重金属Zn、Cd对红树植物秋茄幼苗的生理生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过土培试验方法,研究不同浓度Zn、Cd复合胁迫处理对红树植物秋茄(Kandelia candel(L.)Druce)幼苗生长及生理生态效应的影响。对秋茄幼苗萌发、叶绿素含量、可溶性蛋白含量、抗氧化酶系统、MDA含量、秋茄幼苗各组分Zn和Cd含量与富集系数等生理特性方面随Zn、Cd复合处理梯度发生的变化进行了系统的研究,进一步探讨了红树植物抗重金属生理生态学适应机制。研究结果如下:
     1同一Zn水平上,秋茄的萌苗随Cd浓度增加而先增加后下降。同一Cd水平上随Zn浓度增加趋于下降。各处理组均未发现个体死亡现象,成活率达100%。
     2同一Zn水平上,秋茄幼苗的高度生长随Cd浓度增加趋于下降,100 mg·kg~(-1)的Zn可减缓Cd对秋茄幼苗高度生长的抑制,此时Zn、Cd之间表现为拮抗作用;高浓度的Zn、Cd复合处理下,秋茄幼苗的高度生长受到明显的抑制,Zn、Cd之间表现为协同作用。
     3 2.5 mg·kg~(-1)的Cd对秋茄幼苗的叶片生长,在Zn0和Zn500水平上表现为促进作用;100mg·kg~(-1)的Zn对秋茄幼苗的叶片生长也有一定的促进作用。
     4 Cd对秋茄根系生长的影响,在Zn0和Zn100水平上表现为促进作用,且根系根长随Cd浓度增大而增加。秋茄主根数目在Zn100水平上随Cd浓度增加而减少。中短期时间培养下,100 mg·kg~(-1)的Zn对秋茄主根的数目具有促进效应。
     5同一Zn水平上,秋茄茎生物量随Cd浓度增加趋于下降,根生物量和叶生物量不同时期根据Zn、Cd复合处理相对浓度关系不同表现出不同的变化趋势。Zn、Cd复合处理对秋茄茎、叶、根生物量的抑制程度大致存在以下关系:茎>根>叶。
     6秋茄叶片叶绿素总量,在Zn0水平上随Cd浓度增加而降低,在Zn100和Zn500水平上随Cd浓度增加而先上升后下降。高浓度的Zn、Cd复合处理对叶绿素总量的影响表现为协同的抑制作用。随着培养时间延长,秋茄对这种抑制作用敏感性降低。中短期时间培养下,低浓度单因子Cd处理(2.5 mg·kg~(-1))对叶绿素b的促进作用大于叶绿素a。
     7低浓度的Zn、Cd单独施加均促进秋茄根、叶可溶性蛋白增加。施加2.5mg·kg~(-1)的Cd时,在根中Zn、Cd之间表现为协同作用;在叶中Zn、Cd之间表现为拮抗作用。
     8培养110d时,Zn、Cd复合处理下,秋茄根、叶SOD活性变化趋势相似,后者变化幅度大于前者。Zn、Cd复合处理总体上增强秋茄根、叶SOD活性。低浓度Cd刺激秋茄根、叶SOD活性增加,Zn的加入,增强了Cd对秋茄的毒害作用,SOD活性受抑制而增加缓慢,其中以100 mg·kg~(-1)的Zn效应最强。
     9培养80d时,Zn、Cd复合处理下,秋茄根、叶POD活性变化趋势相似,后者变化幅度大于前者。低浓度Cd刺激秋茄根、叶POD活性增加,施加Zn则加强Cd对秋茄的伤害,POD活性受抑制而增加缓慢,该协同抑制的效应随Zn浓度增加而增加,POD活性下降。
     10 Zn、Cd复合处理下,叶片的MDA含量大小及变化幅度大于根尖。高浓度的Zn、Cd复合胁迫加剧叶片细胞的膜脂过氧化作用,MDA含量大量增加。
     11 Zn、Cd复合处理下,秋茄各组分的Zn含量和Cd含量有较大差异。各组分Zn含量和Cd含量的大小及变化幅度的大小关系依次是:根>胚轴>茎叶。Zn、Cd相互作用导致秋茄体内累积更多的Cd。Zn浓度在0~100 mg·kg~(-1)时,Cd抑制秋茄幼苗积累更多的Zn;Zn浓度达到500 mg·kg~(-1)时,土壤中的Zn、Cd相互作用,促进秋茄各组分(叶片除外)Zn的累积;叶片中的Zn含量随Cd浓度增加而下降。秋茄幼苗各组分对Zn、Cd的富集系数存在差异性。表现为根部对Zn、Cd的优先富集效应。
In this paper,the soil-cultivated Kandelia candel(L.) Druce seedlings were treated with various contents of Cd and Zn,and the effects on the physiological properties were measured.Hypocotyl germination and growth,chlorophyll content, soluble protein,antioxidase membrane protection system,MDA content,Zn,Cd absorption accumlation character were observed to inquire into the ecophysiological responses of mangrove Kandelia candel(L.) Druce to Zn、Cd phytotoxicity.The results were as follow:
     1 The shoot of viviparous propagules were promoted at first and then decreased with the increasing Cd contents,while the Zn contents were the same.And the shoot of viviparous propagules were decreased with the increasing Zn contents,while the Cd contents were the same.The survive rates of Kandelia candel(L.) Druce seedlings in difference Zn and Cd concentration were 100%.
