过渡金属氧化物薄膜电磁性质的应变调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,钙钛矿型锰氧化物异质结构的研究引起人们的广泛关注。这是因为:一方面,作为强关联体系中的典型材料,锰氧化物有着丰富的相图和有趣的物理现象,例如庞磁电阻效应,电荷/轨道有序以及不同的磁结构。另一方面,由于锰氧化物中存在电子、自旋、轨道和晶格等多个自由度间的强烈耦合,其物理性质极易受到如外延应力等外加作用的调控。因此,研究基于锰氧化物材料的异质外延体系中的应变-结构-性能关系对理解钙钛矿异质外延体系中界面效应和相关的多功能电子器件的实现都有着重要意义。基于这个考虑,本文主要研究了衬底的静态外延应变和压电衬底逆压电效应导致的原位动态应变对锰氧化物异质结构中电磁性质的调控。全文的安排如下:
     第一章介绍了类钙钛矿型锰氧化物特别是锰氧化物薄膜的研究概况,从锰氧化物研究的历史脉络开始,逐步介绍其晶体结构、基本物理机制、相分离。然后重点介绍锰氧化物外延薄膜应变调控相关的研究进展,最后再讨论锰氧化物外延薄膜中的三种各向异性效应。
     第二章主要讨论薄膜样品的制备方法,表征手段以及各种物性测量方法。在薄膜制备方面将介绍磁控溅射、脉冲激光沉积以及化学气相沉积三种不同的薄膜制备方法。样品结构表征上主要讨论x射线衍射包括倒易点阵的相关技术及原子力显微镜的两种测量手段。物性测量主要包括电输运测量、磁性测量以及各种仪表之间通过Labview软件编程控制的灵活联用。
     第三章系统研究了典型相分离的锰氧化物La0.325Pr0.3Ca0.375MnO3薄膜在各向异性应力作用下的磁各向异性、各向异性电阻以及各向异性磁阻等不同的电磁各向异性效应。研究发现在金属绝缘体转变温度附近,在30m的LPCMO薄膜中各向异性诱导的各向异性电阻可高达105%。随着薄膜厚度增加至120m,各向异性应力发生明显的弛豫,薄膜中的各向异性效应相应地发生明显的减弱,降低了将近两个数量级。为了更好理解如此巨大的各向异性电阻和磁阻和应变调控的相分离花样的关系,我们应用磁力显微镜对薄膜样品的磁畴进行了直接的观测。发现薄膜中的铁磁畴沿着张应变更大的方向取向生长,形成铁磁金属态-反铁磁绝缘态交替排列的条纹状相分离结构。从应用的角度来看,如此大幅度可调的各向异性电阻以及各向异性磁阻可能在将来的多功能器件设计上具有潜在的应用。
     第四章系统研究了锰氧化物薄膜/压电衬底异质结中动态应变对锰氧化物薄膜输运性质的调控。研究发现在La0.7Ca0.3Mn03/SrTi03/PMN-PT异质结中缓冲层的插入能够将应变的传递效率提高将近3倍,同时巧妙运用应变效应的易失性和铁电场效应的非易失性通过两种测量模式将这两种效应定量地进行了区分。此外在LPCMO/PMN-PT异质结中也发现了应变对相分离的调控,主要表现为极化电场对薄膜电阻-温度曲线的热滞效应的极大增强,但是对各向异性电阻的调控并不明显。这些发现对于今后的器件设计具有一定的参考意义。
     第五章系统研究了Cr02单晶外延薄膜的磁热效应,研究发现Cr02薄膜中存在着巨大的磁热效应。我们通过测量等温磁化曲线计算得到该薄膜在5T磁场下居里温度385K附近的磁熵变可高达8.46J·kg-1K-1,相对制冷功率则高达410J·kg-1,可与商用的磁制冷材料Gd和Gd5Si2Ge2等媲美。说明CrO2单晶薄膜可以作为高温制冷区的磁制冷材料。
In recent years, the perovskite-like manganite heterostructureshave been studied extensively. This is because on one hand, as the typical material of strong correlated system, the manganites have complex phase diagram and interesting physical phenomenon such as colossal magnetoresistance, charge/orbital ordering and various magnetic structures. On the other hand, due to the interplay of the charge, spin, orbital and lattice degrees of freedom,thephysical properties in manganites can be easily tuned by external stimuli such as theepitaxial strain. Therefore, investigating the strain-structure-properties in manganite-basedheterostructures is very important for the further understanding the emergentphenomena at perovskite interfaces and design of related multi-functional electronic devices. Based on this consideration, we focus our work on the manipulation of electric and magnetic properties of manganite heterostructure by static epitaxial strain and dynamic piezo-strain. The dissertion is arranged as follows:
     In chapter1, The progress of manganite especially the progress of manganite films recently are reviewed. Starting from the research history of manganite, we introduce the crystal structure, basic physical mechanism, phase separation of manganites. Then the recent progress of strain effect on epitaxial manganite films are highlighted. At last, three kinds of anisotropic effects in manganite films are discussed in detail.
     In chapter2, some important techniques for sample fabrications, structure characterization and various measurementfor physical properties are introduced, including three popularfabrication techniquesmagnetron sputtering, pulsed laser deposition and chemical vapor deposition;X-ray diffraction and atomic force microscope, electric and magnetic measurement as well as flexible combination of different instruments via Labview.
     In chapter3, we systematically investigate the anisotropic strain induced anisotropic effects such as magnetic anisotropy, anisotropic resistivity and anisotropic magnetoresistance in typical phase separation manganite La0.325Pr0.3Ca0.375MnO3film. In the thinner30nm film, the anisotropic strained inducedcolossal anisotropic resistivitycan reach105%around the metal-insulator transition temperature. However, in thestrain relaxed thicker120nm film, the anisotropic resistivity decrease significantly, about two orders of magnitude smaller than the thin film. In order to eluciated the relation of the anisotropy with anisotropic strain induced phase separation,the oriented magnetic domains are directly observed by magnetic force microscopic (MFM) imagingwhich is consistent with the transport and magnetic data. From the point of application, the large magnitude and tunability of anisotropic magnetic and electronic properties caused by the strain are believed to be potential for designing artificial materials and devices.
     In chapter4, dynamic strain manipulation of the electric property of manganite film/piezoelectric single substrate heterostructures are systematically investigated. The strain transformation is enhanced3times by inserting a buffer layer SrTiO3in La0.7Ca0.3MnO3/SrTiO3/PMN-PT heterostructure. Moreover, in this heterosturcture, the strain effect and ferroelectric field effect are quantitatively separated first time basing on the volatility of the strain effect and the non-volatility of the field effect. In addition, the piezostrain mediated phase separation in LPCMO/PMN-PT is also observed which leads to an increasement of the thermal hysteresis in the temperature dependence of resistivity curves with the polarization field kept on the substrate. However, the anisotropic resitivity is little affected. These findings are potential for designing new electronic devices.
     In chapter5, The magnetocaloric properties of the CrO2single crystal films are studied. From the isothermal magnetic data, the magnetic entropy change are calculated which could reache a value of8.46J/kg·K at385K for the field variesfrom0to5T.Moreover the calculated relative cooling power values of CrO2can reach410J/kg at5T,which is comparable to that for Gd and Gd5Si2Ge2. These results suggest that CrO2film is one of the promising candidates for magnetic refrigeration applications above room temperature.
引文
[1]焦正宽,曹光旱,磁电子学(浙江大学出版社,2005).
