有机肥对土壤—小麦、高粱系统中重金属污染的环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以冬小麦、高粱为实验对象,其中小麦采用盆栽和大田实验相结合,高梁采用盆栽实验。在小麦实验中研究了不同有机肥施用量在不同Pb、Hg、Ni、Cd污染程度下对冬小麦根际土壤中Pb、Hg、Ni、Cd的形态转化、迁移及植物有效性的影响。在高粱实验中究了不同有机肥施用量在不同Pb、Hg、Cd污染程度下对高粱根际土壤中Pb、Hg、Cd的形态转化、迁移及植物有效性的影响。最后对贵州北部小麦、高粱种植区土壤—作物系统重金属污染做了环境质量评价。
     通过分析和研究,得出了主要结论如下:
     (1)施用有机肥可明显增加土壤中有机质、全氮、全磷和全钾的含量。同时使得试验土壤的pH值呈弱碱性。
     (2)小麦实验中随着外源汞、铅、镉、镍施入量的增加,土壤全量汞、铅、镉、镍和有效态汞、铅、镉、镍含量也随之增加,导致小麦吸收汞、铅、镉、镍增加;在苗期土壤中有效态汞、铅、镉、镍含量与小麦根部、茎叶汞、铅、镉、镍含量均达到显著正相关关系;在收获期,土壤有效态汞、铅、镉、镍含量与小麦根部、茎叶和籽粒汞、铅、镉、镍含量仍然都呈现显著正相关关系。
     (3)小麦实验中土壤有效态汞、铅、镉、镍含量的高低明显地受有机肥施用量的影响。从小麦苗期到收获期,施用有机肥均对土样中有效态汞、铅、镉、镍有一定的吸附抑制作用,在同一汞、铅、镉、镍水平,随着有机肥施用量的增加,土壤中有效态含量逐渐减少。经相关分析,四个汞、铅、镉、镍水平下有机肥施用量与土壤有效态汞、铅、镉、镍含量之间的相关系数在苗期收获期均呈显著负相关。土壤有机肥对土壤有效汞、铅、镉、镍的抑制效果以低汞、铅、镉、镍高有机肥处理效果最为显著;而高汞、铅、镉、镍低有机肥处理效果最差。
     (4)小麦实验中有机肥的施用直接影响土壤重金属有效态的含量,继而影响小麦对土壤汞、铅、镉、镍的吸收。相关分析结果表明,在苗期汞、铅、镉、镍的低水平下,有机肥施用量与茎叶、根部汞、铅、镉、镍含量之间达到显著负相关水平,在汞、铅、镉、镍的高水平下,有机肥施用量与茎叶、根部汞、铅、镉、镍含量之间呈负相关关系;在收获期有机肥施用量与茎叶汞、铅、镉、镍含量均呈显著负相关,与根部汞、铅、镉、镍含量呈显著负相关,而对籽粒吸收汞、铅、镉、镍的影响随外源汞、铅、镉、镍施入量的不同变化较大。
     (5)高粱实验中随着外源汞、铅、镉施入量的增加,土壤全量汞、铅、镉和有效态汞、铅、镉含量也增加,导致高粱吸收汞、铅、镉的量也增加;在苗期土壤中有效态汞、铅、镉的含量与高粱根部、茎叶汞、铅、镉的含量均达到显著正相关关系:在收获期,土壤有效态汞、铅、镉的含量与高粱根部、茎叶和籽粒汞、铅、镉的含量仍然都呈现显著正相关关系。
     (6)高粱实验中土壤有效态汞、铅、镉含量的高低明显地受有机肥施用量的影响。从高粱苗期到收获期,施用有机肥均对土样中有效态汞、铅、镉有一定的吸附抑制作用,在同一汞、铅、镉水平,随着有机肥施用量的增加,土壤中有效态含量逐渐减少。经相关分析,三个汞、铅、镉水平下有机肥施用量与土壤有效态汞、铅、镉含量之间的相关系数在苗期收获期均呈显著负相关。土壤有机肥对土壤有效汞、铅、镉的抑制效果以低汞、铅、镉高有机肥处理效果最为显著;而以高汞、铅、镉低有机肥处理效果最差。
     (7)高粱实验中有机肥的施用直接影响土壤重金属有效态的含量,继而影响高粱对土壤汞、铅、镉的吸收。相关分析结果表明,在苗期汞、铅、镉的低水平下,有机肥施用量与茎叶、根部汞、铅、镉含量之间达到显著负相关水平,在汞、铅、镉的高水平下,有机肥施用量与茎叶、根部汞、铅、镉、镍含量之间呈负相关;在收获期有机肥施用量与茎叶汞、铅、镉含量均呈显著负相关,与根部汞、铅、镉含量呈显著负相关,而对籽粒吸收汞、铅、镉的影响随外源汞、铅、镉施入量的不同有较大的变化。
     (8)在小麦苗期各部分吸收汞、铅、镉、镍量的规律为根部>茎叶,在收获期小麦各部分吸收汞、铅、镉、镍量的规律为根部>茎叶>籽粒;在高粱苗期各部分吸收汞、铅、镉量的规律为根部>茎叶,在收获期小麦各部分吸收汞、铅、镉的量规律为根部>茎叶>籽粒。
     (9)在小麦盆栽实验中最好的抑小麦吸收汞、铅、镉、镍的有机肥水平是:F2(0.3kg/盆)、F3(0.5kg/盆),换算成每千克土壤施多少克有机肥为:F2(40g/kg)、F2(67g/kg);在小麦大田实验中最好的抑小麦吸收汞、铅、镉、镍的有机肥水平是:D(300kg/亩),E(350kg/亩),换算成每平方米施多少千克有机肥为:D(0.45kg/m~2),E(0.53kg/m~2)。在高粱盆栽实验中最好的抑高粱吸收汞、铅、镉的有机肥水平是:F2(0.1kg/盆),换算成每千克土壤施多少克有机肥为:F2(13g/kg)。
     (10)对于黔北小麦、高粱种植区土壤—作物系统重金属污染的评价结果明,黔北小麦、高粱种植区土壤均未受到污染,但是土壤中Pb已经达到警戒水平;农作物小麦、高粱中的Cd、Hg、Pb、和Ni等元素含量处于食品安全水平以下。
This research has been did under the environment of GuiZhou karst special landform, the object of experiment is the winter wheat and sorghum,The winter wheat and sorghum were studied by the pot and field experiment.We have researched the influence of winter wheat and Sorghum rhizosphere soil Pb,Hg,Ni and Cd shape transformation and plant validity.