     2 The height growth of stems of Kandelia candel(L.) Druce seedlings was restrained under the Cd treated.But the extent of the restraint became smaller when the seedlings were treated in 100 mg·kg~(-1) Zn concentration because of the antagonistic effects of Zn and Cd.The height growth of stems of Kandelia candel(L.) Druce seedlings was restrained obviously under high Zn,Cd concentration because of the cooperation of Zn and Cd.
     3 The area of leaves in different Cd concentration of Kandelia candel(L.) Druce seedlings was promoted step by step under 0 or 500 mg·kg~(-1) Zn concentration. 100 mg·kg~(-1) Zn concentration also can promote the area of leaves.
     4 Under 0 or 100 mg·kg~(-1) Zn concentration,the roots growth of of Kandelia candel(L.) Druce seedlings was promoted with the increasing Cd contents.Under 100 mg·kg~(-1) Zn concentration,the number of roots was reduced with the increasing Cd contents.
     5 The stem biomass of Kandelia candel(L.) Druce seedlings was reduced with the increasing Cd contents.The root biomass and leaf biomass showed significant difference in different time and concentration of Zn and Cd.Effects of different concentration of Zn and Cd on every part biomass were as follows:stem>root>leaf.
     6 The synthesis of chlorophylls of Kandelia candel(L.) Druce seedlings was reduced with the increasing Cd contents under 0 mg·kg~(-1) Zn concentration.But it was promoted at first and then decreased with the increasing Cd contents under 100 and 500 mg·kg~(-1) Zn concentration.The synthesis of chlorophylls of Kandelia candel(L.) Druce seedlings was restrained obviously under high Zn,Cd concentration because of the cooperation of Zn and Cd.The ratios of Ch1(a/b) increased at first and then decreased with the increasing Cd contents under 500 mg·kg~(-1) Zn concentration.The promotion to Chlb was heavier to Chla with low Cd contents.
     7 Low Cd concentration or low Zn concentration accelerated soluble protein content in roots and leaves of Kandelia candel(L.) Druce seedlings.Under 2.5 mg·kg~(-1) Cd concentration,the effects of Zn and Cd were antagonistic in root,while Zn cooperation in leaf.
     8 The transformation trend of SOD activities was similar in roots and leaves with different concentration of Zn and Cd when it was treated 110 days,But the transformation extent of leaves was larger than roots.The activities of SOD were accelerated both in roots and leaves under low Cd concentration.Zn cooperated with Cd,especially 500 mg·kg~(-1) Zn concentration.
     9 The transformation trend of POD activities was similar in roots and leaves with different concentration of Zn and Cd when it was treated 80 days,But the transformation extent of leaves was larger than root.The activities of POD were accelerated both in roots and leaves under low Cd concentration.Zn cooperated with Cd.
     10 The content and transformation extent of MDA in leaves were larger than in roots.The peroxidation of membrane fattiness was pricked up obviously under high Zn,Cd concentration,and MDA contents increased obviously.