    [2]Jonker G. H. and Van Santen J. H., Ferromagnetic compounds of manganese with perovskite structure.Physica 1950; 16:337.
    [3]Jonker G. H. and Van Santen J. H., Magnetic compounds wtth perovskite structure III. ferromagnetic compounds of cobalt.Physica 1953; 19:120.
    [4]Jonker G. H., Semiconducting properties of mixed crystals with perovskite structure.Physica 1954; 20:1118.
    [5]Volger J., Further experimental investigations on some ferromagnetic oxidic compounds of manganese with perovskite structure.Physica 1954; 20:49.
    [6]Zener Clarence, Interaction between the d-Shells in the Transition Metals. Ⅱ. Ferromagnetic Compounds of Manganese with Perovskite Structure.Physical Review 1951; 82:403.
    [7]Goodenough J. B., THEORY OF THE ROLE OF COVALENCE IN THE PEROVSKITE-TYPE MANGANITES LA,M(II) MN03.Physical Review 1955; 100:564.
    [8]Wollan E. O., NEUTRON DIFFRACTION STUDY OF THE MAGNETIC PROPERTIES OF THE SERIES OF PEROVSKITE-TYPE COMPOUNDS (1-X)LA,XCA MNO3.Physical Review 1955; 100:545.
    [9]Kasuya T., EFFECTS OF S-D INTERACTION ON TRANSPORT PHENOMENA.Progress Of Theoretical Physics 1959; 22:227.
    [10]Kasuya T. and Yanase A., ANOMALOUS TRANSPORT PHENOMENA IN EU-CHALCOGENIDE ALLOYS.Rev. Mod. Phys.1968; 40:684.
    [11]Holstein T., Ann. Phys. (N. Y.) 1959; 8:343.
    [12]Kanamori J., Suppl. J. Appl. Phys.1960; 31:14S.
    [13]de Gennes P. G., Effects of Double Exchange in Magnetic Crystals.Physical Review 1960; 118:141.
    [14]A. Morrish B. Evans, J. Eaton, L. Leung, Studies of the ionic ferromagnet (LaPb)MnO3 I. Growth and characteristics of single crystals.Can. J. Phys.1969; 47:2691.
    [15]Chahara Ken-ichi, Ohno Toshiyuki, Kasai Masahiro, and Kozono Yuzoo, Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure.Appl. Phys. Lett. 1993; 63:1990.
    [16]Vonhelmolt R., Wecker J., Holzapfel B., Schultz L., and Samwer K., GIANT NEGATIVE MAGNETORESISTANCE IN PEROVSKITELIKE LA2/3BA1/3MNOX FERROMAGNETIC-FILMS.Phys. Rev. Lett.1993; 71:2331.
    [17]Jin S., Tiefel T. H., McCormack M., Fastnacht R. A., Ramesh R., and Chen L. H., Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science 1994; 264: 413.
    [18]Machida A., Moritomo Y., Nishibori E., Takata M., Sakata M., Ohoyama K., Mori S., Yamamoto N., and Nakamura A., Phase separation and insulator-metal behavior of doped manganites.Phys. Rev. B 2000; 62:3883.
    [19]Dagotto E., Complexity in strongly correlated electronic systems.Science 2005; 309:257.
    [20]Wu W., Israel C., Hur N., Park S., Cheong S. W., and de Lozanne A., Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet.Nat Mater 2006; 5:881.
    [21]Tokura Y. and Tomioka Y., Colossal magnetoresistive manganites.J. Magn. Magn. Mater. 1999; 200:1.
    [22]Anderson P. W. and Hasegawa H., CONSIDERATIONS ON DOUBLE EXCHANGE.Physical Review 1955; 100:675.
    [23]Kramers H. A., L'interaction Entre les Atomes Magnetogenes dans un Cristal Paramagnetique.Physica 1934; 1:182.
    [24]Anderson P. W., ANTIFERROMAGNETISM-THEORY OF SUPEREXCHANGE INTERACTION.Physical Review 1950; 79:350.
    [25]Millis A., Littlewood P., and Shraiman B., Double Exchange Alone Does Not Explain the Resistivity of Lal-xSrxMnO3.Phys. Rev. Lett.1995; 74:5144.
    [26]Ramirez A P, Colossal magnetoresistance.Journal of Physics:Condensed Matter 1997; 9: 8171.
    [27]Dagotto E., Hotta T., and Moreo A., Colossal magnetoresistant materials:The key role of phase separation.Phys. Rep.-Rev. Sec. Phys. Lett.2001; 344:1.
    [28]Hemberger J., Krimmel A., Kurz T., von Nidda H. A. K., Ivanov V. Y., Mukhin A. A., Balbashov A. M., and Loidl A., Structural, magnetic, and electrical properties of single-crystalline Lal-xSrxMnO3 (0.4< x< 0.85).Phys. Rev. B 2002; 66.
    [29]Martin C., Maignan A., Hervieu M., and Raveau B., Magnetic phase diagrams of L(1-x)A(x)MnO(3) manganites (L=Pr,Sm; A=Ca,Sr).Phys. Rev. B 1999; 60:12191.
    [30]Lu. Qingyou, Chen. Chun-Che, and Lozanne Alex de, Observation of Magnetic Domain Behavior in Colossal Magnetoresistive Materials With a Magnetic Force Microscope. Science 1997;276:2006.
    [31]Zhang L., Israel C., Biswas A., Greene R. L., and de Lozanne A., Direct observation of percolation in a manganite thin film.Science 2002; 298:805.
    [32]Uehara M., Mori S., Chen C. H., and Cheong S. W., Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites.Nature 1999; 399:560.
    [33]Fath M., Freisem S., Menovsky A. A., Tomioka Y., Aarts J., and Mydosh J. A., Spatially inhomogeneous metal-insulator transition in doped manganites.Science 1999; 285:1540.
    [34]Tao J. and Zuo J.M, Nanoscale phase competition during charge ordering in intrinsically strained La0.33Ca0.67MnO3.Phys. Rev. B 2004; 69.
    [35]Lai K., Nakamura M., Kundhikanjana W., Kawasaki M., Tokura Y., Kelly M. A., and Shen Z. X., Mesoscopic percolating resistance network in a strained manganite thin film.Science 2010; 329:190.
    [36]Zhai Hong-Ying, Ma J., Gillaspie D., Zhang X., Ward T., Plummer E., and Shen J., Giant Discrete Steps in Metal-Insulator Transition in Perovskite Manganite Wires.Phys. Rev. Lett.2006; 97.
    [37]Singh-Bhalla G., Biswas A., and Hebard A., Tunneling magnetoresistance in phase-separated manganite nanobridges.Phys. Rev. B 2009; 80.
    [38]Singh-Bhalla G., Selcuk S., Dhakal T., Biswas A., and Hebard A., Intrinsic Tunneling in Phase Separated Manganites.Phys. Rev. Lett.2009; 102:077205.
    [39]Mayr M., Moreo A., Verges J. A., Arispe J., Feiguin A., and Dagotto E., Resistivity of mixed-phase manganites.Phys. Rev. Lett.2001; 86:135.
    [40]Khomskii D. I. and Kugel K. I., Elastic interactions and superstructures in manganites and other Jahn-Teller systems. Phys. Rev. B 2003; 67.
    [41]Burgy J., Dagotto E., and Mayr M., Percolative transitions with first-order characteristics in the context of colossal magnetoresistance manganites.Phys. Rev. B 2003; 67.
    [42]Burgy J., Moreo A., and Dagotto E., Relevance of cooperative lattice effects and stress fields in phase-separation theories for CMR manganites.Phys. Rev. Lett.2004; 92.
