中温固体氧化物燃料电池钴基钙钛矿结构阴极材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池研究的主要目标之一是降低操作温度到中温范围(500-700℃),这样不仅可以改善电池组成材料的适配性、延长电池的使用寿命,而且可以降低操作成本,但随着电池工作温度的降低,阴极的极化损失增加会导致电池的性能急剧下降。因此,开发高氧还原活性的阴极材料、降低阴极极化阻抗对中温固体氧化物燃料电池来说至关重要。本文系统地研究了具有钙钛矿结构的DyBaCo_2O_(5+δ)、不同元素掺杂的DyBaCo_2O_(5+δ)、 SrCo_(1-x)Ga_xO_(3-δ)和Pr_xSr_(1-x)Co_(0.9)Nb_(0.1)O_(3-δ)等钴基材料的物理及电化学性能,旨在寻找热稳定性高且电化学性能好的适合中温固体氧化物燃料电池的阴极材料。
     分别采用EDTA-柠檬酸法和乙醇超临界干燥辅助EDTA-柠檬酸法制备了DyBaCo_2O_(5+δ)阴极材料并作为中温固体氧化物燃料电池阴极材料进行了考察。SEM照片显示EDTA-柠檬酸法制备的DyBaCo_2O_(5+δ)粉体呈现球状颗粒,而乙醇超临界干燥辅助EDTA-柠檬酸法制备DyBaCo_2O_(5+δ)粉体具有小颗粒组成的绵状结构。650℃时分别以上述两种粉体为阴极材料的单电池的峰值功率密度达到436和529mW cm-2,说明乙醇超临界干燥辅助EDTA-柠檬酸法制备的DyBaCo_2O_(5+δ)材料的性能更好。
     为了进一步提高DyBaCo_2O_(5+δ)的电化学性能,采用EDTA-柠檬酸法分别合成了Dy、Sr和Cu掺杂的Dy1.10BaCo_2O_(5+δ)、DyBa_(0.5)Sr_(0.5)Co_2O_(5+δ)和DyBaCoCuO_(5+δ)氧化物材料,并考察了掺杂对DyBaCo_2O_(5+δ)的结构、热膨胀性能、导电性、材料的表面电子结构和电化学性能的影响。结果表明:Dy1.10BaCo_2O_(5+δ)、DyBa_(0.5)Sr_(0.5)Co_2O_(5+δ)和DyBaCoCuO_(5+δ)均具有正交钙钛矿结构,与电解质具有良好的化学兼容性,而且材料表面上吸附氧的浓度均高于DyBaCo_2O_(5+δ);30~800℃内Dy1.10BaCo_2O_(5+δ)、DyBa_(0.5)Sr_(0.5)Co_2O_(5+δ)和DyBaCoCuO_(5+δ)的平均热膨胀系数分别为15.9×10~(-6)、18.2×10~(-6)和15.8×10~(-6)K~(-1);与DyBaCo_2O~(5+δ)相比,Dy1.10BaCo_2O_(5+δ)和DyBaCoCuO_(5+δ)的电导率降低,但DyBa_(0.5)Sr_(0.5)Co_2O_(5+δ)的电导率明显增加。上述三种掺杂型材料中,DyBa_(0.5)Sr_(0.5)Co_2O_(5+δ)具有最高电导率和最小极化面电阻,说明掺杂Sr是一种降低阴极极化阻抗、提高氧催化活性的有效方法。
     通过EDTA-柠檬酸法合成了SrCo_(1-x)Ga_xO_(3-δ)系列材料并作为中温固体氧化物燃料电池阴极材料进行了评价。结果表明,试样均为钙铁矿结构,随着Ga~(3+)含量的增加,热膨胀系数、电导率和阴极材料表面的吸附氧逐渐减小。以面电阻最小的SrCo0.8Ga0.2O3-δ材料为阴极的单电池在650℃时的峰值功率密度为484mWcm-2。
     采用传统的固相反应法合成了Pr_xSr_(1-x)Co_(0.9)Nb_(0.1)O_(3-δ)系列材料并对其物理性质及电化学性能进行了考察。结果表明,试样均为钙钛矿结构,材料的电导率和面电阻随着Pr~(3+)含量的增加而减小。以面电阻最小的Pr_(0.6)Sr_(0.4)Co_(0.9)Nb_(0.1)O_(3-δ)材料为阴极的单电池在650℃时的峰值功率密度为1009mW cm~(-2)。
One of the major goals in solid oxide fuel cell (SOFC) research is to reduce theoperating temperature to intermediate temperature range (500-700℃) in order toimprove the compatibility of the component materials, prolong the lifetime anddecrease the operating costs. However, the reduced working temperature generallyleads to increase of the cathode polarization resistance resulting in drastic decrease inthe cell performance. Development of cathode materials with high catalytic activityfor oxygen reduction and low polarization resistance, therefore, is critical forintermediate-temperature solid oxide fuel cells (IT-SOFCs). In this thesis, systematicinvestigations on the physical properties and electrochemical performance ofDyBaCo_2O_(5+δ),DyBaCo_2O_(5+δ)doped with different elements, SrCo0.8Ga0.2O3-δandPr0.6Sr0.4Co0.9Nb0.1O3-δmaterials with perovskite structure are discussed in order todevelop novel cobalt-based cathode materials suitable for IT-SOFCs.
     The DyBaCo_2O_(5+δ)cathode materials synthesized by EDTA-citric acid (EC)sol-gel method and ethanol supercritical drying assisted EDTA-citric acid method(SCEC), respectively, are investigated as potential cathodes for IT-SOFC. The SEMmorphology images show that the powders synthesized via EC method are sphericalwhereas that obtained by SCEC method have sponge-like shape consisted ofsmall-size and uniform particles. The peak power density of the SOFC withDyBaCo_2O_(5+δ)(SCEC) as cathode materials reaches529mW cm-2at650℃, while itis436mW cm-2for that with DyBaCo_2O_(5+δ)(EC) cathode, indicating that synthesismethod has important effect on the cathode performance of DyBaCo_2O_(5+δ)materials,and SCEC is preferable than EC to prepare high performance DyBaCo_2O_(5+δ).
     Aimed to improve the electrochemical performance of DyBaCo_2O_(5+δ), dopedmaterials of Dy1.10BaCo_2O_(5+δ), DyBa_(0.5)Sr_(0.5)Co_2O_(5+δ)and DyBaCoCuO5+δoxidepowders were prepared via EC method by introducing Dy, Sr and Cu ions intoDyBaCo_2O_(5+δ), respectively, and the properties of thermal expansion, conductivity,surface state as well as electrochemical performance are comparatively evaluated. Theresults demonstrated that all the synthesized materials have an orthorhombicperovskite structure and a good chemical compatibility with electrolyte. Theconcentration of adsorption oxygen on the surface of all these doped materials ishigher than that of DyBaCo_2O_(5+δ). The average thermal expansion coefficients, in thetemperature region of30-800℃, of Dy1.10BaCo_2O_(5+δ), DyBa_(0.5)Sr_(0.5)Co_2O_(5+δ)andDyBaCoCuO5+δare15.9×10-6,18.2×10-6and15.8×10-6K-1, respectively. Theconductivity of Dy1.10BaCo_2O_(5+δ)and DyBaCoCuO5+δis lower than that ofDyBaCo_2O_(5+δ), whereas that of DyBa_(0.5)Sr_(0.5)Co_2O_(5+δ)is higher. Among the threedoped materials, DyBa_(0.5)Sr_(0.5)Co_2O_(5+δ)has the highest conductivity and minimumpolarization resistance, implying that partial substitution of Sr for Ba in DyBaCo_2O_(5+δ)is an efficient strategy to reduce the polarization resistance and improve the oxygenreduction activity of cathode.
