大鼠原代培养心房肌细胞钙超载模型建立及CaMKⅡ抑制剂KN93的干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     心房颤动(简称为房颤)是最常见的心律失常之一,其中70岁以上人群发生率高达10%,已经成为威胁人类健康和生活质量的重要疾病之一。房颤能诱导心房发生以心房肌有效不应期(AERP)缩短为特征的电重构及心房肌结构发生适应性与非适应性改变引起的结构重构。“钙超载”是心肌细胞电重构的关键,也可能是房颤发生并持续的重要基础。钙/钙调蛋白依赖性蛋白激酶Ⅱ(calcium/ calmodulin-dependent protein kinaseⅡ, CaMKⅡ)作为Ca2 +/CaM调节蛋白家族中的一个主要成员,其在细胞的病理生理过程中发挥重要的生物学作用。有研究表明房颤时CaMKⅡ蛋白含量明显增加,其中在左房增加更为明显,而且随着房颤时间的延长CaMKⅡ蛋白含量也逐渐增多。因此,探讨房颤、细胞钙超载和CaMKⅡ三者之间的关系可能有助阐明房颤的确切发病机理。本研究采用钙离子载体伊屋诺霉素(ionomycin)建立新生大鼠心房肌细胞的钙超载模型,在此基础上观察CaMKⅡ抑制剂KN93对新生大鼠心房肌细胞钙负荷的影响,并对细胞CaMKⅡ的变化进行检测,其目的旨在进一步探讨房颤的确切发病机理,并为今后研究CaMKⅡ抑制剂KN93防治房颤发生的可行性奠定实验基础。
     方法
     1.用酶消化法分离新生大鼠心房肌细胞并行原代培养。纯化培养96小时后随机分为对照组(C组)、实验组(E1,E2,E3组),依次加入不同浓度ionomycin(0、0.5、1.0、2.0μmol/L),以钙离子指示剂Fluo-3/AM负载心房肌细胞,激光扫描共聚焦显微镜检测心房肌细胞游离钙离子浓度([Ca2+]i),建立新生大鼠心房肌细胞不同程度钙超载模型。
     2.新生大鼠心房肌细胞原代培养96小时,应用钙离子导入剂ionomycin(1.0μmol/L)建立心房肌细胞钙超载模型,并在KN93三种浓度(0.25、0.5、1.0μmo/L)的干预下,以钙离子指示剂Fluo-3 /AM负载心房肌细胞,激光共聚焦显微镜观察心房肌细胞内游离钙的变化;并应用Western blot方法检测CaMKⅡ表达的变化。
     结果
     1.原代培养至第4天,细胞生长密度可以达到瓶底70%左右;免疫组织化学染色鉴定:90%以上培养细胞α-肌动蛋白抗体染色阳性。对照组心房肌细胞活性比率为(73.00士2.37)%,与各实验亚组间心房肌细胞活性相比无显著性差异(P>0.05)。经不同浓度ionomycin处理l h后,各实验亚组心房肌细胞[Ca2+]i明显增高,与对照组相比有显著性差异(431.54±20.97、705.87±28.34、1305.05±53.69 vs 257.08±18.63, P<0.05),且各实验亚组间心房肌细胞[Ca2+]i水平随ionomycin浓度的增加而上升,亚组间差异显著(P<0.05)。光镜下形态学观察也表明,随ionomycin浓度的增加,荧光强度逐渐加强,呈浓度依赖性。
     2.与对照组比较,钙离子导入剂ionomycin明显增加细胞内钙离子荧光值(660.16士108.47 vs 376.12士57.57,p<0.01);而KN93对细胞内钙离子荧光值无明显影响(389.00士64.01 vs 376.12士57.57,p>0.05)。预先加入三种不同浓度KN93(0.25、0.5、1.0μmo/L)可显著降低ionomycin导致的细胞内钙离子荧光强度的增加幅度(vs 660.16士108.47,p<0.01),与对照组相比也有显著差异(vs 376.12士57.57,p<0.01)。钙超载组细胞CaMKⅡ表达明显增加,与对照组比较,p<0.01;而KN93对细胞CaMKⅡ表达影响不明显。不同浓度KN93(0.25、0.5、1.0μmo/L)预处理后,钙超载细胞CaMKⅡ的表达显著降低,与钙超载组比较,p<0.01。
     结论
     1.应用钙离子载体ionomycin能够建立可靠的心房肌细胞钙超载模型。
     2. CaMKⅡ抑制剂KN93可降低ionomycin引发的大鼠心房肌细胞钙超载,并下调钙超载细胞CaMKⅡ表达。
Background and objective
     Atrial fibrillation (AF for short) is one of the most common arrhythmia, in which the incidence in people over 70 years of age up to 10%, has become a threat to human health and quality of life one of the important diseases. Occurrence of atrial fibrillation can be induced by atrial effective refractory period (AERP) is characterized by reduced atrial electrical remodeling and the structure of adaptive and non adaptive changes caused by remodeling."Calcium overload" is the key to electrical remodeling, atrial fibrillation and may also be an important basis for continuing. Calcium / calmodulin-dependent protein kinaseⅡ(calcium / calmodulin-dependent protein kinaseⅡ, CaMKⅡ) as a Ca2 + / CaM-regulated protein family of one of the main members, the pathophysiological process in the cell play an important biological role. Research has shown that CaMKⅡatrial fibrillation significantly increased protein