    [43]Sen C., Alvarez G., and Dagotto E., First Order Colossal Magnetoresistance Transitions in the Two-Orbital Model for Manganites.Phys. Rev. Lett.2010; 105.
    [44]Hotta T., Malvezzi A. L., and Dagotto E., Charge-orbital ordering and phase separation in the two-orbital model for manganites:Roles of Jahn-Teller phononic and Coulombic interactions.Phys. Rev. B 2000; 62:9432.
    [45]Wachtel G., Orgad D., and Golosov D. I., Inhomogeneous phases in a double-exchange magnet with long range Coulomb interactions.Phys. Rev. B 2008; 78.
    [46]Milward G. C., Calderon M. J., and Littlewood P. B., Electronically soft phases in manganites.Nature 2005; 433:607.
    [47]Burgy J., Mayr M., Martin-Mayor V., Moreo A., and Dagotto E., Colossal effects in transition metal oxides caused by intrinsic inhomogeneities.Phys. Rev. Lett.2001; 87.
    [48]Motome Y., Furukawa N., and Nagaosa N., Competing orders and disorder-induced insulator to metal transition in manganites.Phys. Rev. Lett.2003; 91.
    [49]Sen C., Alvarez G., and Dagotto E., Insulator-to-metal transition induced by disorder in a model for manganites.Phys. Rev. B 2004; 70.
    [50]Ahn K. H., Lookman T., and Bishop A. R., Model for strain-induced metal-insulator phase coexistence in colossal magnetoresistive perovskite manganites (invited)J. Appl. Phys.2006; 99.
    [51]Ahn K. H., Lookman T., and Bishop A. R., Strain-induced metal-insulator phase coexistence in perovskite manganites.Nature 2004; 428:401.
    [52]Pesquera D., Herranz G., Barla A., Pellegrin E., Bondino F., Magnano E., Sanchez F., and Fontcuberta J., Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films.Nature communications 2012; 3:1189.
    [53]Z. Fang, I. V. Solovyev, and Terakura K., Phase Diagram of Tetragonal Manganites PhysRevLett.Phys. Rev. Lett.2000; 84:3169.
    [54]Biswas Amlan, Rajeswari M., Srivastava R., Venkatesan T., Greene R., Lu Q., de Lozanne A., and Millis A., Strain-driven charge-ordered state in La0.67Ca0.33MnO3.Phys. Rev. B 2001; 63.
    [55]Bibes M., Casanove M. J., Balcells L., Valencia S., Martinez B., Ousset J. C., and Fontcuberta J., Magnetotransport properties of fully strained epitaxial thin films of La2/3Ca1/3MnO3 grown on SrTiO3.Applied Surface Science 2002; 188:202.
    [56]Ziese M., Semmelhack H. C., Han K. H., Sena S. P., and Blythe H. J., Thickness dependent magnetic and magnetotransport properties of strain-relaxed La0.7Ca0.3MnO3 films.J. Appl. Phys. 2002; 91:9930.
    [57]Ogimoto Y., Nakamura M., Takubo N., Tamaru H., Izumi M., and Miyano K., Strain-induced crossover of the metal-insulator transition in perovskite manganites.Phys. Rev. B 2005; 71: 060403.
    [58]Shibuya Keisuke, Ohnishi Tsuyoshi, Lippmaa Mikk, Kawasaki Masashi, and Koinuma Hideomi, Domain structure of epitaxial CaHfO3 gate insulator films on SrTiO3.Appl. Phys. Lett. 2004;84:2142.
    [59]Ma J.X., Liu X. F., Lin T., Gao G. Y, Zhang J. P., Wu W. B., Li X. G., and Shi Jing, Interface ferromagnetism in (110)-oriented La0.7Sr0.3MnO3/SrTiO3 ultrathin superlattices.Phys. Rev. B 2009; 79:174424.
    [60]Nakamura Masao, Ogimoto Yasushi, Tamaru Hiroharu, Izumi Makoto, and Miyano Kenjiro, Phase control through anisotropic strain in Nd[sub 0.5]Sr[sub 0.5]MnO[sub 3] thin films.Appl. Phys. Lett.2005; 86:182504.
    [61]Chen Y. Z., Sun J. R., Liang S., Lv W. M., Shen B. G., and Wu W. B., Effect of anisotropic strain on the charge ordering transition in manganite films.J. Appl. Phys.2008; 103:096105.
    [62]Ogimoto Y., Takubo N., Nakamura M., Tamaru H., Izumi M., and Miyano K., Pseudomorphic strain effect on the charge-orbital ordering pattern in Pr0.5Sr0.5MnO3 epitaxial thin films.Appl. Phys. Lett.2005; 86.
    [63]Tebano A., Orsini A., Di Castro D., Medaglia P. G., and Balestrino G., Interplay between crystallographic orientation and electric transport properties in La2/3Sr 1/3MnO3 films.Appl. Phys. Lett.2010; 96:092505.
    [64]Minohara M., Furukawa Y., Yasuhara R., Kumigashira H., and Oshima M., Orientation dependence of the Schottky barrier height for La[sub 0.6]Sr[sub 0.4]MnO[sub 3]/SrTiO[sub 3] heterojunctions.Appl. Phys. Lett.2009; 94:242106.
    [65]Thiele C., Dorr K., Fahler S., Schultz L., Meyer D. C., Levin A. A., and Paufler P., Voltage-controlled epitaxial strain in La0.7Sr0.3MnO3/Pb(Mgl/3Nb2/3)O-3-PbTiO3(001) films.Appl. Phys. Lett.2005; 87.
    [66]Thiele C., Dorr K., Bilani O., Rodel J., and Schultz L., Influence of strain on the magnetization and magnetoelectric effect in La_{0.7}A_{0.3}MnO_{3}/PMN-PT(001) (A=Sr,Ca).Phys. Rev. B 2007; 75:054408.
    [67]Chen Y. J., Fitchorov T., Cai Z. H., Ziemer K. S., Vittoria C., and Harris V. G., Electric field controlled magnetic hysteresis loops in a Metglas (R)/PMN-PT heterostructure.J. Phys. D-Appl. Phys.2010; 43.
    [68]Zheng R., Chao C., Chan H., Choy C., and Luo H., Converse piezoelectric control of the lattice strain and resistance in Pr0.5Ca0.5MnO3/PMN-PT structures.Phys. Rev. B 2007; 75.
    [69]Zheng R., Habermeier H. U., Chan H., Choy C., and Luo H., Effect of ferroelectric-poling-induced strain on the phase separation and magnetotransport properties of La0.7Ca0.15Sr0.15MnO3 thin films grown on ferroelectric single-crystal substrates.Phys. Rev. B 2009; 80.
    [70]Zheng R. K., Habermeier H. U., Chan H. L. W., Choy C. L., and Luo H. S., Effects of substrate-induced strain on transport properties of LaMnO3+delta and CaMnO3 thin films using ferroelectric poling and converse piezoelectric effect.Phys. Rev. B 2010; 81:9.
    [71]Zheng R.K, Wang Y, Wang J., Wong K.S, Chan H.L.W, Choy C.L, and Luo H.S, Tuning the electrical properties of La0.75Ca0.25MnO3 thin films by ferroelectric polarization, ferroelectric-field effect, and converse piezoelectric effect.Phys. Rev. B 2006; 74.