     11 Different organs absorption to Zn and Cd showed significant differences, when the content and transformation extent of every organ ranked as follow: root>hypocotyle>stem and leaf.The interactional effects of Zn and Cd made the seedlings absorb more Cd.In 0~100 mg·kg~(-1) Zn concentration,absorption to Zn was restrained by Cd.But when the Zn concentration increased to 500 mg·kg~(-1),absorption to Zn in each organ(except for leaf) was accelerated.Absorption to Zn in leaf was restrained with increasing Cd concentration.Enrichment coefficients of Zn and Cd in different organs showed significant differences.The dominatation of root was showed.
引文
[1]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.
    [2]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,2003,11(2):143-151.
    [3]沈振国,陈怀满.土壤重金属污染生物修复的研究进展[J].农村生态环境.2000,16(2):39-44.
    [4]夏北成.环境污染物生物降解[M].北京:化学工业出版社,2002.
    [5]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.
    [6]夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社,2001.
    [7]蒋婉茹,杨居荣,许嘉琳.重金属对植物离体组织和细胞生长分化的影响[J].农业环境保护,1991,10(5):192-202.
    [8]久保井彻.植物における有害元素间の相互作用[J].日本土壤肥料学杂志,1989,60(3):246-256.
    [9]江行玉,赵可夫.植物重金属伤害及其抗性机理[M].应用与环境生物学报,2001,7(1):92-99.
    [10]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [11]邢光熹,朱建国.土壤微量元素和稀土元素化学[M].北京:科学出版社,2003.
    [12]任继平,李德发,张丽英.Cd毒性研究进展[J].动物营养学报,2003,15(1):1-6.
    [13]陈涛,吴燕玉,张学询等.张土灌区镉土改良和水稻镉污染防治研究[J].环境科学,1980,1(5):7-11.
    [14]Zachara J M,Smith S C,Resch C T,et al.Cadmium sorption to soil separates containing layer silicates and iron and aluminum oxides[J].Soil Science Society America Journal,1992,56:762-769.
    [15]Zachara J M,Smith S C.Edge complexation reactions of cadmium on specimen and soilderived smectite[J].Soil Science Society America Journal,1994,58:762-769.
    [16]杨肖娥,杨杰明.镉从农业土壤向人类食物链的迁移[J].广东微量元素科学,1996,3(7):1-13.
    [17]黄晓银.北京东郊作物——土壤系统中重金属的迁移、分布、积累[J].植物生态学与 地植物学学报,1986,10(2):131-145.
    [18]陈同斌,韦朝阳,黄择春等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207.
    [19]徐晓燕,杨肖娥,杨玉爱.锌从农业土壤向人类食物链的迁移[J].广东微量元素科学,1996,7:21-29.
    [20]夏汉平.土壤-植物系统中的镉研究进展[J].应用与环境生物学报,1997,3(3):289-298.
    [21]苏年华,张金彪.福建省土壤重金属污染及评价[J].福建农业大学学报,1998,3(4):434-439.
    [22]郭笃发.环境中铅和镉的来源及其对人和动物的危害[J].环境科学进展,1994,2(3):71-76.
    [23]杨明杰,林咸永,杨肖娥.Cd对不同种类植物生长和养分累积的影响[J].应用生态学报,1998,9(1):89-94.
    [24]谢正苗.土壤中锌的化学平衡[J].环境科学进展,1996,4(5):13-30.
    [25]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1993.
    [26]黄宜宗,朱永官,黄凤堂等.镉和铁及其交互作用对植物生长的影响[J].生态环境,2004,13(3):406-409.
    [27]Abdelilah C,Salma M,Mohamed H G,et al.Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean(Phaseolus vulgaris L)[J].Plant Science,1997,127:139-147.
    [28]王林,史衍玺.镉铅及其复合污染对辣椒生理生化性的影响[J].山东农业大学学报(自然科学版),2005,36(1):107-112.
    [29]杨居荣,贺建群,蒋婉如.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197.
    [30]Wu F B,Zhang G P,Peter D.Four barely genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidant capacity[J].Environmental and Experimental Botany,2003,50:67-78.
    [31]Siedlecka A,Krupa Z.Prim arcarbon metabolism in Phaseolus vulgaris plants under Cd/Fe interaction[J].Plant Physiology & Biochemistry,1997,34:833-841.
    [32]Zhang G P,Fukami M,Sekimono H.Influence of cadmium on mineral concentration and yield components in wheat genotypes differing in Cd tolerance at seeding stage[J].Field crops Research,2002,77:93-98.