content, which increased more significantly in the left atrium, and with the AF time CaMKⅡprotein content also increased gradually. Therefore, the study of atrial fibrillation, calcium overload and the relationship between CaMKⅡmay help the prevention and treatment of atrial fibrillation. In this study, calcium ionophore ionomycin Neonatal rat atrial muscle cell calcium overload model, based on the observation of this CaMKⅡinhibitor KN93 on neonatal rat atrial myocytes of load, and cell Detection of changes in CaMKⅡfor CaMKⅡinhibitors on the prevention and treatment of atrial fibrillation feasibility study lays the foundation.
     Methods
     1. The atrial myocytes were disassociated from neonate rats with digestion method and cultured for 96 hours. Co-incubated with the ionomycin(0、0.5、1.0、2.0μmol/L, respectively), the cells were divided into control group and experiment group(E1, E2 and E3) and loaded with Ca2+ indicator Fluo-3 /AM. The level of intracellular Ca2+ ([Ca2+]i) were measured with laser confocal scanning microscope.
     2. The atrial muscle cells were primarily cultured for 96 h and a model of calcium overload for atrial muscle cell in neonate rat was established by using calcium ionophore(ionomycin, 1.0μmol/L). In the present of Fluo-3 /AM(an indicator of calcium), intracellular calcium and the expression of CaMKⅡwere detected under the intervention of KN93(0.25、0.5、1.0μmo/L).
     Results:
     1. More than 90% of cultured cells were positive toα-actin antibody. The activity ratio of cells in control group was 73.00士2.37%. Compared with the each subgroup of experiment, there was no significant difference(p>0.05). One hour after treated with different concentrations of ionomycin, the [Ca2+]i of atrial muscle cell was significantly increased in all the experimental groups(431.54±20.97, 705.87±28.34, 1305.05±53.69 vs 257.08±18.63, respectively, p<0.05). There was significant difference between each subset of the experimental group. [Ca2+]i level and the fluorescence intensity of the myocytes increased gradually in a dose-dependent manner with the concentration of ionomycin.
     2. Compared with the control group, the intracellular Ca2+ was increased significantly by ionomycin (660.16士108.47 vs 376.12士57.57,p<0.01) and KN93 has no effect on it(389.00士64.01 vs 376.12士57.57, p>0.05). Added KN93 (0.25、0.5、1.0μmo/L) in advance, the fluorescence intensity of intracellular Ca2+ induced by ionomycin was significantly decreased (vs 660.16士108.47, p<0.01). the expression of CaMKⅡwas increased in calcium overload group( vs control group, p<0.01) and KN93 has no effect on it. a Added KN93 (0.25、0.5、1.0μmo/L) in advance, the expression of CaMKⅡin cell of calcium overload was significantly reduced (vs calcium overload group,p<0.01).