    [72]Zheng R. K., Dong S. N., Wu Y. Q., Zhu Q. X., Wang Y., Chan H. L. W., Li X. M., Luo H. S., and Li X. G., Effects of electric-field-induced piezoelectric strain on the electronic transport properties of La0.9Ce0.1MnO3 thin films.Thin Solid Films 2012; 525:45.
    [73]Eerenstein W., Wiora M., Prieto J. L., Scott J. F., and Mathur N. D., Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures.Nat. Mater. 2007; 6:348.
    [74]Chen Q. P., Yang J. J., Zhao Y. G., Zhang S., Wang J. W., Zhu M. H., Yu Y., Zhang X. Z., Wang Zhu, Yang Bin, Xie D., and Ren T. L., Electric-field control of phase separation and memory effect in Pr0.6Casub0.4MnO 3/Pb(Mg 1/3Nbsub 2/3)0.7Ti 0.3O3 heterostructures.Appl. Phys. Lett.2011; 98:172507.
    [75]Yang Y. J., Luo Z. L., Meng Yang M., Huang H. L., Wang H. B., Bao J., Pan G. Q., Gao C., Hao Qi., Wang S. T., Jokubaitis M., Zhang W. Z, Xiao G., Yao Y. P., Liu Y. K., and Li X. G., Piezo-strain induced non-volatile resistance states in (011)-La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3 epitaxial heterostructures.Appl. Phys. Lett.2013; 102:033501.
    [76]Sheng Z. G., Gao J., and Sun Y. P., Coaction of electric field induced strain and polarization effects in La0.7Ca0.3MnO3/PMN-PT structures.Phys. Rev. B 2009; 79:174437.
    [77]Q. X. Zhu, W. Wang, S. W. Yang, X. M. Li, Y. Wang, H.-U. Habermeier, H. S. Luo, H. L. W. Chan, X. G. Li, and Zheng R. K., Coaction and competition between the ferroelectric field effect and the strain effect in Pr0.5Ca0.5MnO3 film/0.67Pb(Mgl/3Nb2/3)O3-0.33PbTiO3 crystal heterostructures Appl. Phys. Lett.2012; 101:172906.
    [78]姜寿亭,李卫,凝聚态磁性物理.(科学出版社,2003).
    [79]宛德福,马兴隆,磁性物理学.(高等教育出版社,1998).
    [80]Kittel C.,固体物理导论(科学出版社,2003).
    [81]Song J. H., Park J. H., Kim J. Y, Park B. G., Jeong Y. H., Noh H. J., Oh S. J., Lin H. J., and Chen C. T., Spin-orbit-lattice coupling and magnetostriction of strained La0.7Ca0.3MnO3 films.Phys. Rev. B 2005; 72.
    [82]Infante I. C., Osso J. O., Sanchez F., and Fontcuberta J., Tuning in-plane magnetic anisotropy in (110) La 2/3Ca 1/3MnO3 films by anisotropic strain relaxation.Appl. Phys. Lett.2008; 92: 012508.
    [83]Mathur N. D., Jo M. H., Evetts J. E., and Blamire M. G., Magnetic anisotropy of thin film La0.7Ca0.3MnO3 on untwinned paramagnetic NdGaO3 (001).J. Appl. Phys.2001; 89:3388.
    [84]Adamo C., Ke X., Wang H. Q., Xin H. L., Heeg T., Hawley M. E., Zander W, Schubert J., Schiffer P., Muller D. A., Maritato L., and Schlom D. G., Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films.Appl. Phys. Lett.2009; 95.
    [85]Tsui F., Smoak M. C., Nath T. K., and Eom C. B., Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films.Appl. Phys. Lett.2000; 76:2421.
    [86]Kuwahara H., Okuda T., Tomioka Y., Asamitsu A., and Tokura Y., Two-dimensional charge-transport and spin-valve effect in the layered antiferromagnet Nd0.45Sr0.55MnO3.Phys. Rev. Lett.1999; 82:4316.
    [87]Liang S., Sun J. R., Chen Y. Z., and Shen B. G., Anisotropic transport behavior of orbital-ordered Nd0.48Sr0.52MnO3 films.J. Appl. Phys.2011; 110.
    [88]Chen Y. Z., Sun J. R., Liang S., Lu W. M., and Shen B. G., Strain-controlled anisotropic electronic transport in Bi0.4Ca0.6MnO3 films.J. Appl. Phys.2008; 104:113913.
    [89]Ding Y. H., Wang Y. Q., Cai R. S., Chen Y. Z., and Sun J. R., Effect of anisotropic strain on the charge ordering behavior in Bi0.4Ca0.6MnO3 films.Appl. Phys. Lett.2011; 99.
    [90]Wang B., You L., Ren P., Yin X., Peng Y, Xia B., Wang L., Yu X., Poh S. M., Yang P., Yuan G., Chen L., Rusydi A., and Wang J., Oxygen-driven anisotropic transport in ultra-thin manganite films.Nature communications 2013; 4:2778.
    [91]T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, Yin Lifeng, and Shen and J., Elastically driven anisotropic percolation in electronic phase-separated manganites.Nat. Phys.2009; 5.
    [92]Lu C. L., Wu Y. Y, Xia Z. C., Yuan S. L., Chen L., Tian Z. M., Liu J. M., and Wu T., Giant in-plane anisotropy in manganite thin films driven by strain-engineered double exchange interaction and electronic phase separation.Appl. Phys. Lett.2011; 99:122510.
    [93]Dong Shuai, Yunoki Seiji, Zhang Xiaotian, Sen Cengiz, Liu J. M., and Dagotto Elbio, Highly anisotropic resistivities in the double-exchange model for strained manganites.Phys. Rev. B 2010; 82.
    [94]Thomson W., On the Electro-Dynamic Qualities of Metals:-Effects of Magnetization on the Electric Conductivity of Nickel and of Iron.Proc. R. Soc. Lond.1856; 8:546.
    [95]Smit J., Magnetoresistance of ferromagnetic metals and alloys at low temperatures.Physica 1951; 17:612.
    [96]Liao Zhi-Min, Wu Han-Chun, Kumar Shishir, Duesberg Georg S., Zhou Yang-Bo, Cross Graham L. W., Shvets Igor V., and Yu Da-Peng, Large Magnetoresistance in Few Layer Graphene Stacks with Current Perpendicular to Plane Geometry.Advanced Materials 2012; 24:1862.
    [97]Yue Z. J., Wang X. L., Du Y., Mahboobeh S. M., Yun Frank F., Cheng Z. X., and Dou S. X., Giant and anisotropic magnetoresistances in p-type Bi-doped Sb 2 Te 3 bulk single crystals.EPL (Europhysics Letters) 2012; 100:17014.
    [98]Gareev R. R., Petukhov A., Schlapps M., Sadowski J., and Wegscheider W., Giant anisotropic magnetoresistance in insulating ultrathin (Ga,Mn)As.Appl. Phys. Lett.2010; 96.
    [99]Vyborny K., Kucera J., Sinova J., Rushforth A. W., Gallagher B. L., and Jungwirth T., Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As.Phys. Rev. B 2009; 80.
    [100]Chen G. F., Li Z., Dong J., Li G., Hu W. Z., Zhang X. D., Song X. H., Zheng P., Wang N. L., and Luo J. L., Transport and anisotropy in single-crystalline SrFe2As2 and A(0.6)K(0.4)Fe(2)As(2) (A=Sr, Ba) superconductors.Phys. Rev. B 2008; 78.
    [101]Yang Huali, Liu Yiwei, and Li Run-Wei, Progress on Anisotropic Magnetoresistance Effect In Perovskite Manganites.Spin 2012; 02:1230004.