     The SrCo_(1-x)Ga_xO_(3-δ)oxide powders are synthesized by EC method and evaluatedas cathode materials for IT-SOFCs. The results show that all the samples havebrownmillerite structure. The thermal expansion coefficient, electrical conductivityand the amount of adsorbed oxygen on the surface of the cathode materials decreasegradually with increase in Ga content. The single-cell with SrCo0.8Ga0.2O3-δ, whichhas the lowest area specific resistance among the studied samples, as cathode achievesa maximum power density of484mW cm-2at650℃.
     The Pr_xSr_(1-x)Co_(0.9)Nb_(0.1)O_(3-δ)powders are synthesized by traditionalsolid-state reaction method and the physical and electrochemical characteristics areinvestigated. The results show that all the samples have pervoskite structure. Theelectrical conductivity and area specific resistance of the obtained materials decreasewith increase in Pr content. The single-cell with Pr_(0.6)Sr_(0.4)Co_(0.9)Nb_(0.1)O_(3-δ), which hasthe lowest area specific resistance among the studied samples, as cathode achieves a maximum power density of1009mW cm-2at650℃.
引文
[1].衣宝廉.燃料电池:原理技术应用[M].北京:化学工业出版社,2003,8.
    [2].韩敏芳,彭苏萍.固体氧化物燃料电池材料及其制备[M].北京:科学出版社,2004,2.
    [3].毛宗强.燃料电池[M].北京:化学工业出版社,2005,4.
    [4].拉米尼,迪克斯.燃料电池系统:原理设计应用[M].北京:科学出版社,2006,2.
    [5].刘荣辉,马文会,王华等.固体氧化物燃料电池阴极材料的研究进展[J].云南化工,2005,32(3):45-49.
    [6].刘洁,王菊香,邢志娜等.燃料电池研究进展及发展探析[J].节能技术,2010,28(162):364-368.
    [7].路甬祥.燃料电池的研究开发现状及其发展趋势[J].自然杂志,1997,19(3):125-134.
    [8].李杨,魏敦崧,潘卫国.燃料电池发展现状与应用前景[J].能源技术,2001,22(4):158-161.
    [9].衣宝廉.燃料电池-高效环境友好的发电方式[M].北京:化学工业出版社,2000,10.
    [10].吴夏芫,周楚新,支银芳等.微藻型微生物燃料电池的研究进展[J].环境科学与技术,2012,35(4):82-86.
    [11].辛存良,马晓燕,李冬梅.生物燃料电池的研究进展[J].电源技术,2012,136(5):754-757.
    [12].纪明中.锂燃料电池的研究进展[J].电源技术,2011,135(6):739-741.
    [13].迟克彬,李方伟,李影辉等.固体氧化物燃料电池研究进展[J].天然气化工,2002,2737-44.
    [14]. Wachsman E D, Lee K T. Lowering the Temperature of Solid Oxide Fuel Cells[J]. Science,2011,334(6058):935-939.
    [15]. Sun C, Stimming U. Recent anode advances in solid oxide fuel cells[J]. Journal of PowerSources,2007,171(2):247-260.
    [16]. Linares J I, Herranz L E, Moratilla B Y. Maximum efficiency of direct energy conversionsystems. Application to fuel cells[J]. International Journal of Hydrogen Energy,2011,36(16):10027-10032.
    [17]. Ni M, Leung M K H, Leung D Y C. Modeling of Electrochemistry and Heat/Mass Transfer ina Tubular Solid Oxide Steam Electrolyzer for Hydrogen Production[J]. Chemical Engineering&Technology,2008,31(9):1319-1327.
    [18]. Yang Y, Wang G, Zhang H, et al. Comparison of heat and mass transfer between planar andMOLB-type SOFCs[J]. Journal of Power Sources,2008,177(2):426-433.
    [19]. Hajimolana S A, Hussain M A, Daud W M A W, et al. Mathematical modeling of solid oxidefuel cells: A review[J]. Renewable and Sustainable Energy Reviews,2011,15(4):1893-1917.
    [20].徐旭东,田长安,尹奇异等.固体氧化物燃料电池电解质材料的发展趋势[J].硅酸盐通报,2011,30(3):593-596.
    [21].孙帆,郑勇,高小龙等.固体氧化物燃料电池电解质和电极材料的研究进展[J].金属功能材料,2010,17(4):75-80.
    [22].毛宗强,黄建兵,王诚等.低温固体氧化物燃料电池研究进展[J].电源技术,2008,32(2):75-79.
    [23]. Gibson I R, Dransfiel G P, T, I J. Influence of Yttria Concentration upon Electrical Propertiesand Susceptibility Ageing of Yttria-stabilised Zirconia[J]. Journal of European CeramicSociety,1998,18661-667.
    [24]. Liu J, Liu W, Lu Z, et al. Study on the properties of YSZ electrolyte made by plaster castingmethod and the applications in solid oxide fuel cells[J]. Solid State Ionics,1999,118(67-72).
    [25]. Badwal S P, Ciacchi F T, D M. Scandia-Zirconia electrolytes for intermediate temperaturesolid oxide fuel cell operation[J]. Solid State Ionics,2000,(136):91-99.
    [26]. Guan X, Zhou H, Wang Y, et al. Preparation and properties of Gd3+and Y3+co-dopedceria-based electrolytes for intermediate temperature solid oxide fuel cells[J]. Journal ofAlloys and Compounds,2008,464(1-2):310-316.
    [27]. Zhang X, Cyrille D, Sing Y, et al. A study on sintering aids for Sm0.2Ce0.8O1.9electrolyte[J].Journal of Power Sources,2006,162(1):480-485.
    [28]. Heel A, Vital A, Holtappels P, et al. Flame spray synthesis and characterisation of stabilisedZrO2and CeO2electrolyte nanopowders for SOFC applications at intermediatetemperatures[J]. Journal of Electroceramics,2007,22(1-3):40-46.
    [29]. Zhang Y, Sun X, Xu G, et al. Co-doping effects of Y3+and Sc3+on the crystal structures,nanoparticle properties and electrical behavior of ZrO2solid solutions prepared by a mildurea-based hydrothermal method[J]. Physical Chemistry Chemical Physics,2003,5(10):2129.
    [30]. Lim H T, Virkar A V. Thermoelectric power of Gd-doped CeO2(Gd0.1Ce0.9O(2δ)(GDC10)):Measurements on porous samples[J]. Journal of Power Sources,2006,161(1):676-684.
    [31]. Cheng M Y, Hwang D H, Sheu H S, et al. Formation of Ce0.8Sm0.2O1.9nanoparticles byurea-based low-temperature hydrothermal process[J]. Journal of Power Sources,2008,175(1):137-144.
    [32]. Cho Y H, Cho P S, Auchterlonie G, et al. Enhancement of grain-boundary conduction ingadolinia-doped ceria by the scavenging of highly resistive siliceous phase[J]. Acta Materialia,2007,55(14):4807-4815.