     Conclusion
     1. calcium overload model with primary atrial myocytes of neonate rats can be built by ionomycin.
     2. KN93, an inhibitor of CaMKⅡ, can reduce the calcium load of atrial muscle cell induced by ionomycin and decrease the expression of CaMKⅡ.
引文
1. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002; 415: 219-26.
    2. El-Armouche A, Boknik P, Eschenhagen T, et al. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation. 2006; 114: 670-80.
    3. Christ T, Boknik P, W?hril S, et al. Reduced L-type Ca2+ current density in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation. 2004; 110: 2651-7.
    4. Sun H, Chartier D, Leblanc N, et al. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Cardiovasc Res. 2001; 49: 751-61
    5. Shiroshita-Takeshita A, Brundel B, Nattel S. Atrial fibrillation: basic mechanisms, remodeling and triggers. J Interventional Cardiac Electrophysiology. 2005; 13: 181-93.
    6. Christopher JB, Richard AA, Gregory YHL. Is atrial fibrillation an inflammatory disorder? Eur heart J. 2006; 27: 136-49.
    7. Maier LS, Bers DM. Role of Ca2+/calmodulin-dependent protein kinase(CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res. 2007; 73: 631-40.
    8. Maier LS, Zhang T, Chen L. et al. Transgenic CaMKII overexpression uniquely alters cardiac myocyte Ca2+ handing: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res. 2003; 92: 904-11.
    9. Guo T, Zhang T, Mestril R, et al. Ca2+/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res. 2006; 99: 333-5.
    10. Paulus K, Larissa F, Ana K. et al. Ventricular arrhythmias, increased cardiac calmodulin kinase II expression, and altered repolarization kinetics in ANP receptor deficient mice. J Mol Cell Cardiol. 2004; 36: 691-700.
    11. Khoo MS, Li J, Singh MV, et al. Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation. 2006; 114: 1352-9.
    12. Zhang R, Khoo MS, Wu Y, et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat Med. 2005; 11: 409-17.
    13. Chen YJ, Chen YC, Yeh HI, et al. Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation. 2002; 105: 2679-85.
    14. Van Petegem F, Minor D L. The structuralbiology ofvoltage-gated calcium channel function and regulation[J]. Biochem Soc Trans, 2006; 34: 887-892.
    15. El-Armouche A, Boknik P, Eschenhagen T, et al. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation[J]. Circulation, 2006; 114: 670-680.
    16. Benardeau A, H atem S N, Bucker-Martin C, et al. Primary culture of human atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardium[J]. J Mol Cell Cardiol, 1997; 29(5): 1307-1311.
    17.程伟,肖颖彬,王学锋.维拉帕米抑制快速起搏诱导心房肌细胞离子通道重构的研究[J].第三军医大学学报, 2006, 28(5): 444-446.
    18.姜雪松.新生SD大鼠心肌细胞培养方法的研究[硕士学位论文].昆明:昆明医学院,2004.)
    19.邸美仙,李应东.乳鼠心肌细胞的培养.中华中医药学刊,2007,(4):609-610. 2.王强,王东进,李庆国,等.
    20.改良的原代心肌细胞培养方法.中国组织工程研究与临床康复,2007.11(6): 1168-1169.
    21.郑先杰,郭志坤.心肌细胞培养概况.新乡医学院学报,2006,23(3):307-310
    22.王涛,余志斌,谢满江,等.新生大鼠心肌细胞培养技巧.第四军医大学学报.2003.24(2):封2.