    [102]Li R. W., Wang H., Wang X., Yu X. Z., Matsui Y, Cheng Z. H., Shen B. G., Plummer E. W., and Zhang J., Anomalously large anisotropic magnetoresistance in a perovskite manganite.Proc. Natl. Acad. Sci. U.S.A2009; 106:14224.
    [103]Egilmez M., Saber M. M., Mansour A. I., Ma Rongchao, Chow K. H., and Jung J., Dramatic strain induced modification of the low field anisotropic magnetoresistance in ultrathin manganite films.Appl. Phys. Lett.2008; 93:182505.
    [104]Liu Yiwei, Yang Zhihuan, Yang Huali, Zou Tao, Xie Yali, Chen Bin, Sun Young, Zhan Qingfeng, and Li Run-Wei, Anisotropic magnetoresistance in polycrystalline La0.67(Cal-xSrx)0.33MnO3.Journal of Physics D:Applied Physics 2012; 45:245001.
    [105]Srivastava M. K., Kaur A., and Singh H. K., Carrier localization and out of plane anisotropic magnetoresistance in Nd0.55-xSmxSr0.45MnO3 thin films.Appl. Phys. Lett.2012; 100:222408.
    [106]Alagoz H. S., Khan M., Saber M. M., Mahmud S. T., Chow K. H., and Jung J., Influence of A-site doping and strain on the relationship between the anisotropic magneto-resistance and charge localization in films of La0.7-xPrxCa0.3MnO3 manganites.Appl. Phys. Lett.2013; 102: 242406.
    [1]郑伟涛等,薄膜材料与薄膜技术(化学工业出版社,2004).
    [2]Davidse P. D. and Maissel L. I., Dielectric Thin Films through rf Sputtering.J. Appl. Phys. 1966; 37:574.
    [3]田民波,薄膜技术与薄膜材料(清华大学出版社,2006).
    [4]Kay Eric, Magnetic Field Effects on an Abnormal Truncated Glow Discharge and Their Relation to Sputtered Thin-Film Growth.J. Appl. Phys.1963; 34:760.
    [5]Gill W. D. and Kay Eric, Efficient Low Pressure Sputtering in a Large Inverted Magnetron Suitable for Film Synthesis.Review of Scientific Instruments 1965; 36:277.
    [6]Martin L. W., Chu Y. H., and Ramesh R., Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films.Materials Science and Engineering:R: Reports 2010; 68:89.
    [7]刘大明,激光淀积超导薄膜过程中的等离子体研究博士论文,华中理工大学,1993.
    [8]麦振洪等,薄膜结构X射线表征(科学出版社,2007).
    [9]吴自勤等,现代晶体学-1.(中国科学技术大学出版社,2011).
    [1]Dagotto E., Complexity in Strongly Correlated Electronic Systems.Science 2005; 309:257.
    [2]Tanaka Hidekazu, Zhang Jun, and Kawai Tomoji, Giant Electric Field Modulation of Double Exchange Ferromagnetism at Room Temperature in the Perovskite Manganite/Titanate p-n Junction.Phys. Rev. Lett.2002; 88:027204.
    [3]Dhakal Tara, Tosado Jacob, and Biswas Amlan, Effect of strain and electric field on the electronic soft matter in manganite thin films.Phys. Rev. B 2007; 75.
    [4]Yang Shengwei, Dong Sining, Liu Yukuai, Yao Yiping, Yin Yuewei, and Li Xiaoguang, Tunable dielectric and ferroelectric properties n heteroepitaxial PbZr0.52Ti0.48O3/La0.625Ca0.375MnO3 thin films.J. Appl. Phys.2013; 114:034102.
    [5]Li G., Zhou H. D., Feng S. J., Fan X. J., Li X. G., and Wang Z. D., Competition between ferromagnetic metallic and paramagnetic insulating phases in manganites.J. Appl. Phys.2002; 92: 1406.
    [6]Ohara Jun, Kanamori Yu, and Ishihara Sumio, Optical manipulation of magnetism in spin-charge-coupled correlated electron systems.Phys. Rev. B 2013; 88.
    [7]Ogimoto Y., Nakamura M., Takubo N., Tamaru H., Izumi M., and Miyano K., Strain-induced crossover of the metal-insulator transition in perovskite manganites.Phys. Rev. B 2005; 71: 060403.
    [8]Baena A., Brey L., and Calderon M. J., Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator.Phys. Rev. B 2011; 83.
    [9]Zhang T., Wei Q., Zheng R. K., Wang X. P., and Fang Q. F., In situ control of electronic phase separation in La 1/8 Pr4/8Ca3/8MnO3/PNM-PT thin films using ferroelectric-poling-induced strain.J. Appl. Phys.2013; 113:013705.
    [10]Boschker H., Mathews M., Houwman E., Nishikawa H., Vailionis A., Koster G., Rijnders G., and Blank D., Strong uniaxial in-plane magnetic anisotropy of (001)- and (O11)-oriented La0.67Sr0.33MnO3 thin films on NdGaO3 substrates.Phys. Rev. B 2009; 79.
    [11]Jin S., Gao G., Yin Z., Huang Z., Zhou X., and Wu W., Strain state evolution and thickness-dependent properties of epitaxial Nd0.7Sr0.3MnO3 films.Phys. Rev. B 2007; 75.
    [12]T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, Yin Lifeng, and Shen and J., Elastically driven anisotropic percolation in electronic phase-separated manganites.Nat. Phys.2009; 5.
    [13]Dong Shuai, Yunoki Seiji, Zhang Xiaotian, Sen Cengiz, Liu J. M., and Dagotto Elbio, Highly anisotropic resistivities in the double-exchange model for strained manganites.Phys. Rev. B 2010; 82.
    [14]Lu C. L., Wu Y. Y., Xia Z. C., Yuan S. L., Chen L., Tian Z. M., Liu J. M., and Wu T., Giant in-plane anisotropy in manganite thin films driven by strain-engineered double exchange interaction and electronic phase separation.Appl. Phys. Lett.2011; 99:122510.
    [15]Fu Xinwen, Gao Yuze, Wu Zhiwei, Zhang Jincang, Li Qing, and Cao Guixin, The importance of strain on spin-spin coupling in Pr5/8Ca3/8MnO3 single crystal film.J. Appl. Phys.2012; 111: 123709.
    [16]Wang L. F., Tan X. L., Chen P. F., Zhi B. W., Sun Z. G., Huang Z., Gao G. Y, and Wu W. B., Anisotropic resistivities in anisotropic-strain-controlled phase-separated La0.67Ca0.33MnO3/NdGaO3(100) films.Appl. Phys. Lett.2013; 103:072407.
    [17]Wang B., You L., Ren P., Yin X., Peng Y., Xia B., Wang L., Yu X., Poh S. M., Yang P., Yuan G., Chen L., Rusydi A., and Wang J., Oxygen-driven anisotropic transport in ultra-thin manganite films.Nature communications 2013; 4:2778.
    [18]Tebano A., Orsini A., Di Castro D., Medaglia P. G., and Balestrino G., Interplay between crystallographic orientation and electric transport properties in La2/3Sr 1/3MnO3 fihns.Appl. Phys. Lett.2010; 96:092505.
    [19]Shibuya Keisuke, Ohnishi Tsuyoshi, Lippmaa Mikk, Kawasaki Masashi, and Koinuma Hideomi, Domain structure of epitaxial CaHfO3 gate insulator films on SrTiO3.Appl. Phys. Lett. 2004; 84:2142.