    [33]. Sammes N M, Tompsett G A, Naè fea H, et al. Bismuth Based Oxide Electrolytes-Structureand Ionic Conductivity[J]. Journal of the European Ceramic Society,1999,191801-1826.
    [34]. Huang T J, Li J F. Effect of Bi2O3content on characteristics of Bi2O3–GDC systems fordirect methane oxidation[J]. Journal of Power Sources,2008,181(1):62-68.
    [35]. Gil V, Moure C, Duran P, et al. Low-temperature densification and grain growth ofBi2O3-doped-ceria gadolinia ceramics[J]. Solid State Ionics,2007,178(5-6):359-365.
    [36]. Guth U, Runge H. Influence of A-site deficiencies in the system La0.9Sr0.1Ga0.8Mg0.2O3-δon structure and electrical conductivity[J]. Journal of Solid State Electrochemistry,2004,8(4):272-276.
    [37]. Shi M, Liu N, Xu Y D, et al. Preparation of electrolyte foils La0.85Sr0.15Ga0.85Mg0.15O2.85(LSGM) by means of tape casting[J]. Journal of Materials Processing Technology,2005,169(2):179-183.
    [38]. Sasaki K, Muranaka M, Suzuki A, et al. Synthesis and characterization of LSGM thin filmelectrolyte by RF magnetron sputtering for LT-SOFCS[J]. Solid State Ionics,2008,179(21-26):1268-1272.
    [39]. Marrero-López D, Ruiz-Morales J C, Pe a-Martínez J, et al. Influence of phase segregation onthe bulk and grain boundary conductivity of LSGM electrolytes[J]. Solid State Ionics,2011,186(1):44-52.
    [40]. Xu D, Liu X, Wang D, et al. Fabrication and characterization of SDC-LSGM compositeelectrolytes material in IT-SOFCs[J]. Journal of Alloys and Compounds,2007,429(1-2):292-295.
    [41]. Zheng F, Bordia R K, Pederson L R. Phase constitution in Sr and Mg doped LaGaO3system[J]. Materials Research Bulletin,2004,39(1):141-155.
    [42]. Cheng J, Navrotsky A. Energetics of magnesium, strontium, and barium doped lanthanumgallate perovskites[J]. Journal of Solid State Chemistry,2004,177(1):126-133.
    [43]. Yi J Y, Choi G M. The effect of reduction atmosphere on the LaGaO3-based solid oxide fuelcell[J]. Journal of the European Ceramic Society,2005,25(12):2655-2659.
    [44]. Kato H. Electrical conductivity of Al-doped La1xSrxScO3perovskite-type oxides aselectrolyte materials for low-temperature SOFC[J]. Solid State Ionics,2003,159(3-4):217-222.
    [45]. Prakash D, Delahaye T, Joubert O, et al. Intermediate temperature solid oxide fuel cell basedon BaIn0.3Ti0.7O2.85electrolyte[J]. Journal of Power Sources,2007,167(1):111-117.
    [46]. Jayaraman V, Magrez A, Caldes M, et al. Characterization of perovskite systems derived fromBa2In2O5□Part I: the oxygen-deficient Ba2In2(1x)Ti2xO5+x□1x(0≤x≤1) compounds[J].Solid State Ionics,2004,170(1-2):17-24.
    [47]. Letilly M, Le Gal La Salle A, Caldes M, et al. Validation of BaIn0.3Ti0.7O2.85as SOFCElectrolyte with Nd2NiO4, LSM and LSCF as Cathodes[J]. Fuel Cells,2009,9(5):622-629.
    [48]. Chen C, Tsai D, Jin T, et al. Electrochemical performance of lanthanum calcium cobalt ferritecathode interfaced to LAMOX electrolyte[J]. Solid State Ionics,2008,179(9-10):330-337.
    [49]. Georges S, Salaun M. Redox cycling and metastability of La2Mo2O9-based ceramics[J]. SolidState Ionics,2008,178(37-38):1898-1906.
    [50]. Zhu B, Liu X, Zhu Z, et al. Solid oxide fuel cell (SOFC) using industrial grade mixedrare-earth oxide electrolytes[J]. International Journal of Hydrogen Energy,2008,33(13):3385-3392.
    [51]. Nakayama S, Higuchi Y, Kondo Y, et al. Effects of cation-or oxide ion-defect onconductivities of apatite-type La-Ge-O system ceramics[J]. Solid State Ionics,2004,170(3-4):219-223.
    [52]. Berastegui P, Hull S, Garc Garc F J, et al. A Structural Investigation of La2(GeO4)O andAlkaline-Earth-Doped La9.33(GeO4)6O2[J]. Journal of Solid State Chemistry,2002,168(1):294-305.
    [53].田长安,董彪,曾燕伟.磷灰石类新型电解质材料研究进展[J].材料科学与工程学报,2006,24(4):627-630.
    [54].李雪,赵海雷,张俊霞等. SOFC用钙钛矿型质子传导固体电解质[J].电池,2007,37(4):303-305.
    [55]. Guo Y, Lin Y, Ran R, et al. Zirconium doping effect on the performance of proton-conductingBaZryCe0.8yY0.2O3δ(0.0≤y≤0.8) for fuel cell applications[J]. Journal of Power Sources,2009,193(2):400-407.
    [56]. Zhao L, He B, Nian Q, et al. In situ drop-coated BaZr0.1Ce0.7Y0.2O3δelectrolyte-basedproton-conductor solid oxide fuel cells with a novel layered PrBaCuFeO5+δcathode[J].Journal of Power Sources,2009,194(1):291-294.
    [57]. Yang L, Liu Z, Wang S, et al. A mixed proton, oxygen ion, and electron conducting cathodefor SOFCs based on oxide proton conductors[J]. Journal of Power Sources,2010,195(2):471-474.
    [58]. Zhao F, Wang S, Dixon L, et al. Novel BaCe0.7In0.2Yb0.1O3δproton conductor as electrolytefor intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources,2011,196(18):7500-7504.
    [59]. Zhao F, Wang S, Dixon L, et al. Novel BaCe0.7In0.2Yb0.1O3-δproton conductor as electrolytefor intermediate-temperature SOFCs[J]. Fuel Cells Bulletin,2011,2011(9):12-16.
    [60]. Zhao L, He B, Lin B, et al. High performance of proton-conducting solid oxide fuel cell with alayered PrBaCo2O5+δcathode[J]. Journal of Power Sources,2009,194(2):835-837.
    [61]. Sun W, Zhu Z, Jiang Y, et al. Optimization of BaZr0.1Ce0.7Y0.2O3δ-based proton-conductingsolid oxide fuel cells with a cobalt-free proton-blocking La0.7Sr0.3FeO3δ-Ce0.8Sm0.2O2δcomposite cathode[J]. International Journal of Hydrogen Energy,2011,36(16):9956-9966.
    [62]. Chien R R, Tu C S, Schmidt V H, et al. Synthesis and characterization of proton-conductingBa(Zr0.8xCexY0.2)O2.9ceramics[J]. Solid State Ionics,2010,181(27-28):1251-1257.
    [63]. Xiao J, Sun W, Zhu Z, et al. Fabrication and characterization of anode-supported denseBaZr0.8Y0.2O3δelectrolyte membranes by a dip-coating process[J]. Materials Letters,2012,73198-201.