    23. Rousset M, Charnet P, Cens T. Structure of the calcium channel beta subunit:the place of the beta-interaction domain[J]. Med Sci, 2005, 21: 279-283.
    24. Nattel S, Maguy A, Bouter S, et al. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction and atrial fibrillation[J]. Physiol Rev, 2007, 87: 425-429.
    25. Katra RP, Oya T, Hoeker GS, et al. Ryanodine receptordys function and triggered activity in the heart[J]. Am J Physiol Heart Circ Physiol, 2007, 292: 144-148.
    26. Katra RP, Laurita KR. Cellular Mechanism of Calcium-Mediated Triggered Activity in the Heart [J].Circ Res, 2005, 12(2): 17-24.
    27. Ding HL, Zhu HF, Dong JW, et al. Intermittent hypoxia protects the rat heart againstischemia/reperfusion injury by activating protein kinase[J]. Life Sci, 2004, 75(21): 2587-603.
    28. Friehs I, Cao-Dank H, Stamm C, et al. Postnatal increase in insulin sensitive glucose transporter expression is associated with improved recovery of postischemic myocardial function[J]. J Thorac Cardiovasc Surg, 2003, 126(1): 263-271.
    29. Liu Chao-min,Herman TE. Characterization of ionomycin as a calcium ionophore[J]. The journal of Biological Chem,1978;253:5892-5894.
    30. Wheeler JJ,Veiro JA,Cullis PR.Ionophore-mediated loading of Ca2+ into large unilamellar vesicles in response to transmembrane ph gradients[J]. Mol Membr Boil,1994,11(3):151-157.
    31. Purkiss JR, Willars GB. Ionomycin induced changes in intracellular free calcium in SH-SY5Y human neuroblastom a cells:sources of calcium and effects on [3H]- noradrenaline release.J Cell Calcium , 1996, 20: 21~29.。
    32. Boris D.Cytosolic calcium and insulin resistance [J].Am j of Kidney Disease,1993, 21 (6): 32-38.
    33. Melendez J、Welch S、Schaefer E et al.Activation of pyk2/related focal adhesion tyrosine kinase and focal adhesion kinase in cardiac remodeling [ J].J Boil Chem,2002, 277 (47): 45203-45210.
    34. Julio B, Melson O, Carlos O, et al.Intracellular Ca2+ homeostansis in rat round spermetids [ J ].Biology of the Cell,1998, (90): 391-398.
    35.韩洁,李剑利,贺怀贞,等.新型荧光素类细胞钙离子荧光探针Fluo-3的设计、合成及表征[J].高等学校化学学报,2008,29(10):10-12.
    36. Nattel S. New ideas about atrial fibrillation 50 years on. Nature, 2002, 415: 219-26.
    37. El-Armouche A, Boknik P, Eschenhagen T, et al. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation, 2006, 114: 670-80.
    38. BRAUN AP, SCHULMAN H. The multifunctional calcium / calmodulin-dependent protein kinase: from form to function [ J ]. Annu RevPhysiol, 1995, 57: 417 - 445.
    39. Sumi M,Kiuchi K,Ishikawa T,et al. The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN93 reduces dopamine content in PC12h cells [J]. Biochem Biophys Res Commun, 1991, 181:968-975.
    40.黄鑫,李莉.风湿性心脏病慢性心房颤动患者钙调蛋白的表达.中国心脏起搏与心电生理杂志, 2006, 20(6): 497-499.
    41. WEHRENS XH, LEHNART SE, REIKEN SR, et al. Ca2 +/calmodulin-dependent protein kinase II phosphorylation regulates the cardiacryanodine receptor[ J ]. Circ Res, 2004, 94 (6): e61 - e70.
    42. Maier LS, Bers DM. Role of Ca2+/calmodulin-dependent protein kinase(CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res, 2007, 73: 631-40.
    43. Kolodziei SJ。Hudmon A,Waxham MN,et a1.Three-dimensional reconstructions of calcium/calmodulin-dependent CaM kinase II and truncated CaM kinase II reveal a unique organization for its structural core and functional domains.Bid Chem. 2000; 275: 14354-14359.