    [20]Ma J.X., Liu X. F., Lin T., Gao G. Y., Zhang J. P., Wu W. B., Li X. G., and Shi Jing, Interface ferromagnetism in (110)-oriented La0.7Sr0.3MnO3/SrTiO3 ultrathin superlattices.Phys. Rev. B 2009; 79:174424.
    [21]Infante I. C., Osso J. O., Sanchez F., and Fontcuberta J., Tuning in-plane magnetic anisotropy in (110) La2/3Ca 1/3MnO3 films by anisotropic strain relaxation.Appl. Phys. Lett.2008; 92: 012508.
    [22]Guo N. L., Li J., Wei Y. R, Zhang Y., Cui L. M., Zhao L., Jin Y. R., Tian H. Y, Deng Hui, Zhao G. P., and Zheng D. N., Magnetotransport anisotropy in lattice-misfit-strained ultrathin La2/3Ca1/3MnO3 films epitaxially grown on (110)-oriented SrTiO3 and LaAlO3 substrates.J. Appl. Phys.2012; 112:013907.
    [23]Infante I. C., Hrabovsky D., Laukhin V., Sanchez F., and Fontcuberta J., Magnetic switching in epitaxial (110) La2/3Ca1/3MnO3 films.J. Appl. Phys.2006; 99:08C503.
    [24]Lai K., Nakamura M., Kundhikanjana W., Kawasaki M., Tokura Y, Kelly M. A., and Shen Z. X., Mesoscopic percolating resistance network in a strained manganite thin film.Science 2010; 329:190.
    [25]Chen Y. Z., Sun J. R., Liang S., Lu W. M., and Shen B. G., Strain-controlled anisotropic electronic transport in Bi0.4Ca0.6MnO3 films.J. Appl. Phys.2008; 104:113913.
    [26]Tsui F., Smoak M. C., Nath T. K., and Eom C. B., Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films.Appl. Phys. Lett.2000; 76:2421.
    [27]Bachelet R., Pesquera D., Herranz G., Sanchez F., and Fontcuberta J., Persistent two-dimensional growth of (110) manganite films.Appl. Phys. Lett.2010; 97:121904.
    [28]Jeen Hyoungjeen and Biswas Amlan, Single domain to multidomain transition due to in-plane magnetic anisotropy in phase-separated (La_{0.4}Pr_{0.6})_{0.67}Ca_{0.33}MnO_{3} thin films.Phys. Rev. B 2011; 83:064408.
    [29]Khomskii D. and Khomskii L., Fine mist versus large droplets in phase separated manganites.Phys. Rev. B 2003; 67.
    [30]Zhang L., Israel C., Biswas A., Greene R. L., and de Lozanne A., Direct observation of percolation in a manganite thin film.Science 2002; 298:805.
    [31]Yang Huali, Liu Yiwei, and Li Run-Wei, Progress on Anisotropic Magnetoresistance Effect In Perovskite Manganites.Spin 2012; 02:1230004.
    [32]Egilmez M., Chow K. H., and Jung J. A., Anisotropic Magnetoresistance In Perovskite Manganites.Modern Physics Letters B 2011; 25:697.
    [33]Li R. W., Wang H., Wang X., Yu X. Z., Matsui Y, Cheng Z. H., Shen B. G., Plummer E. W., and Zhang J., Anomalously large anisotropic magnetoresistance in a perovskite manganite.Proc. Natl. Acad. Sci. U.S.A 2009; 106:14224.
    [34]Song J., Park J. H., Kim J. Y., Park B. G., Jeong Y., Noh H. J., Oh S. J., Lin H. J., and Chen C., Spin-orbit-lattice coupling and magnetostriction of strained La0.7Ca0.3MnO3 films.Phys. Rev. B 2005; 72.
    [35]Yau Jeng-Bang, Hong X., Posadas A., Ahn C. H., Gao W., Altman E., Bason Y, Klein L., Sidorov M., and Krivokapic Z., Anisotropic magnetoresistance in colossal magnetoresistive La[sub 1-x]Sr[sub x]MnO[sub 3] thin films.J. Appl. Phys.2007; 102:103901.
    [36]Liu Yiwei, Yang Zhihuan, Yang Huali, Zou Tao, Xie Yali, Chen Bin, Sun Young, Zhan Qingfeng, and Li Run-Wei, Anisotropic magnetoresistance in polycrystalline La0.67(Cal-xSrx)0.33MnO3.Journal of Physics D:Applied Physics 2012; 45:245001.
    [37]Infante I. C., Laukhin V., Sanchez F., Fontcuberta J., Melnikov O., Gorbenko O. Yu, and Kaul A. R., Anisotropic magnetoresistance in epitaxial (110) manganite films.J. Appl. Phys.2006; 99:08C502.
    [38]Egilmez M., Patterson R., Chow K. H., and Jung J., Magnetoresistive anisotropy and magnetoresistivity in strained La0.65Ca0.35MnO3 films near the metal-insulator transition.Appl. Phys. Lett.2007; 90:232506.
    [1]Fiebig M., Revival of the magnetoelectric effect.J. Phys. D-Appl. Phys.2005; 38:R123.
    [2]Eerenstein W., Mathur N. D., and Scott J. F., Multiferroic and magnetoelectric materials.Nature 2006; 442:759.
    [3]Martin L. W., Crane S. P., Chu Y. H., Holcomb M. B., Gajek M., Huijben M., Yang C. H., Balke N., and Ramesh R., Multiferroics and magnetoelectrics:thin films and nanostructures.Journal of Physics:Condensed Matter 2008; 20:434220.
    [4]Goto T., Kimura T., Lawes G., Ramirez A. P., and Tokura Y., Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites.Phys. Rev. Lett.2004; 92.
    [5]Hur N., Park S., Sharma P. A., Guha S., and Cheong S. W., Colossal Magnetodielectric Effects in DyMn2O5.Phys. Rev. Lett.2004; 93:107207.
    [6]Kimura T., Kawamoto S., Yamada I., Azuma M., Takano M., and Tokura Y., Magnetocapacitance effect in multiferroic BiMnO3.Phys. Rev. B 2003; 67.
    [7]Caicedo J. M., Zapata J. A., Gomez M. E., and Prieto P., Magnetoelectric coefficient in BiFeO3 compounds.J. Appl. Phys.2008; 103:07E306.
    [8]Le Bras G., Colson D., Forget A., Genand-Riondet N., Tourbot R., and Bonville P., Magnetization and magnetoelectric effect in Bil-xLaxFeO3 (0≤x≤0.15).Phys. Rev. B 2009; 80.
    [9]Zheng H., Wang J., Lofl S. E., Ma Z., Mohaddes-Ardabili L., Zhao T., Salamanca-Riba L. Shinde S. R., Ogale S. B., Bai F., Viehland D., Jia Y., Schlom D. G., Wuttig M., Roytburd A., and Ramesh R., Multiferroic BaTiO3-CoFe2O4 Nanostructures.Science 2005; 303:661.
    [10]Eerenstein W., Wiora M., Prieto J. L., Scott J. F., and Mathur N. D., Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures.Nat Mater 2007; 6:348.
    [11]Liu Y. K., Yao Y. P., Dong S. N., Yang S. W., and Li X. G., Effect of magnetic field on ferroelectric properties of BiFeO3/La5/8Ca3/8MnO3 epitaxial heterostructures.Phys. Rev. B 2012; 86:075113.
