    86 Urao T, Katagiri T, and Mizoguchi T. Two genes that encode Ca~(2+)-dependent protein kinases are induced by drought and high salt stress in Arabidopsis thaliana. Mol Gen Genet, 1994,244 (4):331~340.
    87 Vian A, Henry-Vian C, Schantz R, Schantz M, Davies E, Ledoigt G, and Desbiez M. Effect of calcium and calcium-counteracting drugs on the response of Bidens pilosa L. to wounding, Plant Cell physiol. 1997, 38(6):751~753.
    88 Ward JM, Pei ZM, and Schroeder JI. Role of ion channels in initiation of signal transduction in higher plants. The Plant Cell 1995, 7:833~844.
    
    
    89 Webb AAR, Mcainsh MR, Taylor JE, and Hetherington AM. Calcium ions as intracellular second messengers in higher plants. Adv. Bot. Res. 1996, 2245~2296.
    90 Weber H, Vick BA, and Farmer EE. Dinor-oxo-phytodienoic acid: A new hexadecanoid signal in the jasmonate family. Proc. Natl. Acd. Sci. USA 1997, 94: 10473~10478.
    91 White PJ. Calcium channels in high plants. Biochim. Biophys. Acta 2000, 1465: 171~189.
    92 Williams DA. Quantitative intracellular calcium imaging with laser scanning confocal microscopy. Cell Calcium 1990, 11:589~597.
    93 Xu H, and Heath MC. Role of calcium in signal transduction during the hypersensitive response caused by basidio-derived infection of the cowpea rust fungus. The Plant Cell 1998, 10:585~597.
    94 Yang T, Segal G, Abbo S, Feldman M, and Fromm H. Characterization of the calmodulin gene family in wheat. Mol. Gen. Genet. 1996, 252: 684~694.
    95 Zhang WH, Rengel Z, and Kno J. Determination of intracellular Ca~(2+)in cells of intact wheat roots: loading of acetoxymethyl ester of Fluo-3 under low temperature. Plant J. 1998, 15(1):147~151.
    96 Zielinski RE. Calmodulin and Calmodulin-binding proteins. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49: 697~725.
    97 崔婕,薛绍白.胞内钙的稳态调节.细胞生物学杂志,1995,17(3):97~102.
    98 董发才,崔香环,安国勇,王棚涛.宋纯鹏.Ca~(2+)在茉莉酸甲酯诱导
    
    拟南芥气孔关闭中的信号转导作用,植物生理与分子生物学学报,2002,28:457—462
    99 江玲,周燮.植物中的钙信使及胞质钙的调节.生命科学,1997,9(4):178~183.
    100 李楠,王凤翔,周春喜.荧光探针应用技术,北京:军事医学科学出版社.1998.
    101 李楠,尹岭,苏振伦.激光扫描共聚焦显微术,北京:人民军医出版社.1997.
    102 李劲,萧浪涛,蔺万煌.植物内源茉莉酸类生长物质研究进展.湖南农业大学学报(自然科学版),2002,28(1):79~84.
    103 刘新,张蜀秋.在伤信号传导中茉莉酸与水杨酸的关系.植物学通报,2000,17:133~136.
    104 乔红.植物不同亚型钙调素单克隆抗体的制备及性质研究.河北师范大学硕士学位论文.2001.
    105 萨姆布鲁克 J,费里奇 E F,曼尼阿蒂斯 T,著.分子克隆实验指南(第二版).金冬雁,黎孟枫,等译.北京:科学出版社,1992,362~371.
    106 尚中林.细胞外钙调素对花粉细胞内钙离子的影响及其信号传递途径的研究.中国农业大学博士学位论文.2001a.
    107 尚中林,马力耕,王学臣,孙大业.细胞外钙调素对百合花粉细胞内钙离子浓度的影响,植物学报,2001b,43(1):12~17.
    108 宋秀芬,洪剑明.植物细胞中钙信号的时空多样性与信号转导,植物学通报,2001,18(4):436~444.
    109 孙大业,郭艳林,马力耕,崔素娟.细胞信号转导,第三版,北京:科学出版社.2001.
    110 吴劲松,种康.茉莉酸作用的分子生物学研究.植物学通报,2002,19(2):164~170.
    111 文彬.茉莉酸甲酯(MeJA)对绿豆(Vigna radiata L.)下胚轴质
    
    膜H~+-ATPase水解活力影响的研究.华南师范大学 博士学位论文.2002.
    112 张长河,梅兴国,余龙江.茉莉酸与植物抗性相关基因的表达.生命的化学,2000,20(3):118~122.
    113 宗会,李明启.钙信使在植物适应非生物逆境中的作用.植物生理学通讯,2001,37(4):330~335.
    
    
    1. Qing-Peng Sun, Yi Guo, Ying Sun, Da-Ye Sun, Xiao-Jing Wang, 2003(suppl).Involvement of Ca~(2+) influx across the plasma membrane in jasmonic acid signaling. Plant Physiol.
    2.孙清鹏,王小菁,2003.植物伤反应中的茉莉酸类信号.植物学通报,20(4):481~488.
    3.孙清鹏,王小菁,2003.拟南芥叶细胞游离钙离子变化的测定.热带亚热带植物学报,(已接受)
    4. Qing-Peng Sun, Yi Guo, Ying Sun, Da-Ye Sun and Xiao-Jing Wang, Extracellular Calcium involved in Jasmonic Acid Signalling in Arabidopsis thaliana.(已投Plant Cell Physiol.)
    5.孙清鹏,王小菁,郭毅,孙颖,孙大业,2002.茉莉酸(Jasmonic Acid)对拟南芥(Arabidopsis thaliana)叶细胞中游离Ca~(2+)浓度的影响.第六届细胞信号转导学术讨论会论文集.P63.
    6.孙清鹏,王小菁,郭毅,孙颖,孙大业,2003.Ca~(2+)/CaM参与拟南芥幼苗中茉莉酸信号传导.中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编.P218.
    7.孙清鹏,许煌灿,张方秋,尹光天,张玉福,2002.低温胁迫对大叶相思和马占相思某些生理特性的影响.林业科学研究,15(1):34~40.
    8.许煌灿,尹光天,孙清鹏,吴金坤,2002.棕榈藤的研究和发展.林业科学,38(2):135~143.
    9.许煌灿,尹光天,孙清鹏,2000.棕榈藤资源及其利用现状.林业科技开发,14(2):3~5.
    10.许煌灿,孙清鹏,2000.棕榈藤产业现状及其发展前景.GTZ/INBAR 2000年竹藤研讨会,97~110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700