    [33]Wu F B,Zhang G P.Genotypic variation in kernel heavy metal concentration in barely and as affected by soil factors[J].Plant Nutririon,2002,25:1163-1173.
    [34]Liu J G,Liang J S,Li K Q,et al.Interaction of cadmium and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes[J].Field Crops Research,2003,83:271-281.
    [35]Liu J G,Liang J S,Li K Q,et al.Corrolation between cadmium and mineral mutrients in absorption and accumulation in various genotypes of rice under cadmium stress[J].Chemosphese,2003,52:1467-1473.
    [36]任继凯.土壤中镉铜锌及其相互作用对作物的影响[J].植物生态学与地植物学丛刊,1982,6(4):320-329.
    [37]周启星,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应[J].应用生态学报,1994,5(4):438-441.
    [38]Bipasha C,Sheela S.Effect of cadmium and zinc interaction on metal uptake and regeneration of tolerant plants in linseed[J].Agriculture,Ecosystems and Environment,1997,61:45-50.
    [39]McKenna I M,Chancy R L,Williams F M.The effect of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach[J].Environmental Pollution,1993,79:113-120.
    [40]He P P,Lv X Z,Wang G Y.Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables[J].Environment Intermational,2004,30:167-172.
    [4l]付宝荣,李法云,臧树良.锌营养条件下镉污染对小麦生理特性的影响[J].辽宁大学学报,2000,27(4):366-370.
    [42]Aravind P,Prasad M N V.Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L:a free floating freshwater macrophyte[J].Plant Physiology &Biochemistry,2003,41:391-397.
    [43]Zhang Y X,Xiao H.Antagonistic effect of calcium,zinc and selenium against cadmium induced chromosomal aberrations and micronuclei in root cells of Hordeum vulgave[J].Mutation Research,1998,420:1-6.
    [44]华珞.有机肥-镉-锌交互作用对土壤镉锌形态和小麦生长的影响[J].中国环境科学, 2002,22(4):346-350.
    [45]Nan Z R,Li j,Zhang J M,et al.Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions[J].The Science and the Total Environment,2002,285:187-195.
    [46]Nurcan K,Selim E,Ismail C.Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil[J].Environmental Pollution,2004,131:453-459.
    [47]Abdelilah C,Mohamed H G,Ezzedine E F.Effect of cadmium-zinc interactions on hydroponically grown bean(Phaseolus vulgaris L)[J].Plant Science,1997,126:21-28.
    [48]徐勤松,施国新,周红卫.Cd、Zn复合污染对水车前叶绿素含量和活性氧清除系统的影响[J].生态学杂志,2003,22(1):5-8.
    [49]李森林,王焕校,吴玉树.凤眼莲中锌对镉的拮抗作用[J].环境科学学报,1990,10(2):29-254.
    [50]Hart J J,Welch R M,Norvell W A,et al.Transport interaction between Ca and Zn in roots of bread wheat and durum wheat seedings[J].Physiologia Plantanm,2002,116(1):73-78.
    [51]华珞,白玲玉,韦东普.镉锌复合污染对小麦籽粒镉累积的影响和有机肥调控作用[J].农业环境保护,2002,21(5):393-398.
    [52]周启星,高拯民.作物籽实中Cd与Zn的交互作用及其机理的研究[J].农业环境保护,1994,13(4):148-151.
    [53]Abdelsablur M F,et al.Cadmium-Zinc interactions in palnts and extractable cadmium and Zinc fractions in soil[J].Soil Science,1998,145(6):424-431.
    [54]余国莹.镉、锌及其交互作用对小麦种子根生长的影响[J].河南示范大学学报(自然科学版),1993,21(4):77-80.
    [55]林鹏,陈德海,李钨金.两种红树叶的几种酶的生理特性与海滩盐度的相关性初探[J].植物生态学与地植物学丛刊.1984,8:281-285.
    [56]卢昌义,叶勇.湿地生态与工程——以红树林湿地为例[M].厦门:厦门大学出版社,2006,3.
    [57]郑文教,连玉武,郑逢中等.广西英罗湾红海榄红树群落锰镍元素的累积和循环[J].厦门大学学报(自然科学版),1995,34(5):829-834.