    44. Dupont G, Houart G, De Koninck P. et a1. Sensitivity of CaM kinase II to the frequency of Caoscillationsa simple model. Cell Calcium. 2003; 34: 485-497.
    45. Gaertner TR, Kolodziej SJ, Wang D, et al. Comparative analyses of the three- dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+/calmodulin dependent protein kinase II. J Biol Chem, 2004, 279: 12484- 12494.
    46. Hoch B, Wobus AM, Krause EG, et al. Delta- Ca2+/calmodulin-dependent protein kinase II expression pattern in adult mouse heart and cardiogenic different- tiation of embryonic stem cells.J Cell Biochem, 2000, 79: 293- 300.
    47. Bradshaw JM, Hudmon A, Schulman H, et al.Chemical quenched flow kinetic studies indicate an intraholoenzyme autophosphorylation mechanism for Ca2+/Calmodulin dependent Protein Kinase II.J Biol Chem, 2002, 277: 20991- 20998.
    48.陈劲进,肖颖彬,刘健.慢性心房颤动对人心房肌钙/钙调素依赖性蛋白激酶Ⅱ表达的影响.中国病理生理杂志. 2005; 21(11): 2116-2118
    49. Guo T, Zhang T, Mestril R, et al. Ca2+/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res. 2006; 99: 333-5.
    50. Paulus K, Larissa F, Ana K. et al. Ventricular arrhythmias, increased cardiac calmodulin kinase II expression, and altered repolarization kinetics in ANP receptor deficient mice. J Mol Cell Cardiol. 2004; 36: 691-700.
    51. Khoo MS, Li J, Singh MV, et al. Death, cardiac dysfunction, and arrhythmias areincreased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation. 2006; 114: 1352-9.
    52. Zhang R, Khoo MS, Wu Y, et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat Med. 2005; 11: 409-17.
    53. Chen YJ, Chen YC, Yeh HI, et al. Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation. 2002; 105: 2679-85.
    1. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002; 415: 219-26.
    2. El-Armouche A, Boknik P, Eschenhagen T, et al. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation. 2006; 114: 670-80.
    3.黄鑫,李莉.风湿性心脏病慢性心房颤动患者钙调蛋白的表达.中国心脏起搏与心电生理杂志. 2006; 20(6): 497-499.
    4. Kolodziej SJ, Hudmon A, Waxham MN, et al. Three - dimensional reconstructions of calcium/ calmodulin - dependent CaM kinaseIIαand truncated CaM kinase IIαreveal a unique organization for its structural core and functional domains. J Biol Chem,2000, 275: 14354- 14359.
    5. Dupont G, Houart G, De Koninck P, et al. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model.Cell Calcium, 2003, 34: 485- 497.
    6. Gaertner TR, Kolodziej SJ, Wang D, et al. Comparative analyses of the three- dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2 +/calmodulin dependent protein kinase II. J Biol Chem, 2004, 279: 12484- 12494.
    7. Hoch B, Wobus AM, Krause EG, et al. Delta- Ca2+/calmodulin-dependent protein kinase II expression pattern in adult mouse heart and cardiogenic different- tiation of embryonic stem cells.J Cell Biochem, 2000, 79: 293- 300.
    8. Bradshaw JM, Hudmon A, Schulman H, et al.Chemical quenched flow kinetic studies indicate an intraholoenzyme autophosphorylation mechanism for Ca2 +/ Calmodulin dependent Protein Kinase II.J Biol Chem, 2002, 277: 20991- 20998.
    9.李莹,邵建华等.心房肌钙调蛋白基因表达与风湿性心脏病心房纤颤发病关系的研究.山东医药. 2002; 42(9):3-4.
    10. Everett TH, Li H, Mangrum JM, et al. Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation. Circulation. 2000; 102: 1454–60.