    [64]. Ding H, Xue X. BaZr0.1Ce0.7Y0.1Yb0.1O3δelectrolyte-based solid oxide fuel cells withcobalt-free PrBaFe2O5+δlayered perovskite cathode[J]. Journal of Power Sources,2010,195(20):7038-7041.
    [65].章蕾,夏长荣.低温固体氧化物燃料电池[J].化学进展,2011,23(2/3):430-440.
    [66]. McIntosh S, Gorte R J. Direct Hydrocarbon Solid Oxide Fuel Cells[J]. Chem. Rev.,2004,104(10):4845-4865.
    [67].杨乃涛.微管式固体氧化物燃料电池的制备及其性能研究[D].上海交通大学(博士论文),2009.4.
    [68]. Minh N Q. Ceramic Fuel Cells[J]. J. Am. Ceram. Soc.,1993,76(3):563-588.
    [69].赖晓锋,王苗苗,陈哲等.金属陶瓷阳极材料的高效固体氧化物燃料电池研究[J].中国陶瓷,2011,47(3):7-11.
    [70].刘斌,张云,涂宝峰等.中温固体氧化物燃料电池NiO/YSZ阳极的还原过程[J].催化学报,2008,29(10):979-986.
    [71]. Ringuede A, Bronine D, Frade J R. Assessment of Ni/YSZ anodes prepared by combustionsynthesis[J]. Solid State Ionics,2002,146(3-4):219-224.
    [72]. Hofmann P, Panopoulos K, Fryda L, et al. Integrating biomass gasification with solid oxidefuel cells: Effect of real product gas tars, fluctuations and particulates on Ni-GDC anode[J].International Journal of Hydrogen Energy,2008,33(11):2834-2844.
    [73]. He T, Guan P, Cong L, et al. Assessment of performances of Ni-Cu-LSGM as anode materialsfor intermediate-temperature LaGaO3-based solid oxide fuel cells[J]. Journal of Alloys andCompounds,2005,393(1-2):292-298.
    [74]. Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells[J].Materials Science and Engineering: A,2003,362(1-2):228-239.
    [75]. Wang F, Cheng S, Wan B. Porous Ag–CGO cermets as anode materials for ITSOFC using COfuel[J]. Catalysis Communications,2008,9(7):1595-1599.
    [76]. Wang F, Cheng S, Wan B. Porous Ag-CGO cermets as anode materials for IT-SOFC using COfuel[J]. Fuel Cells Bulletin,2008,2008(5):12-16.
    [77]. Tao S, Irvine J T S. Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0.5O3-δinRelation to Its Potential as a Solid Oxide Fuel Cell Anode Material[J]. Chem. Mater.,2004,16(21):4116-4121.
    [78]. Madsen B D, Barnett S A. La0.8Sr0.2Cr0.98V0.02O3δCe0.9Gd0.1O1.95-Ni Anodes for Solid OxideFuel Cells[J]. Journal of The Electrochemical Society,2007,154(6): B501-B507.
    [79]. Bochentyn B, Karczewski J, Molin S, et al. The comparison of SrTi0.98Nb0.02O3–δ-CeO2andSrTi0.98Nb0.02O3–δ-YSZ composites for use in SOFC anodes[J]. Journal of Electroceramics,2012,28(2-3):132-138.
    [80]. Huang Y H. Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells[J]. Science,2006,312(5771):254-257.
    [81]. Gross M D, Vohs J M, Gorte R J. Recent progress in SOFC anodes for direct utilization ofhydrocarbons[J]. Journal of Materials Chemistry,2007,17(30):3071.
    [82]. Murray E P, Tsai T, Barnett S A. Adirect-methane fuel cell with a ceria-based anode[J]. Nature,1999,400(12):649-651.
    [83].郑尧,周嵬,冉然等.钙钛矿型固体氧化物燃料电池阳极材料[J].化学进展,2008,20(2/3):413-421.
    [84].卢凤双,张建福,华彬等.固体氧化物燃料电池连接体材料研究进展[J].金属功能材料,2008,15(6):44-48.
    [85].查燕,郑颖平,高文君等.中温固体氧化物燃料电池材料的研究进展[J].材料导报,2008,22(5):22-25.
    [86]. Chu C, Wang J, Lee S. Effects of La0.67Sr0.33MnO3protective coating on SOFC interconnectby plasma-sputtering[J]. International Journal of Hydrogen Energy,2008,33(10):2536-2546.
    [87]. Yang Z, Xia G, Stevenson J W. Evaluation of Ni-Cr-base alloys for SOFC interconnectapplications[J]. Journal of Power Sources,2006,160(2):1104-1110.
    [88]. Wu J, Liu X. Recent Development of SOFC Metallic Interconnect[J]. J. Mater. Sci. Technol.,2010,26(4):293-305.
    [89]. Xu Y, Wen Z, Wang S, et al. Cu doped Mn-Co spinel protective coating on ferritic stainlesssteels for SOFC interconnect applications[J]. Solid State Ionics,2011,192(1):561-564.
    [90]. Jablonski P D, Alman D E. Oxidation resistance of novel ferritic stainless steels alloyed withtitanium for SOFC interconnect applications[J]. Journal of Power Sources,2008,180(1):433-439.
    [91]. Wu J, Johnson C D, Jiang Y, et al. Pulse plating of Mn-Co alloys for SOFC interconnectapplications[J]. Electrochimica Acta,2008,54(2):793-800.
    [92]. Jung I. Critical evaluation and thermodynamic modeling of the Mn–Cr–O system for theoxidation of SOFC interconnect[J]. Solid State Ionics,2006,177(7-8):765-777.
    [93]. Wu J, Gemmen R S, Manivannan A, et al. Investigation of Mn/Co coated T441alloy as SOFCinterconnect by on-cell tests[J]. International Journal of Hydrogen Energy,2011,36(7):4525-4529.
    [94]. Wang S, Lin B, Xie K, et al. Low temperature sintering ability and electrical conductivity ofSOFC interconnect material La0.7Ca0.3Cr0.97O3[J]. Journal of Alloys and Compounds,2009,468(1-2):499-504.
    [95]. Zheng L L, Li J J, Li M S, et al. Investigation on the properties of Nb and Al doped Ti3SiC2asa new interconnect material for IT-SOFC[J]. International Journal of Hydrogen Energy,2012,37(1):1084-1088.
    [96].孙红燕,森维,易中周等.中温固体氧化物燃料电池材料的研究进展[J].硅酸盐通报,2012,31(5):1194-1199.
    [97]. Huang J, Xie F, Wang C, et al. Development of solid oxide fuel cell materials forintermediate-to-low temperature operation[J]. International Journal of Hydrogen Energy,2012,37(1):877-883.
    [98].朱成军.新型钴基钙钛矿阴极材料及在中温固体氧化物燃料电池中的应用[D].吉林大学(博士论文),2009.4.
    [99]. Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentallyclean and efficient source of energy[J]. Renewable and Sustainable Energy Reviews,2002,6(1):433-455.
    [100]. Sahibzada M, Benson S J, Rudkin R A, et al. Pd-promoted La0.6Sr0.4Co0.2Fe0.8O3cathodes[J]. Solid State Ionics,1998,113(1):285-290.
    [101]. Chen K, Lü Z, Chen X, et al. Development of LSM-based cathodes for solid oxide fuel cellsbased on YSZ films[J]. Journal of Power Sources,2007,172(2):742-748.