    [58]郑文教,郑逢中,连玉武等.福建九龙江秋茄红树林铜铅锌锰元素的累积与动态[J].植物学报,1996,38(3):227-233.
    [59]郑文教,王文卿,林鹏.九龙江口桐花树红树林对重金属的吸收与累积[J].应用与环境生物学报,1996,2(3):207-213
    [60]郑文教,连玉武,郑逢中等.广西英罗湾红海榄林重金属元素的累积及动态[J].植物生态学报,1996,20(1):20-27.
    [61]郑文教,林鹏.深圳福田白骨壤群落Cr、Ni、Mn的累积及分布[J].应用生态学报,1996,7(2):139-144.
    [62]郑文教,林鹏.深圳福田白骨壤红树林Cu、Pb、Zn、Cd的累积及分布[J].海洋与湖沼,1996,27(4):386-393.
    [63]郑文教,郑逢中,连玉武等.九龙江口秋茄红树林镉铬镍元素的累积及动态[J].环境科学学报,1996,16(2):232-237.
    [64]Kehrig H A,Pinto F N,Moreira I,et al.Heavy metals and methylmercury in a tropical coastal esturary and a mangrove in Brazil[J].Organic Geochemistry,2003,34:661-669.
    [65]Machado W,Moscatelli M,Rezende L G,et al.Mercury Zinc and Copper accumlation in mangrove sediments surrounding a large landfill in southeast Brazil[J].Environmental Pollution,2002,120:455-461.
    [66]Tam N F Y.Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps[J].Environmental Pollution,2000,11(2):195-205.
    [67]林鹏.中国红树林生态系[M].北京:科学出版社,1997.
    [68]郑逢中,林鹏,郑文教等.秋茄对镉的吸收、积累及净化作用的研究[J].植物生态学与地植物学学报,1992,16(3):220-226.
    [69]郑逢中,林鹏,郑文教.红树植物秋茄幼苗对镉耐性的研究[J].生态学报,1994,14(4):408-414.
    [70]陈荣华,林鹏.汞和盐度对三种红树种苗生长影响初探[J].厦门大学学报(自然科学版),1988,27(1):110-115.
    [71]林鹏,林明祥.海南岛海莲红树林的钙镁累积和循环[J].应用生态学报,1990,1:209-213.
    [72]郑文教,林鹏.广西红海榄红树群落的氯钠动态[J].植物学报,1992,34:378-385.
    [73]连玉武,林鹏.九龙江口红树林研究 Ⅴ.秋茄群落的氯的积累和循环[J].植物生态学与地植物学学报.1986,10:124-130.
    [74]Tam N F Y.Asia-Pacific Symposium on Mangrove Ecosystem[N].Hong Kong,1993, 38-39.
    [75]何斌源,戴培建,范航清.广西英罗湾红树林沼泽沉积物和大型底栖动物中重金属含量的研究[J].海洋环境科学,1996,15(1):35-41.
    [76]王文卿,林鹏.红树林生态系统重金属污染的研究[J].海洋科学,1999,3:45-48.
    [77]Wasserman J C,Figueiredo A M G,Pellegatti F,Emmanoel V S.Elemental composition of sediment cores from a mangrove environment using neutron activation analysis[J].Journal of Geochemical Exploration.2001,72:129-146.
    [78]龚子同,张效补.中国的红树林与酸性硫酸盐七[J].土壤学报,1994,31(1):86-94.
    [79]Liu J,Yan C,Macnair M R,et al.Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in mangrove sediments from the Jiulong River Estuary,Fujian,China[J].Environmental Science and Pollution Research,2006..
    [80]Walsh G E.Resistance of red mangrove(Rhizophora mangle L) seedlings to lead cadmium and mercury[J].Biotropia.1979,11(1):22-27.
    [81]Thomas C.Effect of heavy metals zinc and lead on Rhizophora mucronata Lam.and Avicennia alba BL seedlings[C].Proceedings Asian Symposium Mangrove Environmental Restorement Management,1984:568-574.
    [82]Yim M W.Tam N F Y.Effects of wastewater-borne heavy metals on mangrove plants and soil microbial activities[J].Marine Pollution Bulletin,1999,39:179-186.