    11.陈劲进,肖颖彬,刘健.慢性心房颤动对人心房肌钙/钙调素依赖性蛋白激酶Ⅱ表达的影响.中国病理生理杂志. 2005; 21(11): 2116-2118
    12. Guo T, Zhang T, Mestril R, et al. Ca2+/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res. 2006; 99: 333-5.
    13. Paulus K, Larissa F, Ana K. et al. Ventricular arrhythmias, increased cardiac calmodulin kinase II expression, and altered repolarization kinetics in ANP receptor deficient mice. J Mol Cell Cardiol. 2004; 36: 691-700.
    14. Khoo MS, Li J, Singh MV, et al. Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation. 2006; 114: 1352-9.
    15. Zhang R, Khoo MS, Wu Y, et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat Med. 2005; 11: 409-17.
    16. Chen YJ, Chen YC, Yeh HI, et al. Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation. 2002; 105: 2679-85.
    1. Carafoli E. The ambivalent nature of the calcium signal. .J Endocrinol Invest. 2004;27 (5 Suppl):134-136
    2.袁晓军,刘玉峰。钙与细胞凋亡。实用儿科临床杂志。1998; 13 (2) : 117-119
    3. Katra RP, Laurita KR.Cellular Mechanism of Calcium-Mediated Triggered Activity in the Heart .J Circ Res, 2005, (2): 17-24
    4. Ding HL,Zhu HF,Dong JW,et al.Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase. J Life Sci, 2004, 75 (21): 2587-603
    5. Michael B, Zemel·Nutritional and endocrine modulation of intracellular calcium: implications in obesity insulin resistance and hypertension. J Molecular and cellularBiochem,1998, 188: 129-136
    6. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002; 415: 219-26.
    7. El-Armouche A, Boknik P, Eschenhagen T, et al. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation. 2006; 114: 670-80.
    8. Jang YJ,Ryu HJ,Choi YO,et al·Improvement of insulin sensitivity by chelation of intracellular Ca2+in high - fat - fed rats. J Metabolism, 2002, 51 (7): 912-918
    9.沈洪兴,陈玉林,路卫,等.烧伤血清导致大鼠离体心室肌细胞钙超载的研究.中华实验外科杂志, 2001,18 (5): 255-256·
    10.孙安阳,俞彰,钟慈声,等。大鼠动脉钙超负荷模型的确立和确证。中华医学杂志。1999; 79 (10) : 769-772
    11.操寄望,罗和生,余保平,沈志祥,于皆平。小聚碱对豚鼠结肠平滑肌细胞内游离钙浓度的影响。生理学报。2000; 52 (4):343-346
    12.刘洪瑞,李智,王晓红,韩雪松,滕赞,孙哲。滨篙内醋对豚鼠气管平滑肌细胞细胞内钙离子浓度的影响。中国医科大学学报。2002; 31 (4) : 249-251
    13. Li Xin-Tian, Wang You-Lin. Effects of Tetrandrine on Cytosolic Free Calcium in Cultrured Bovine Aortic Smooth Muscle Cells. J. Chinese Pharmaceutical Sci.1998; 7 (2):94-97
    14.汪姗姗,何建成,胡婉英,范维琥,戴瑞鸿。双龙丸对过氧化氢所致内皮细胞胞浆钙离子浓度变化的调节作用。甘肃中医。2002; 15 (5) : 71-73
    15.绪广林,钱之玉,任萱。西红花苷对培养的牛内皮细胞内钙的调节作用。中国医科大学学报。2002; 33 (5) : 445-447
    16.许旭伟,李进禧,汪涛,赵虹。葛根素对新生大鼠脑细胞内钙超载的影响。中西医结合心脑血管病杂志。2003; 1 (2) : 74-76
    17.杨军,何丽娜,何素冰,黎光荣。芍药甙对大鼠皮层神经细胞钙超载损伤的保护作用。中国药理学与毒理学杂志。2001; 15 (3) : 164-168
    18. Bodin P,Burnstock G. Increased release of ATP from endothelial cells during acute inflammation. J Inflamm Res. 1998; 47 (8):351-354
    19.胡清华,王迪浔。ATP对单个肺动脉内皮细胞胞浆游离钙浓度的影响。生理学报。1994;46(4):405-408
    20. Marshall ICB, Taylor CW. Regulation of inositol 1,4,5-trisphosphate Receptors. J.exp.Biol. 1993;184:161-182
    21.袁勇,贾满盈,刘伊丽et al。血管紧张素II对血管平滑肌细胞内游离钙的作用机制。中华心血管病杂志。1996;24(5):384-386
    22. Doan TN,Gentry DL, Taylor AA et al. Hydrogen peroxide activates agonist-sensitive Ca2+-flux pathways in canine venous endothelial cells. Biochem J.1994; 297 (Pt1):209-215
    23. Liu Chao-min,Herman TE. Characterization of ionomycin as a calcium ionophore. J The journal of Biological Chem,1978;253:5892-5894.