    [102]. Mitterdorfer A, Gauckler L J. La2Zr2O7formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ system[J]. Solid State Ionics,1998,111(5):185-218.
    [103]. Wiff J P, Jono K, Suzuki M, et al. Improved high temperature performance of La0.8Sr0.2MnO3cathode by addition of CeO2[J]. Journal of Power Sources,2011,196(15):6196-6200.
    [104]. Gu H, Zheng Y, Ran R, et al. Synthesis and assessment of La0.8Sr0.2ScyMn1yO3δas cathodesfor solid-oxide fuel cells on scandium-stabilized zirconia electrolyte[J]. Journal of PowerSources,2008,183(2):471-478.
    [105]. Steele B C, Hori K M, Uchino S. Kinetic parameters influencing the performance of IT-SOFCcomposite electrodes[J]. Solid State Ionics,2000,135(1-4):445-450.
    [106]. Petrov A N, Kononchuk O F, Andreev A V, et al. Crystal structure, electrical and magneticpropertiesof La1-xSrxCoO3-y[J]. Solid State Ionics,1995,80(3-4):189-199.
    [107]. Mizusaki, Junichiro. Electrical Conductivity and Seebeck Coefficient of NonstoichiometricLa1xSrxCoO3δ[J]. Journal of The Electrochemical Society,1989,136(7):2082-2087.
    [108]. Lv H, Zhao B, Wu Y, et al. Effect of B-site doping on Sm0.5Sr0.5MxCo1xO3δproperties forIT-SOFC cathode material (M=Fe, Mn)[J]. Materials Research Bulletin,2007,42(12):1999-2012.
    [109]. Lee K T, Manthiram A. Characterization of Nd1xSrxCoO3δ(0≤x≤0.5) Cathode Materialsfor Intermediate Temperature SOFCs[J]. Journal of The Electrochemical Society,2005,152(1): A197-A204.
    [110]. Lee S, Miller N, Staruch M, et al. Pr0.6Sr0.4CoO3δelectrocatalyst for solid oxide fuel cellcathode introduced via infiltration[J]. Electrochimica Acta,2011,56(27):9904-9909.
    [111]. Tu H Y, Takeda Y, Imanishi N, et al. Ln1-xSrxCoO3(Ln=Sm, Dy) for the electrode of solidoxide fuel cells[J]. Solid State lonics,1997,100(6):283-288.
    [112]. Petrica A, Huang P, Tietzc F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuelcells and gas separation membranes[J]. Solid State Ionics,2000,135(1-4):719-725.
    [113]. Dong F, Chen D, Ran R, et al. A comparative study of Sm0.5Sr0.5MO3δ(M=Co and Mn) asoxygen reduction electrodes for solid oxide fuel cells[J]. International Journal of HydrogenEnergy,2012,37(5):4377-4387.
    [114]. Marinha D, Dessemond L, Djurado E. Electrochemical investigation of oxygen reductionreaction on La0.6Sr0.4Co0.2Fe0.8O3δcathodes deposited by Electrostatic Spray Deposition[J].Journal of Power Sources,2012,197(1):80-87.
    [115]. Lee K T, Manthiram A. Synthesis and characterization of Nd0.6Sr0.4Co1yMnyO3δ(0≤y≤1.0)cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources,2006,158(2):1202-1208.
    [116]. Zhu C, Liu X, Xu D, et al. Preparation and performance of Pr0.7Sr0.3Co1yCuyO3δas cathodematerial of IT-SOFCs[J]. Solid State Ionics,2008,179(27-32):1470-1473.
    [117]. Hashimoto S, Kammer K, Larsen P H, et al. A study of Pr0.7Sr0.3Fe1xNixO3δas a cathodematerial for SOFCs with intermediate operating temperature[J]. Solid State Ionics,2005,176(11-12):1013-1020.
    [118]. Baek S, Kim J, Bae J. Characteristics of ABO3and A2BO4(A=Sm, Sr; B=Co, Fe, Ni)samarium oxide system as cathode materials for intermediate temperature-operating solidoxide fuel cell[J]. Solid State Ionics,2008,179(27-32):1570-1574.
    [119]. Huang S, Peng C, Zong Z. A high-performance Gd0.8Sr0.2CoO3-Ce0.9Gd0.1O1.95compositecathode for intermediate temperature solid oxide fuel cell[J]. Journal of Power Sources,2008,176(1):102-106.
    [120]. Hjalmarsson P, Mogensen M. La0.99Co0.4Ni0.6O3δ-Ce0.8Gd0.2O1.95as composite cathode forsolid oxide fuel cells[J]. Journal of Power Sources,2011,196(17):7237-7244.
    [121]. Leng Y, Chan S, Liu Q. Development of LSCF-GDC composite cathodes for low-temperaturesolid oxide fuel cells with thin film GDC electrolyte[J]. International Journal of HydrogenEnergy,2008,33(14):3808-3817.
    [122]. Zhang X, Robertson M, Yick S, et al. Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9composite cathode forcermet supported thin Sm0.2Ce0.8O1.9electrolyte SOFC operating below600°C[J]. Journal ofPower Sources,2006,160(2):1211-1216.
    [123]. Zhou Y, An B, Guo Y, et al. Development of high-performance cathodes for IT-SOFCsthrough beneficial interfacial reactions[J]. Electrochemistry Communications,2009,11(11):2216-2219.
    [124]. Rossignol C, Ralph J M, Bae J M, et al. Ln1-xSrxCoO3(Ln=Gd, Pr) as a cathode forintermediate-temperature solid oxide fuel cells[J]. Solid State Ionics,2004,175(1-4):59-61.
    [125]. Xia C, Rauch W, Chen F, et al. Sm0.5Sr0.5CoO3cathodes for low-temperature SOFCs[J]. SolidState Ionics,2002,149(1-2):11-19.
    [126]. Kostogloudis G C, Ftikos C. Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-δ-basedperovskite oxides[J]. Solid State Ionics,1999,126(1-2):143-151.
    [127]. Mineshige A, Izutsu J, Nakamura M, et al. Introduction of A-site deficiency intoLa0.6Sr0.4Co0.2Fe0.8O3–δand its effect on structure and conductivity[J]. Solid State Ionics,2005,176(11-12):1145-1149.
    [128]. Liu Z, Cheng L-z, Han M-F. A-site deficient Ba1xCo0.7Fe0.2Ni0.1O3δcathode forintermediate temperature SOFC[J]. Journal of Power Sources,2011,196(2):868-871.
    [129]. Fu Q, Sun K, Zhang N, et al. Optimization on fabrication and performance of A-site-deficientLa0.58Sr0.4Co0.2Fe0.8O3-δcathode for SOFC[J]. Journal of Solid State Electrochemistry,2008,13(3):455-467.
    [130]. Patro P K, Delahaye T, Bouyer E. Development of Pr0.58Sr0.4Fe0.8Co0.2O3δ-GDC compositecathode for solid oxide fuel cell (SOFC) application[J]. Solid State Ionics,2010,181(29-30):1378-1386.
    [131]. Yang Z, Yang C, Jin C, et al. Ba0.9Co0.7Fe0.2Nb0.1O3δas cathode material for intermediatetemperature solid oxide fuel cells[J]. Electrochemistry Communications,2011,13(8):882-885.
    [132].郜建全,安胜利,宋希文等.固体氧化物燃料电池阴极材料研究进展[J].材料导报A,2011,25(12):9-12.