    [12]Bea H., Bibes M., Cherifi S., Nolting F., Warot-Fonrose B., Fusil S., Herranz G., Deranlot C., Jacquet E., Bouzehouane K., and Barthelemy A., Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO[sub 3] epitaxial thin films.Appl. Phys. Lett. 2006; 89:242114.
    [13]Liu Y. K., Yin Y. W., Dong S. N., Yang S. W., Jiang T., and Li X. G., Coexistence of four resistance states and exchange bias in La0.6Sr0.4MnO3/BiFeO3/La0.6Sr0.4MnO3 multiferroic tunnel junction. Appl. Phys. Lett.2014; 104:043507.
    [14]Martin Lane W., Chu Ying-Hao, Zhan Qian, Ramesh R., Han Shu-Jen, Wang Shan X., Warusawithana Maitri, and Schlom Darrell G., Room temperature exchange bias and spin valves based on BiFeO[sub 3]SrRuO[sub 3]SrTiO[sub 3]Si (001) heterostructures.Appl. Phys. Lett. 2007;91:172513.
    [15]Thiele C., Dorr K., Bilani O., Rodel J., and Schultz L., Influence of strain on the magnetization and magnetoelectric effect in La_{0.7}A_{0.3}MnO_{3}/PMN-PT(001) (A=Sr,Ca).Phys. Rev. B 2007; 75:054408.
    [16]Sheng Z. G., Gao J., and Sun Y. P., Coaction of electric field induced strain and polarization effects in La0.7Ca0.3MnO3/PMN-PT structures.Phys. Rev. B 2009; 79:174437.
    [17]Wu T., Bur A., Zhao P., Mohanchandra K. P., Wong K., Wang K. L., Lynch C. S., and Carman G. P., Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) Pb(Mgl/3Nb2/3)O-3 ((1-x))-PbTiO3 (x) heterostructure.Appl. Phys. Lett.2011; 98:012504.
    [18]Wang J., Hu F. X., Chen L., Sun J. R., and Shen B. G., The investigation of reversible strain and polarization effect in (011)-La0.9Ba0.1MnO3 film using field effect configuration.J. Appl. Phys.2011; 109:07d715.
    [19]Chen L. P. and Gao J., Reversible in situ modulation of competing phases in manganite/ferroelectrics heterostructures.Europhys. Lett 2011; 93:47009.
    [20]Chen Q. P., Yang J. J., Zhao Y. G., Zhang S., Wang J. W., Zhu M. H., Yu Y., Zhang X. Z., Wang Zhu, Yang Bin, Xie D., and Ren T. L., Electric-field control of phase separation and memory effect in Pr0.6Casub0.4MnO 3/Pb(Mg 1/3Nbsub 2/3)0.7Ti 0.3O3 heterostructures.Appl. Phys. Lett.2011; 98:172507.
    [21]Yang Y. J., Luo Z. L., Meng Yang M., Huang H. L., Wang H. B., Bao J., Pan G. Q., Gao C., Hao Qi., Wang S. T., Jokubaitis M., Zhang W. Z, Xiao G., Yao Y. P., Liu Y. K., and Li X. G., Piezo-strain induced non-volatile resistance states in (011)-La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3 epitaxial heterostructures.Appl. Phys. Lett.2013; 102:033501.
    [22]Zhu Q. X., Wang W., Zhao X. Q., Li X. M., Wang Y, Luo H. S., Chan H. L. W., and Zheng R. K., Tunable strain effect and ferroelectric field effect on the electronic transport properties of La0.5Sr0.5CoO3 thin films.J. Appl. Phys.2012; 111:103702.
    [23]T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, Yin Lifeng, and Shen and J., Elastically driven anisotropic percolation in electronic phase-separated manganites.Nat. Phys.2009; 5.
    [24]Thiele C., Dorr K., Fahler S., Schultz L., Meyer D. C., Levin A. A., and Paufler P., Voltage-controlled epitaxial strain in La0.7Sr0.3MnO3/Pb(Mgl/3Nb2/3)O-3-PbTiO3(001) films.Appl. Phys. Lett.2005; 87.
    [25]Q. X. Zhu, W. Wang, S. W. Yang, X. M. Li, Y. Wang, H.-U. Habermeier, H. S. Luo, H. L. W. Chan, X. G. Li, and Zheng R. K., Coaction and competition between the ferroelectric field effect and the strain effect in Pr0.5Ca0.5MnO3 film/0.67Pb(Mgl/3Nb2/3)O3-0.33PbTiO3 crystal heterostructures Appl. Phys. Lett.2012; 101:172906.
    [26]Jiang T., Yang S. W., Liu Y. K., Yin Y. W., Dong S. N., Zhao W. B., and Li X. G., Coaction and distinguishment of converse piezoelectric and field effects in La0.7Ca0.3MnO3/SrTiO3/0.68Pb(Mgl/3Nb2/3)O-3-0.32PbTiO(3) heterostructures.Appl. Phys. Lett.2013; 103.
    [27]Wu Tao, Zhao Ping, Bao Mingqiang, Bur Alexandre, Hockel Joshua L., Wong Kin, Mohanchandra Kotekar P., Lynch Christopher S., and Carman Gregory P., Domain engineered switchable strain states in ferroelectric (011) [Pb(Mgl/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈0.32) single crystals.J. Appl. Phys.2011; 109:124101.
    [28]Singh Satendra Pal, Singh Akhilesh Kumar, Pandey Dhananjai, and Yusuf S.M, Dielectric relaxation and phase transitions at cryogenic temperatures in 0.65[Pb(Nil/3Nb2/3)O3]-0.35PbTiO3 ceramics.Phys. Rev. B 2007; 76:054102.
    [29]Wang J., Hu F. X., Li R. W., Sun J. R., and Shen B. G., Strong tensile strain induced charge/orbital ordering in (001)-La[sub 7/8]Sr[sub 1/8]MnO[sub 3] thin film on 0.7Pb(Mg[sub 1/3]Nb[sub 2/3])O[sub 3]-0.3PbTiO[sub 3].Appl. Phys. Lett.2010; 96:052501.
    [30]Kanki T., Park Y. G., Tanaka H., and Kawai T., Electrical-field control of metal-insulator transition at room temperature in Pb(Zr0.2Ti0.8)O-3/Lal-xBaxMnO3 field-effect transistor.Appl. Phys. Lett.2003; 83:4860.
    [31]Hong X., Posadas A., Lin A., and Ahn C. H., Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide Lal-xSrxMnO3.Phys. Rev. B 2003; 68:134415.
    [32]S. Mathews, R.Ramesh, T. Venkatesan, and Benedetto J., Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures.Science 1997; 276:238.
    [33]Wu T., Ogale S. B., Garrison J. E., Nagaraj B., Biswas Amlan, Chen Z., Greene R. L., Ramesh R., Venkatesan T., and Millis A. J., Electroresistance and Electronic Phase Separation in Mixed-Valent Manganites.Phys. Rev. Lett.2001; 86:5998.
    [34]Hong X., Posadas A., and Ahn C. H., Examining the screening limit of field effect devices via the metal-insulator transition.Appl. Phys. Lett.2005; 86:142501.
    [35]Zheng R. K., Habermeier H. U., Chan H. L. W., Choy C. L., and Luo H. S., Effects of substrate-induced strain on transport properties of LaMnO_{3+8} and CaMnO_{3} thin films using ferroelectric poling and converse piezoelectric effect.Phys. Rev. B 2010; 81:104427.