    24. Wheeler JJ,Veiro JA,Cullis PR.Ionophore-mediated loading of Ca2+ into large unilamellar vesicles in response to transmembrane ph gradients. J Mol Membr Boil,1994,11(3):151-157.
    25. Purkiss JR, W illars GB. Ionomycin induced changes in intracellular free calcium in SH-SY5Y human neuroblastom a cells:sources of calcium and effects on [3H ]-noradrenaline release.J Cell Calcium , 1996, 20: 21~29
    26.陈焕文,石应康,李勇刚,等.如何建立成年大鼠心肌细胞钙超载模型[J]. 2006,21(2):308~311.
    27. Boris D.Cytosolic calcium and insulin resistance [J].Am j of Kidney Disease,1993, 21 (6): 32-38.
    28. Melendez J、Welch S、Schaefer E et al. Activation of pyk2/related focal adhesion tyrosine kinase and focal adhesion kinase in cardiac remodeling [ J].J Boil Chem,2002, 277 (47): 45203-45210.
    29. Julio B, Melson O, Carlos O, et al. Intracellular ca2 + homeostansis in rat round spermetids [ J ]. Biology of the Cell,1998, (90): 391-398.
    30. Ridgway EB, Ashley CC. Calcium transients in single muscle fibers[J].Biochem Biophys Res Commun. 1967; 29 (2):229-234
    31. Tsien RY,Pozzan T,Rink TJ. Calcium homeostasis in intact lymphocytes:cytopasmic free calcium monitored with a new,intracellularly trapped fluorescent indicator. J. Cell Biol. 1982; 94: 325-334
    32.赵彩霞,郑延松,田敏。细胞内游离钙检测方法进展。国外医学临床生物化学与检验学分册。2001; 22 (2) :71-71
    33. Benters J, Flogel U, Schafer T et al. Study of the interactions of cadmium and zincions with cellular calcium homoeostasis using 19F2-NMR spectroscopy. Biochem J.1997; 322 (Pt3):793-799
    34. Adams SR,Lev Ram V,Tsien RY. A new caged Ca2+,azid-1,is far more photosensitive than nitrobenzyl-based chelators. Chem Biol. 1997; 4 (11):867-878
    35. Manning TJ,Sontheimer H. Recording of intracellular Ca2+, C1-, pH and membrane potential in cultured astrocytes using a fluorescence plate reader. J Neurosci Methods. 1999; 91 (122):73-81
    36.Gordienko DV,Zholos AV,Bolton TB. Membrane ion channels as physiological targets for local Ca2+ signalling. J Microsc. 1999; 196 (Pt3):305-316
    37. Asada Y,Yamazawa T,Hirose K et al. Dynamic Ca2+ signalling in rat arterial smooth muscle cells under the control of local rennin-angiotensin system. J Physiol Lond. 1999; 521 (Pt2):497-505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700