    [133]. Yasumoto K, Inagaki Y, Shiono M, et al. An (La,Sr)(Co,Cu)O3-δcathode for reducedtemperature SOFCs[J]. Solid State Ionics,2002,148(3-4):545-549.
    [134]. Kaus I, Wiik K, Kleveland K, et al. Oxygen transport properties in La1xSrxFe1yMyO3δ(M=Cr, Ti),0.2    [135]. Wang S, Yeh C, Wang Y, et al. Effects of (LaSr)(CoFeCu)O3δcathodes on the characteristicsof intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources,2012,201(1):18-25.
    [136]. Lakshminarayanan N, Choi H, Kuhn J N, et al. Effect of additional B-site transition metaldoping on oxygen transport and activation characteristics in La0.6Sr0.4(Co0.18Fe0.72X0.1)O3δ(where X=Zn, Ni or Cu) perovskite oxides[J]. Applied Catalysis B: Environmental,2011,103(3-4):318-325.
    [137].邵宗平,熊国兴,杨维慎.系统选择钙钛矿型透氧膜材料[J].无机材料学报,2001,16(2):297-304.
    [138]. Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuelcells[J]. Nature,2004,431(9):170-173.
    [139].邵宗平.中低温固体氧化物燃料电池阴极材料[J].化学进展,2011,23(2/3):418-429.
    [140]. Li S, Lü Z, Huang X, et al. Thermal, electrical, and electrochemical properties ofLanthanum-doped Ba0.5Sr0.5Co0.8Fe0.2O3–δ[J]. Journal of Physics and Chemistry of Solids,2007,68(9):1707-1712.
    [141]. Li S, Lü Z, Huang X, et al. Thermal, electrical, and electrochemical properties of Nd-dopedBa0.5Sr0.5Co0.8Fe0.2O3δas a cathode material for SOFC[J]. Solid State Ionics,2008,178(35-36):1853-1858.
    [142]. Li S, Lü Z, Huang X, et al. Electrical and thermal properties of(Ba0.5Sr0.5)1xSmxCo0.8Fe0.2O3δperovskite oxides[J]. Solid State Ionics,2007,178(5-6):417-422.
    [143].Zhou W, Shao Z, Ran R, et al. Ba0.5Sr0.5Co0.8Fe0.2O3δ+LaCoO3composite cathode forSm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells[J]. Journal ofPower Sources,2007,168(2):330-337.
    [144].Zhou W, Ran R, Shao Z. Progress in understanding and development ofBa0.5Sr0.5Co0.8Fe0.2O3δ-based cathodes for intermediate-temperature solid-oxide fuel cells: Areview[J]. Journal of Power Sources,2009,192(2):231-246.
    [145].Wei B, Lü Z, Huang X, et al. Synthesis, electrical and electrochemical properties ofBa0.5Sr0.5Zn0.2Fe0.8O3δperovskite oxide for IT-SOFC cathode[J]. Journal of Power Sources,2008,176(1):1-8.
    [146].Zhou W, Ran R, Shao Z, et al. Electrochemical performance of silver-modifiedBa0.5Sr0.5Co0.8Fe0.2O3δcathodes prepared via electroless deposition[J]. Electrochimica Acta,2008,53(13):4370-4380.
    [147].Lee K T, Manthiram A. Electrochemical performance of Nd0.6Sr0.4Co0.5Fe0.5O3δ-Agcomposite cathodes in intermediate temperature solid oxide fuel cells[J]. Journal of PowerSources,2006,160(2):903-908.
    [148]. Sahibzada M, Benson S J, Rudkin R A, et al. Pd-promoted La0.6Sr0.4Co0.2Fe0.8O3cathodes[J].Solid State Ionics,1998,113(1):285-290.
    [149]. Orui H, Watanabe K, Chiba R, et al. Application of LaNi0.6Fe0.4O3as SOFC Cathode[J].Journal of The Electrochemical Society,2004,151(9): A1412-A1417.
    [150].Niu Y, Sunarso J, Zhou W, et al. Evaluation and optimization of Bi1xSrxFeO3δperovskites ascathodes of solid oxide fuel cells[J]. International Journal of Hydrogen Energy,2011,36(4):3179-3186.
    [151].Jung W, Tuller H L. Impedance study of SrTi1xFexO3δ(x=0.05to0.80) mixedionic-electronic conducting model cathode[J]. Solid State Ionics,2009,180(11-13):843-847.
    [152].Hou S, Alonso J A, Goodenough J B. Co-free, iron perovskites as cathode materials forintermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources,2010,195(1):280-284.
    [153]. Chang A, Skinner S, Kilner J. Electrical properties of GdBaCo2O5+xfor ITSOFCapplications[J]. Solid State Ionics,2006,177(19-25):2009-2011.
    [154]. Taskin A A, Lavrov A N, Ando Y. Achieving fast oxygen diffusion in perovskites by cationordering[J]. Applied Physics Letters,2005,86(9):091910-091912.
    [155].Kim G, Wang S, Jacobson A J, et al. Rapid oxygen ion diffusion and surface exchange kineticsin PrBaCo2O5+xwith a perovskite related structure and ordered A cations[J]. Journal ofMaterials Chemistry,2007,17(24):2500-2505.
    [156].Chen D, Ran R, Zhang K, et al. Intermediate-temperature electrochemical performance of apolycrystalline PrBaCo2O5+δcathodeon samarium-doped ceria electrolyte[J]. Journal ofPower Sources,2009,188(1):96-105.
    [157].Gu H, Chen H, Gao L, et al. Oxygen reduction mechanism of NdBaCo2O5+δcathode forintermediate-temperature solid oxide fuel cells under cathodic polarization[J]. InternationalJournal of Hydrogen Energy,2009,34(5):2416-2420.
    [158].Lü S, Meng X, Ji Y, et al. Electrochemical performances of NdBa0.5Sr0.5Co2O5+xas potentialcathode material for intermediate-temperature solid oxide fuel cells[J]. Journal of PowerSources,2010,195(24):8094-8096.
    [159].Zhao L, Nian Q, He B, et al. Novel layered perovskite oxide PrBaCuCoO5+δas a potentialcathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources,2010,195(2):453-456.
    [160].Aguadero A, Alonso J A, MartnezLope M J, et al. In situ high temperature neutron powderdiffraction study of oxygen-rich La2NiO4+δin air: correlation with the electrical behaviour[J].Journal of Materials Chemistry,2006,16(33):3402-3408.
    [161]. Boehm E, Bassat J, Dordor P, et al. Oxygen diffusion and transport propertiesinnon-stoichiometric Ln2-xNiO4+δoxides[J]. Solid State Ionics,2005,176(37-38):2717-2725.
    [162].Sun L, Li Q, Zhao H, et al. Preparation and electrochemical properties of Sr-doped Nd2NiO4cathode materials for intermediate-temperature solid oxide fuel cells[J]. Journal of PowerSources,2008,183(1):43-48.
    [163].Jin C, Liu J. Preparation of Ba1.2Sr0.8CoO4+δK2NiF4-type structure oxide and cathodicbehavioral of Ba1.2Sr0.8CoO4+δ-GDC composite cathode for intermediate temperature solidoxide fuel cells[J]. Journal of Alloys and Compounds,2009,474(1-2):573-577.