     Main conclusions are as follows:
     (1) Applying increase the content of Organic matter,total nitrogen,total pH and total potassium organic fertilizer,and the pH value of soil to assume the weak basicity.
     (2) In the wheat field/pot experiments,The analytic result indicated that the contents of total Hg,Cd,Ni,Pb and available Hg,Cd,Ni,Pb in soils were increased with increasing amount of Hg,Cd,Ni,Pb added,so that the content of Hg,Cd,Ni,Pb in winter wheat was increased.Relationships between contents of available Hg,Cd,Ni,Pb in soils and contents of Hg,Cd,Ni,Pb in roots,stems/leaves and seeds of wheat were significant positivly correlated respectively.
     (3) In the wheat field/pot experiments,The available Hg,Cd,Ni,Pb in soils were obvious Influenced by the organic fertilizer.The restraining effect of applied organic fertilizer for contents of available Hg,Cd,Ni,Pb in soils is that treatment of higher organic fertilizer with lower Hg,Cd,Ni,Pb is best.
     (4) In the wheat field/pot experiments,Relationships between amount of applied organic fertilizer and contents of Hg,Cd,Ni,Pb in wheat root and stem/leaf under lower Hg,Cd,Ni, Pb level in seeding period are negative correlated significantly,but Relationships between amount of applied organic fertilizer and contents of Hg,Cd,Ni,Pb in wheat root,stem/leaf and seed under all Hg,Cd,Ni,Pb levels in harvesting period are significant negative correlated respectively..
     (5) in the sorghum pot experiments,The analytic result indicated that the contents of total Hg,Cd,Pb and available Hg,Cd,Pb in soils were increased with increasing amount of Hg,Cd,Pb added,so that the content of Hg,Cd,Pb in sorghum was increased. Relationships between contents of available Hg,Cd,Pb in soils and contents of Hg,Cd,Pb in roots,stems/leaves and seeds of sorghum were significant positivly correlated respectively.
     (6) In the sorghum pot experiments,The available Hg,Cd,Pb in soils were obvious Influenced by the organic fertilizer.The restraining effect of applied organic fertilizer for contents of available Hg,Cd,Pb in soils is that treatment of higher organic fertilizer with lower Hg,Cd,Pb is best too.