    [83]MacFarlane G R.Burchett M D.Toxicity growth and accumulation relationships of copper lead and zinc in the grey mangrove,Avicennia marina(Forsk.) Vierh[J].Marine Environmental Research,2002,54:65-84.
    [84]MacFarlane G R.Burchett M D.Cellular distribution of Copper,Lead and Zinc in the grey mangrove,Avicennia marina(Forsk.) Vierh[J].Aquatic Botany,2000,68:45-59.
    [85]赵胡.重金属Cu、Zn对红树植物秋茄幼苗生理生态效应的研究[D].厦门大学硕士学位论文.2004.
    [86]孙娟.重金属Cd对红树植物木榄幼苗生理生态效应研究[D].厦门大学硕士学位论文,2005.
    [87]谢陈笑.漳江口红树林区沉积物中重金属分布规律及As胁迫对桐花树幼苗生理生态影响[D].厦门大学硕士学位论文,2006.
    [88]蔡福龙等译.曼.K.H.著.近海水域生态学[M].北京:海洋出版社,1989.
    [89]陈福明,陈顺伟.混合液法测定叶绿素含量的研究[J].林业科技通讯,1984,2:4-8.
    [90]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社.
    [91]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994:371-372.
    [92]Aebi.Catalase in vitro[J].Method Enzymol,1984,105:121-126.
    [93]鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [94]吴燕玉,五新,梁仁禄.重金属复合污染对土壤-植物系统的生态效应:对作物、苜宿、树木吸收元素的影响[J].应用生态学报,1997,8(5):545-552.
    [95]宋玉芳,许华夏,任丽萍.重金属对土壤中萝卜种子发芽与根伸长抑制的生态毒性[J].生态学杂志,2001,20(3):4-8.
    [96]丁海东,朱为民,杨少军.镉、锌胁迫对番茄幼苗生长及脯氨酸和谷胱甘肽含量的影响[J].江苏农业学报,2005,21(3):191-196.
    [97]佘国莹,吴玉树,王焕校.镉、锌及其复合污染对小麦种子根生长的影响[J].云南大学学报,1993,15(2):151-156.
    [98]党锋,江荣风,夏立江.Cd、Zn处理对烤烟生长和烟株Cd含量的影响[J].农业环境科学学报,2006,26(2):713-717.
    [99]徐卫红,王宏信,刘怀.Zn、Cd单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响[J].环境科学,2007,28(9):2089-2095.
    [100]谢建治,张书廷,赵新华.潮褐土镉锌复合污染对小白菜生长的影响[J].天津大学学报,2005,38(5):426-431.
    [101]叶海波,杨肖娥,何冰.东南景天对锌镉复合污染的反应及其对锌镉吸收和积累特性的研究[J].农业环境科学学报,2003,22(5):513-518.
    [102]Lagriffoul A,Mocquot B,Mench Met al.Cadmium Toxicity Effects on Growth,Mineral and ChlorophyП Contnets,and Activities of Stress Related Enzymes in Young Maize(Zeamays L.)[J].Plant Soil,1998,200(2):241-250.
    [103]韩志萍,胡正海.芦竹对不同重金属耐性的研究[J].应用生态学报,2005,16(1):161-165.
    [104]孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,,1985,11(2):113-121.
    [105]Shi Guoxin,Xu Qinsong,Xie Kaibin,et al.Physiology and Ultrastructure of Azolla Imbricate as Affected by Hg~(2+) and Cd~(2+) Toxicity[J].Acta Botanica Sinica,2003, 45(4):437-444.
    [106]Somashekaraiah B V,Padmaja K,Prasad R K.Phytotoxicity of Cadmiumions on germination seedling of mung bean(Phaseolus vulgarize):Involvement of lipid peroxides in chlorophyll degradation[J].Physiol Plant,1992,85:85-89.
    [107]蒋明义,杨文英,徐江等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报,1994,36(4):289-295.
    [108]宋菲,郭玉文,刘孝义.镉、锌、铅复合污染对菠菜的影响[J].农业环境保护,1996,15(1):9-14.
    [109]Woolhouse HW.Longevity and senescence in plant[J].Science Progress,1974,61:123-147.
    [110]李珊,程舟,杨晓伶.镉与锌复合污染对栝楼幼苗生理特性的影响[J].西北植物学报,2007,27(6):1191-1196.
    [111]洪仁远,杨广笑,刘东华等.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75.