    [164].Sansom J E H, Kendrick E, Rudge H A, et al. Synthesis and characterisation of theperovskite-related cuprate phases YSr2Cu2MO7+y(M=Co, Fe) for potential use as solid oxidefuel cell cathode materials[J]. Journal of Materials Chemistry,2005,15(23):2321.
    [165].Kim J, Manthiram A. Low Thermal Expansion RBa(Co,M)4O7Cathode Materials Based onTetrahedral-Site Cobalt Ions for Solid Oxide Fuel Cells[J]. Chemistry of Materials,2010,22(3):822-831.
    [166]. Rolle A, Boulfrad S, Nagasawa K, et al. Optimisation of the Solid Oxide Fuel Cell (SOFC)cathode material Ca3Co4O9δ[J]. Journal of Power Sources,2011,196(17):7328-7332.
    [167].Bellino M G, Sacane J G, Lamas D G, et al. High-Performance Solid-Oxide Fuel CellCathodes Based on Cobaltite Nanotubes[J]. Journal of the American Chemical Society,2007,129(11):3066-3067.
    [168]. Zhang y, Zha S, Liu M. Dual-Scale Porous Electrodes for Solid Oxide Fuel Cells fromPolymer Foams[J]. Advanced Materials,2005,17(4):487-491.
    [169].Shahgaldi S, Yaakob Z, Khadem D J, et al. Synthesis and characterization of cobalt-freeBa0.5Sr0.5Fe0.8Cu0.2O3δperovskite oxide cathode nanofibers[J]. Journal of Alloys andCompounds,2011,509(37):9005-9009.
    [170].Guo Y, Yin Y, Tong Z, et al. Impact of synthesis technique on the structure andelectrochemical characteristics ofPr0.6Sr0.4Co0.2Fe0.8O3δ(PSCF) cathode material[J]. SolidState Ionics,2011,193(1):18-22.
    [171]. Chang C, Hsu C, Hwang B. Unique porous thick Sm0.5Sr0.5CoO3solid oxide fuel cell cathodefilms prepared by spray pyrolysis[J]. Journal of Power Sources,2008,179(2):734-738.
    [172]. Zhao F, Wang Z, Liu M, et al. Novel nano-network cathodes for solid oxide fuel cells[J].Journal of Power Sources,2008,185(1):13-18.
    [173].Zhou W, Liang F, Shao Z, et al. Heterostructured electrode with concentration gradient shellfor highly efficient oxygen reduction at low temperature[J]. Scientific Reports,2011,155(1):1-6.
    [174]. Adler S B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes[J].Chemical Reviews,2004,104(10):4791-4843.
    [175].Escudero M J, Aguadero A, Alonso J A, et al. A kinetic study of oxygen reduction reaction onLa2NiO4cathodes by means of impedance spectroscopy[J]. Journal of ElectroanalyticalChemistry,2007,611(1-2):107-116.
    [176].Wang S, Zhong H, Dong Q. Kinetic study on the role of an LSGMC5interlayer in improvingthe performance of Sm0.5Sr0.5CoO3-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3(LSGMC5)/LSGMC5interface[J]. Electrochimica Acta,2007,52(5):1936-1941.
    [177].Huber A, Falk M, Rohnke M, et al. In situ study of activation and de-activation of LSM fuelcell cathodes-Electrochemistry and surface analysis of thin-film electrodes[J]. Journal ofCatalysis,2012,29479-88.
    [178]. Kim J H, Manthiram A. LnBaCo2O5+δOxides as Cathodes for Intermediate-TemperatureSolid Oxide Fuel Cells[J]. Journal of The Electrochemical Society,2008,155(4): B385-B390.
    [179].Heel A, Holtappels P, Graule T. On the synthesis and performance of flame-made nanoscaleLa0.6Sr0.4CoO3δand its influence on the application as an intermediate temperature solidoxide fuel cell cathode[J]. Journal of Power Sources,2010,195(19):6709-6718.
    [180].Bevilacqua M, Montini T, Tavagnacco C, et al. Influence of synthesis route on morphologyand electrical properties of LaNi0.6Fe0.4O3[J]. Solid State Ionics,2006,177(33-34):2957-2965.
    [181]. Conder K, Pomjakushina E, Soldatov A, et al. Oxygen content determination inperovskite-type cobaltates[J]. Materials Research Bulletin,2005,40(2):257-263.
    [182]. Zhou H D, Goodenough J B. Metamagnetismin DyBaCo2O5+x, x≈0.5[J]. Journal of SolidState Chemistry,2004,177(10):3339-3345.
    [183]. Akitsu T, Einaga Y. Structures and XPS studies of several3d-4f cyano-bridgedLnIII-FeIII/CoIII heterometallic complexes[J]. Polyhedron,2006,25(13):2655-2662.
    [184].Tai L W, Nasrallah M M, Anderson H U, et al. Structure and electrical properties ofLa1-xSrxCo1-yFeyO3. Part2. The system La1-xSrxCo0.2Fe0.803[J]. Solid State Ionics,1995,76(3-4):273-283.
    [185]. Hui L, Ping C, Yuping G, et al. Preparation,Crystal Structure,and Reducibility of K2NiF4TypeOxides Eu2-xSrxNiO4+δ[J]. Journal of Solid State Chemistry,1998,141(1):99-104.
    [186].Azad A K, Kim J H, Irvine J T S. Structure-property relationship in layered perovskite cathodeLnBa0.5Sr0.5Co2O5+δ(Ln=Pr, Nd) for solid oxide fuel cells[J]. Journal of Power Sources,2011,196(17):7333-7337.
    [187].Zhang K, Ge L, Ran R, et al. Synthesis, characterization and evaluation of cation-orderedLnBaCo2O5+δas materials of oxygen permeation membranes and cathodes of SOFCs[J]. ActaMaterialia,2008,56(17):4876-4889.
    [188].Zhao H, Teng D, Zhang X, et al. Structural and electrochemical studies ofBa0.6Sr0.4Co1yTiyO3δas a new cathode material for IT-SOFCs[J]. Journal of Power Sources,2009,186(2):305-310.
    [189]. Alder S B. Limitations of charge-transfer models for mixed-conducting oxygen electrodes[J].Solid State Ionics,2000,135(1-4):603-612.
    [190].Zhou Q, He T, Ji Y. SmBaCo2O5+xdouble-perovskite structure cathode material forintermediate-temperature solid-oxide fuel cells[J]. Journal of Power Sources,2008,185(2):754-758.
    [191].Xia T, Lin N, Zhao H, et al. Co-doped Sr2FeNbO6as cathode materials forintermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources,2009,192(2):291-296.
    [192]. Yoon K J, Zink P, Gopalan S, et al. Polarization measurements on single-step co-fired solidoxide fuel cells (SOFCs)[J]. Journal of Power Sources,2007,172(1):39-49.
    [193].Fu Y, Tsai F. Composite cathodes of La0.9Ca0.1Ni0.5Co0.5O3-Ce0.8Sm0.2O1.9for solid oxidefuel cells[J]. Ceramics International,2011,37(1):231-239.
    [194].Esquirol A, Brandon N P, Kilner J A, et al. Electrochemical Characterization ofLa0.6Sr0.4Co0.2Fe0.8O3Cathodes for Intermediate-Temperature SOFCs[J]. Journal of TheElectrochemical Society,2004,151(11): A1847-A1855.
    [195]. Reverchon E, Adami R. Nanomaterials and supercritical fluids[J]. The Journal of SupercriticalFluids,2006,37(1):1-22.