    [36]Salamon Myron B. and Jaime Marcelo, The physics of manganites:Structure and transport.Rev. Mod. Phys.2001; 73:583.
    [37]Millis A. J., Littlewood P. B., and Shraiman B. I., Double Exchange Alone Does Not Explain the Resistivity of La_{1}_{-x}Sr_{x}MnO_{3}.Phys. Rev. Lett.1995; 74:5144.
    [38]Khomskii D. and Khomskii L., Fine mist versus large droplets in phase separated manganites.Phys. Rev. B 2003; 67.
    [1]Glanz James, Making a Bigger Chill With Magnets.Science 1998; 279:2045.
    [2]Tishin A. M. and Spichkin Y. I., Recent progress in magnetocaloric effect:Mechanisms and potential applications.International Journal Of Refrigeration-Revue Internationale Du Froid 2014; 37:223.
    [3]Phan M. H. and Yu S. C., Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater.2007; 308:325.
    [4]Yu B. F., Gao Q., Zhang B., Meng X. Z., and Chen Z., Review on research of room temperature magnetic refrigeration.International Journal Of Refrigeration-Revue Internationale Du Froid 2003; 26:622.
    [5]Giauque W. F. and MacDougall D. P., Attainment of temperatures below 1 degrees absolute by demagnetization of Gd-2(SO4)(3).8H(2)O.Physical Review 1933; 43:0768.
    [6]Brown G. V., MAGNETIC HEAT PUMPING NEAR ROOM-TEMPERATURE.J. Appl. Phys. 1976; 47:3673.
    [7]Provenzano Virgil, Shapiro Alexander J., and Shull Robert D., Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron.Nature 2004; 429:853.
    [8]Wada H., Morikawa T., Taniguchi K., Shibata T., Yamada Y, and Akishige Y., Giant magnetocaloric effect of MnAsl-xSbx in the vicinity of first-order magnetic transition.Physica B-Condensed Matter 2003; 328:114.
    [9]Tegus O., Bruck E., Buschow K. H. J., and de Boer F. R., Transition-metal-based magnetic refrigerants for room-temperature applications.Nature 2002; 415:150.
    [10]Xie Z. G., Geng D. Y, and Zhang Z. D., Reversible room-temperature magnetocaloric effect in Mn5PB2.Appl. Phys. Lett.2010; 97.
    [11]Guo Z. B., Du Y. W., Zhu J. S., Huang H., Ding W. P., and Feng D., Large magnetic entropy change in perovskite-type manganese oxides.Phys. Rev. Lett.1997; 78:1142.
    [12]Zhang Y. X., Liu Z. G., Zhang H. H., and Xu X. N., Direct measurement of thermal behaviour of magnetocaloric effects in perovskite-type La0.75SrxCa0.25-xMnO3. Materials Letters 2000; 45: 91.
    [13]Kallel N., Kallel S., Hagaza A., and Oumezzine M., Magnetocaloric properties in the Cr-doped La0.7Sr0.3MnO3 manganites.Physica B-Condensed Matter 2009; 404:285.
    [14]Morelli D. T., Mance A. M., Mantese J. V., and Micheli A. L., Magnetocaloric properties of doped lanthanum manganite films.J. Appl. Phys.1996; 79:373.
    [15]Othmani S., Blel R., Bejar M., Sajieddine M., Dhahri E., and Hlil E. K., New complex magnetic materials for an application in Ericsson refrigerator.Solid State Commun.2009; 149: 969.
    [16]Shen B. G., Sun J. R., Hu F. X., Zhang H. W., and Cheng Z. H., Recent Progress in Exploring Magnetocaloric Materials.Advanced Materials 2009; 21:4545.
    [17]Gupta A. and Sun J. Z., Spin-polarized transport and magnetoresistance in magnetic oxides. J. Magn. Magn. Mater.1999; 200:24.
    [18]Ji Y, Strijkers G. J., Yang F. Y, Chien C. L., Byers J. M., Anguelouch A., Xiao G., and Gupta A., Determination of the spin polarization of half-metallic CrO2 by point contact Andreev reflection.Phys. Rev. Lett.2001; 86:5585.
    [19]Jiang T., Xie L., Yao Y. P., Liu Y K., and Li X. G., Large magnetocaloric effect in CrO2/TiO2 epitaxial films above room temperature.Materials Letters 2012; 76:25.
    [20]Frey N., Srinath S., Srikanth H., Varela M., Pennycook S., Miao G., and Gupta A., Magnetic anisotropy in epitaxial CrO2 and CrO2Cr2O3 bilayer thin films.Phys. Rev. B 2006; 74.
    [21]Zou Xiaojing and Xiao Gang, Electronic transport and magnetoresistance in polycrystalline and epitaxial CrO2 nanowires.Phys. Rev. B 2008; 77.
    [22]Zhang X. Y., Chen Y. J., Lu L. Y., and Li Z. Y., A potential oxide for magnetic refrigeration application:CrO2 particles.J. Phys.-Condes. Matter 2006; 18:L559.
    [23]Zhang X. Y., Chen Y. J., and Li Z. Y., Large magnetocaloric effect in chromium dioxide with second-order phase transition.J. Phys. D-Appl. Phys.2007; 40:3243.
    [24]Phan M. H., Yu S. C., Hur N. H., and Jeong Y. H., Large magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal.J. Appl. Phys.2004; 96:1154.
    [25]Gopal B. R., Chahine R., and Bose T. K., Sample translatory type insert for automated magnetocaloric effect measurements.Review Of Scientific Instruments 1997; 68:1818.
    [26]Glorieux C., Caerels J., and Thoen J., Magnetic phase transition of gadolinium studied by acoustically detected magnetocaloric effect.J. Appl. Phys.1996; 80:3412.
    [27]Pecharsky Vitalij K. and Gschneidner Jr Karl A., Magnetocaloric effect and magnetic refrigeration.J. Magn. Magn. Mater.1999; 200:44.
    [28]Gorodets.G, Hornreic.Rm, and Shtrikma.S, MAGNETOELECTRIC DETERMINATION OF PRESSURE-INDUCED TN SHIFT IN CR2O3.Phys. Rev. Lett.1973; 31:938.
    [29]Zhong W., Au C. T., and Du Y. W., Review of magnetocaloric effect in perovskite-type oxides.Chinese Physics B 2013; 22.
    [30]Amaral V. S. and Amaral J. S., Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials.J. Magn. Magn. Mater.2004; 272-276, Part 3:2104.
    [31]Banerjee B. K., On a generalised approach to first and second order magnetic transitions.Physics Letters 1964; 12:16.
    [32]Rebello A. and Mahendiran R., Composition dependence of magnetocaloric effect in Sml-xSrxMnO3(x=0.3-0.5).Appl. Phys. Lett.2008; 93.
    [33]Szewczyk A., Szymczak H., Wisniiewski A., Piotrowski K., Kartaszynski R., Dabrowski B., Kolesnik S., and Bukowski Z., Magnetocaloric effect in Lal-xSrxMnO3 for x=0.13 and 0.16.Appl. Phys. Lett.2000; 77:1026.
    [34]Rostamnejadi A., Venkatesan M., Kameli P., Salamati H., and Coey J. M. D., Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature.J. Magn. Magn. Mater.2011; 323:2214.
    [35]Kallel Sami, Kallel Nabil, Hagaza Ahmed, Pena Octavio, and Oumezzine Mohamed, Large magnetic entropy change above 300K in La0.56Ce0.14)Sr0.3MnO3 perovskite.J. Alloys Compd. 2010; 492:241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700