     (7) In the sorghum pot experiments,Relationships between amount of applied organic fertilizer and contents of Hg,Cd,Pb in sorghum root and stem/leaf under lower Hg,Cd,Pb level in seeding period are significant negative correlated respectively,but Relationships between amount of applied organic fertilizer and contents of Hg,Cd,Pb in sorghum root, stern/leaf and seed under all Hg,Cd,Pb levels in harvesting period are significant negative correlated respectively.
     (8) The distribution regular of contents of Hg,Cd,Ni,Pb in wheat organs is that root>stem/leaf>seed.;The distribution regular of contents of Hg,Cd,Pb in sorghum a organs is root>stem/leaf>seed.
     (9) In pot's experiment of wheat:the best level of organic fertilizer for reduce the Hg,Cd, Ni,Pb of wheat is F2(40g/kg)、F3(67g/kg);In field's experiment of wheat:the best level of organic fertilizer for reduce the Hg,Cd,Ni,Pb of wheat is D(0.45kg/m~2) and E (0.53kg/m~2);In pot's experiment of sorghum:the best level of organic fertilizer for reduce the Hg,Cd,Ni,Pb of sorghum is F2(13g/kg).
     (10) The result of Environmental evaluation indicated that the soil of wheat、sorghum planter area of Guizhou has not been polluted,but the Pb already reached the Warning level; The Cd,Hg,Pb,and Ni are all below the food safety level.Therefore we knows the heavy metal content in soil of wheat、sorghum planting area is low,the environmental quality of soil is good in wheat and sorghum planter area of Guizhou.
引文
[1]丁维新.土壤和污泥中微量元素形态分级方法[J].国外农业环境保护.1989,(4):22-24.
    [2]丁疆华等.土壤环境中镉锌形成转化的探讨[J].城市环境与城市生态,2001,14(2):47-49.
    [3]丁进宝.土壤环境质量评价中的宽域灰色聚类法[J].农业环境保护,1993,12(4):187-190
    [4]马丽等.交通污染土壤及其在农作物中重金属的分布特征[J].北方环境,2004,29(3):21-23.
    [5]王果.三种有机肥水溶性分解产物对铜、镉吸附的影响[J].土壤学报,1999,36(2):179-188.
    [6]王新等.不同作物对重金属复合污染物吸收特性的研究[J].农业环境保护,1998,17(5):193-195.
    [7]王金生.灰色聚类法在土壤污染综合评价中的应用[J].农业环境保护,1991,10(4):169-172.
    [8]王凯荣.我国农田镉污染现状及其治理利用对策[J].农业环境保护,1997,16(6):274-278.
    [9]白瑛等.土壤环境与重金属.农业环境保护[J].1989,8(3):31-33.
    [10]白云.郑州市污灌区土壤、粮食、蔬菜重金属污染状况及其评价[J].河南科学,2002,20(4):399-404.
    [11]孙波等.超量积累植物吸收重金属机理的研究进展[J].土壤,1999,(3):113-139.
    [12]冯恭衍等.宝山区菜区土壤重金属污染的环境质量评价[J].上海农学院学报,1991,11(1):15-42.
    [13]李宗利等.污灌土壤中Pb、cd形态的研究[J].农业环境护.1994,13(4):152-157.
    [14]李天杰主编.土壤环境学[M].北京:高等教育出版社,1995.
    [15]张敬锁等.有机酸对活化土壤中镉和小麦吸收镉的影响[J].土壤学报,1999,36(1):61-66.
    [16]张松滨.基准分析法及其在环境质量评价中的应用[J].环境污染与防治,1990,12(2)28-31.
    [17]刘培桐主编.环境学概论[M].北京:高等教育出版社,1995.
    [18]刘元生,何腾兵等.贵阳市乌当区耕地土壤重金属污染现状及其评价[J].重庆环境科学.2003,25(10):42-45
    [19]陈怀满等.土壤-植物系统中的重金属污染[M].北京:科学出版社.1996.
    [20]陈玉成.土壤污染的生物修复环境科学动态.土壤通报[J].1999,3(2):7-11.
    [21]陈健安等.山区公路边上壤铅污染水平及其分布规律研究[J].海峡预防医学杂志,2001.7(2):5-8.
    [22]吴燕玉等.重金属复合污染对土壤-植物系统的生态效应对作物、苜蓿、树木吸收元素的影响[J].应用生态学报.1997,8(5):545-552.
    [23]吴燕玉等.张士灌区镉污染及其改良途径[J].环境科学学报,1984,4(3):275.