    [196].Li N, Lü Z, Wei B, et al. Compaction pressure effect on microstructure and electrochemicalperformance of GdBaCo2O5+δ cathode for IT-SOFCs[J]. Ceramics International,2012,38(3):2159-2164.
    [197].Zhu C, Liu X, Yi C, et al. High-performance PrBaCo2O5+δ-Ce0.8Sm0.2O1.9composite cathodesfor intermediate temperature solid oxide fuel cell[J]. Journal of Power Sources,2010,195(11):3504-3507.
    [198].Zhou Q, Wang F, Shen Y, et al. Performances of LnBaCo2O5+x-Ce0.8Sm0.2O1.9compositecathodes for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources,2010,195(8):2174-2181.
    [199].Chen D, Ran R, Shao Z. Assessment of PrBaCo2O5+δ+Sm0.2Ce0.8O1.9composites prepared byphysical mixing aselectrodes of solid oxide fuel cells[J]. Journal of Power Sources,2010,195(21):7187-7195.
    [200]. Li N, Wei B, Lü Z, et al. GdBaCo2O5+δ-Sm0.2Ce0.8O1.9composite cathodes for intermediatetemperature SOFCs[J]. Journal of Alloys and Compounds,2011,509(8):3651-3655.
    [201].Pang S, Jiang X, Li X, et al. Highly enhanced electrochemical performance ofPrBa0.92Co2O5+δcathodeby introducing Ba cationic-deficiency[J]. International Journal ofHydrogen Energy,2012,37(5):3998-4001.
    [202].Kim J H, Cassidy M, Irvine J T S, et al. Advanced Electrochemical Properties ofLnBa0.5Sr0.5Co2O5+δ(Ln=Pr, Sm, and Gd) as Cathode Materials for IT-SOFC[J]. Journal ofThe Electrochemical Society,2009,156(6): B682.
    [203]. Ding H, Xue X. PrBa0.5Sr0.5Co2O5+δlayered perovskite cathode for intermediate temperaturesolid oxide fuel cells[J]. Electrochimica Acta,2010,55(11):3812-3816.
    [204].Ding X, Kong X, Wu H, et al. SmBa0.5Sr0.5Cu2O5+δand SmBa0.5Sr0.5CuFeO5+δlayeredperovskite oxides as cathodes for IT-SOFCs[J]. International Journal of Hydrogen Energy,2012,37(3):2546-2551.
    [205].Kim J H, Manthiram A. Layered NdBaCo2xNixO5+δperovskite oxides as cathodes forintermediatetemperature solid oxide fuel cells[J]. Electrochimica Acta,2009,54(28):7551-7557.
    [206].McKinlay A, Connor P, Irvine J T S, et al. Structural Chemistry and Conductivity of a SolidSolution of YBa1-xSrxCo2O5+δ[J]. The Journal of Chemical Physics C,2007,111(51):19120-19125.
    [207].Liu J, Zhao Z, Xu C-m, et al. The Structures, Adsorption Characteristics of La-Rb-Cu-OPerovskite-like Complex Oxides, and Their Catalytic Performances for the SimultaneousRemoval of Nitrogen Oxides and Diesel Soot[J]. The Journal of Physical Chemistry C,2008,112(15):5930-5941.
    [208].Zhou W, Shao Z, Ran R, et al. Novel SrSc0.2Co0.8O3δas a cathode material for lowtemperaturesolid-oxide fuel cell[J]. Electrochemistry Communications,2008,10(10):1647-1651.
    [209].Lin B, Wang S, Liu H, et al. SrCo0.9Sb0.1O3δcubic perovskite as a novel cathode forintermediate-to-low temperature solid oxide fuel cells[J]. Journal of Alloys and Compounds,2009,472(1-2):556-558.
    [210]. Wang F, Zhou Q, He T, et al. Novel SrCo1yNbyO3δcathodes for intermediate-temperaturesolid oxide fuel cells[J]. Journal of Power Sources,2010,195(12):3772-3778.
    [211].Kharton V V, Viskup A P, Naumovich E N, et al. Mixed electronic and ionic conductivity ofLaCo(M)O3(M=Ga, Cr, Fe or Ni) I. Oxygen transport in perovskites LaCoO3-LaGaO3[J].Solid State Ionics,1997,68(1-2):67-78.
    [212]. Li X, Zhao H, Gao F, et al. La and Sc co-doped SrTiO3as novel anode materials for solidoxide fuel cells[J]. Electrochemistry Communications,2008,10(10):1567-1570.
    [213].Wang S, Zheng R, Suzuki A, et al. Preparation, thermal expansion and electrical conductivityof La0.6Sr0.4Co1-xGaxO3-δ(x=0.0-0.4) as a new cathode material of SOFC[J]. Solid State Ionics,2004,174(1-4):157-162.
    [214].Aguadero A, Calle C, Alonso J, et al. Structural and Electrical Characterization of the NovelSrCo0.9Sb0.1O3-δPerovskite: Evaluation as a SolidOxide Fuel Cell Cathode Material[J].Chemistry of Materials,2007,19(10):6437-6444.
    [215]. Gao Z, Mao Z, Wang C, et al. Novel SrTixCo1xO3δcathodes for low-temperaturesolid oxidefuel cells[J]. International Journal of Hydrogen Energy,2011,36(12):7229-7233.
    [216]. Lindberg F, Istomin S Y, Berastegui P, et al. Synthesis and structuralstudies ofSr2Co2xGaxO5,(0.3≤x≤0.8)[J]. Journal of Solid State Chemistry,2003,173(2):395-406.
    [217]. Calle C, Aguadero A, Alonso J A, et al. Correlation between reconstructive phase transitionsand transport properties from SrCoO2.5brownmillerite: A neutron diffraction study[J]. SolidState Sciences,2008,10(12):1924-1935.
    [218]. Xu N, Zhao H, Zhou X, et al. Dependence of critical radius of the cubic perovskite ABO3oxides on the radius of A-and B-site cations[J]. International Journal of Hydrogen Energy,2010,35(14):7295-7301.
    [219]. Ullmann H, Trofimenko N, Tietzb F, et al. Correlation between thermal expansion and oxideion transport in mixed conducting perovskite-type oxides for SOFC cathodes[J]. Solid StateIonics,2000,138(1-2):79-90.
    [220]. Nagai T, ItoW, Sakon T. Relationship between cation substitution and stability of perovskitestructure in SrCoO3-δ-based mixed conductors[J]. Solid State Ionics,2007,177(39-40):3433-3444.
    [221].高展,张萍,高瑞峰等.钙钛矿型中低温固体氧化物燃料电池阴极材料研究进展[J].化工新型材料,2007,35(2):6-9.
    [222]. Xu Q, Huang D-p, Chen W, et al. Structure, electrical conducting and thermal expansionproperties of Ln0.6Sr0.4Co0.2Fe0.8O3(Ln=La, Pr, Nd, Sm) perovskite-type complex oxides[J].Journal of Alloys and Compounds,2007,429(1-2):34-39.
    [223]. Kostogloudis GC, Vasilakos N, Ftikos C. Crystal structure, thermal and electrical propertiesof Pr1-xSrxCoO3-δ(x=0,0.15,0.3,0.4,0.5) perovskite oxides[J]. Solid State Ionics,1998,106(3-4):207-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700