    [112]李元,王焕校,吴玉树等.Cd、Fe及其复合污染对草草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153.
    [113]吴桂容,严重玲.镉对桐花树幼苗生长及渗透调节的影响[J].生态环境,2006,15(5):1003-1008.
    [114]常福辰,施国新,吴国荣等.贡、镉复合污染对金鱼藻的影响及其抗性机制的探讨[J].广西植物,2002,22(5):453-457.
    [115]李兆君,马国瑞,徐建民等.植物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,2004,35(2):234-238.
    [116]Chis Marc VH,Dirk I.Superoxide disutase and stress tolerance[J].Annu Rev Plant Physiol Plant Mol Biol,1992,43:83.
    [117]杨居荣,贺建群,张国祥.不同耐性作物中几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,16(2):113-117.
    [118]Vera-Estrella R,Hiffins V J,Blumwald E.Plant defense response to fungal pathogens:ⅡGproteinmediaated changes in host plasma membrane redox reaction[J].Plant Physiol,1994,106:97-102.
    [119]黄玉山,罗广华,关文.镉诱导植物的自由基过氧化损伤[J].植物学报,1997,39(6): 522-526.
    [120]Luna C M,Gonzalez C A,Tripp V S.Oxidative damage caused by on excels of copper in oat leaves[J].Plant Cell physiol,1994,35:11-15.
    [121]贺建群,杨居荣,许嘉琳.重金属及其交互作用对小麦幼苗中金属含量的影响[J].生态学杂志,1992,11(4):5-10.
    [122]周红卫,施国新,杜开和.Cd~(2+)污染对水花生生理生化及超微结构的影响[J].应用生态学报,2003,14(9):1581-1584.
    [123]宋松泉,简伟军,傅家瑞.Cd~(2+)对玉米种子活力的影响及Cd~(2+)的拮抗作用[J].应用与环境生物学报,1997,3(1):1-5.
    [124]曾昭华.长江中下游地区地下水中Cd元素的背景特征和形成[J].江苏地质,2004,28(2):96-99.
    [125]杨居荣,贺建群.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197.
    [126]刘建新,赵国林,王毅民.Cd、Zn复合胁迫对玉米幼苗膜脂过氧化和抗氧化酶系统的影响[J].农业环境科学学报,2006,25(1):54-58.
    [127]简敏菲,弓晓峰,游海等.水生植物对铜、铅、锌等重金属元素富集作用的评价研究[J].南昌大学学报,2004,26(1):85-88.
    [128]达良俊,陈鸣.凤眼莲不同部位对重金属的吸收、吸附作用研究[J].上海环境科学,2003,22(1):765-767.
    [129]Muller D H,Oort F,Gelie B,Balabane M.Strategies of heavy metal uptake by three plant specie three plant species growing near a metal smelter[J].Environmental Pollution,2000,109:231-238.
    [130]Angelova V,Ivanova A,Delibaltova V,Ivanov K.Bioaccumulation and distribution of heavymetals in fibre crops(flax,cotton and hemp)[J].Industrial Crops and Products,2004:197-205.
    [131]Devkota B,Schmidt G H.Accumulation of heavy metals in food plants and grasshopper from the Taigetos[J].Mountains Greece Agriculture Ecosystems and Environment,2000,(78):85-91.
    [132]徐卫红,王宏信,王正银.重金属富集植物黑麦草对锌、镉复合污染的响应[J].中国农学通报,2006,22(6):365-368.
    [133]陈桂葵,陈桂珠.隔在白骨壤模拟湿地系统中的分布、迁移及交及净化效应[J].应用生态学报,2005,16(3):550-554.
    [134]周启星,高拯民.土壤—水稻系统Cd—Zn的复合污染及其衡量指标的研究[J].土壤学报,1995,13(4):148-151.
    [135]杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报,2005,20(4):539-543.
    [136]余国营,吴燕玉,王新.重金属复合污染对大豆生长的影响及其综合评价研究[J].应用生态学报,1995,6(3):433-439.
    [137]Mekenna IM,Chancy RL,Williams FM.The effect of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach[J].Environm ental Pollution,1993,79:113-120.
    [138]周启星,高拯民.作物籽实中Cd与Zn的交互作用及其机理的研究[J].农业环境保护,1994,13(4):148-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700