    [24]陆引罡,王巩.贵州贵阳市郊区菜园土壤重金属污染的初步调查[J].土壤通报.2001,32(5):235-237.
    [25]陆晓辉,黎成厚.不同有机物料对土壤外源铜有效性的影响[J].山地农业生物学报.2004,23(1):59.
    [26]陆引罡,黄建国等.重金属富集植物车前草对镍的响应[J].水土保持学报.2004,18(1):108-114.
    [27]汪雅各,等.蔬菜重金属低富集轮作[J].上海农业学报,1990,6(3):41-49.
    [28]汪雅各等.客土改良菜区重金属污染土壤[J].上海农业学报,1990,6(3):50-55.
    [29]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002.
    [30]沈振国等.重金属超量积累植物研究进展[J].植物生理与通讯,1998,34(2):133-139.
    [31]何电源等.农田土壤污染对作物生长和产品质量影响的研究[J].农业现代化研究,1991,12(3):1-28.
    [32]何佳芳,何腾兵.某铅锌冶炼厂废弃地复垦整理区土壤重金属污染评价[J].水土保持学报.2006,20(2):97-101.
    [33]何翠屏,王慧忠.重金属镉、铅对草坪植物根系代谢和叶绿素水平的影响[J].湖北农业科学,2003(5):60-63.
    [34]林昌虎,朱安国.贵州喀斯特山区土壤侵蚀与防治[J].水土保持研究.1999,6(2),109-112.
    [35]林琦等.根际环境中镉的形态转化[J].土壤学报,1998,35(4):461-467.
    [36]徐红宁等.作物对镉的吸收和根系阳离子交换容量[J].农业环境保护,1995,14(4):150-153,177.
    [37]舒东妮.用模糊 数学综合 评判土壤中重金属污染程度的探评[J].农业环境保护,1989,8(5):30-32.
    [38]高拯民.我国环境保护科学研究现状与展望[J].土壤学报,1989,26(3):262-272.
    [39]曹仁林等.钙镁磷肥对土壤中镉形态转化与水稻吸收镉的影响[J].重庆环境学,1993,15(6):6-9.
    [40]魏成熙.张旭.土壤锌铅镉污染对小白菜硝酸盐含量的影响[J].西南农业大学学报.2005,27(4):436-438.
    [41]A.Tessier,P.G.C.Capmbell,M.Bisson.Sequential Extraetion Proeedure for the Speeiation of Partieulate Traee Metals[J].Analytieal Chemistry,1979,51(7):884-850.
    [42]CHEN HUAIMAN et al.Interaction of pb and Cd in Soil-Water plant System and its Mechanism:pb-Cd Interaction in Rhizos pHere[J].PedospHere,1998,8(3):237-244.
    [43]Erel Y.Mechanisms and velocities of anthropogenic Pb migration in Mediterranean soils[J].Environ Res,1998,78:112-117.
    [44]Francek MA.Soil lead levels in a small town environment- a case-study from Mt.Pleasant,Michigan[J].Environ Pollut 1992,76:251-257.
    [45]Hafen MR,et al.Analysis of lead in soils adjacent to an interstate highway in Tampa,Florida [J].Environ Geochem Health,1996,18:171-179.
    [46]Jaradat QM,et al.Contamination of roadside soil,plants,and air with heavy metals in Jordan,acomparative study[J].Turkish J Chem,1999,23,209-220.
    [47]Lsabel Cacador et al.Accumulation of Zn,Pb,Cu,Crand Ni in sediments between roots of the Tagus Estuary Salt Marshes,Portμal[J].Estuarine Coastal and Shelf Science,1996,(42):393-403.
    [48]Mench MI et al.Metal uptake by Iron-efficient and inefficient Oats[J].Plant Soil,1994,165:227-233.
    [49]Romkens P.F.A.M et al.Effect of plant growth on copper solubility and speciation in soilsolution samples[J].Environ.Pollu,1999,106:315-321.
    [50]Sithole SD,et al.An assessment of lead pollution from vehicle emissions along selected roadways in Harare(Zimbabwe)[J].Int J Environ Anal Chem,1993,53:1-12.
    [51]Tyler G,et al.Heavy-metal ecology of terrestrial plants,micro-organisms and invertebrates [J].Water Air and Soil Pollution,1989,47:189-225.
    [52]WEI SHIQIANG,etal.Modelling of Cadmium Transport in Soil-Crop System[J].Pedosphere,2000,10(1):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700