云南省澜沧景迈古茶园土壤养分及土壤酶活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大叶茶(Camellia sinensis var. assamica)是普洱茶的主要生产原料,云南西双版纳、思茅、临沧等地作为大叶茶的原产地,具有悠久的植茶历史,分布着世界上面积最大、树龄最长的千年古茶园。古茶园生态系统植物多样性丰富,保存了大量的野生植物资源,同时古茶园作为一种特殊的生态系统,具有自我维持的稳定机制,包括病虫害的自我控制和土壤肥力的自我维持,排除了人为的营养物质供给和病虫害的防治,古茶园的茶叶得以保持其优良品质。云南省澜沧县景迈古茶园是典型的栽培型古茶园,本研究选择该茶园,研究其土壤养分为探明其土壤肥力自我维持机制提供依据。本研究在澜沧景迈古茶园区内大平掌处选择相邻的古茶园(Ancient Tea Garden,ATG)、台地茶园(Conventional Tea Garden,CTG)和天然林(Forest)三种利用类型的土壤,进行了土壤养分和土壤酶活性的调查和测定,同时还设计了土样在不同的保存条件下对土壤酶活性测定影响的试验。主要结果如下:
     1)土壤水分在0~20 cm和20~40 cm的土层无显著差异,在不同林型的土壤差异显著,水分由低到高为:台地茶园<古茶园<天然林。
     2)三种类型的土壤都呈明显的酸性,在雨季土壤pH为3.80~3.91,在干季土壤pH为4.00~4.24,茶园土壤的酸度尤其是古茶园的更低,而且不同的植茶年龄对土壤的酸化程度有差异。
     3)三种类型土壤的主要养分含量和酶活性在表层0~20 cm都比下层20~40 cm高,但镁、铝和钾金属元素含量无明显的上下层差异;三者有机质含量都很高(雨季平均值>69 g·kg-1,干季平均值>57 g·kg-1),有机质和氮的含量分布为台地茶园<古茶园<天然林,而全磷含量以古茶园最高。
     4)土壤中酶活性的差异与养分含量的差异不一致,各种酶活性在三种土壤中的变化规律不一致:脲酶活性为台地茶园﹤天然林﹤古茶园;酸性磷酸酶和蔗糖酶活性为台地茶园﹤古茶园﹤天然林;过氧化氢酶活性在雨季为:古茶园﹤台地茶园﹤天然林,干季为:台地茶园﹤古茶园﹤天然林。
     5)土壤pH与铝、钾和镁等金属元素含量呈显著相关性,氮元素与其它养分相关性最大,有机质、氮、磷和速效钾等主要营养因子与土壤酶活性有显著正相关。酸性磷酸酶活性与全磷和速效磷的相关性弱,脲酶活性与全氮和碱解氮的相关性弱,与全磷和速效磷呈极显著正相关。
     6)新鲜土和风干后测定的土壤酶活性与各指标的相关性无显著差异。
     7)风干处理对土壤酶有显著的失活影响,温度和保存时间对新鲜土和风干后保存的土样影响不同,对不同的土壤酶影响也各异。新鲜状态保存的土样温度比时间的影响更大,而风干土样受到保存时间的影响更大一些;从温度和时间的交互影响来看,新鲜土的土样受到的影响更大一些,风干处理后土壤酶活性更稳定。
     古茶园生态系统作为特殊的生态系统,有极高的生态价值和经济价值,建议对其进行进一步深入全面的研究,并加强科研机构、茶农和政府的共同参与,以求更好的利用和保护方法,让古茶园得以可持续发展。
Camellia sinensis var. assamica is the principal raw material of Pu-erh Tea, and there’s a long history of tea planting in Xishuangbanna, Simao, Lincang, etc of Yunnan Province. The largest Ancient Tea Gardens (ATGs) with oldest tea trees are distributed in these areas. ATGs are very special ecosystems with high biodiversity and plenty of wild plant resources. Moreover, ATGs have special self-sustaining capability of soil fertility maintenance and self-protection from pests. Without artificial fertilizers and pesticides, Pu-erh tea produced here could keep its excellent quality. ATG in Jingmai, Langcang County is a typical example of cultivated ATGs. In this research, ATG soil in Jingmai and its neighboring conventional tea garden (CTG) and forest soils were sampled and assayed for soil nutrients and soil enzyme activities. Another experiment was designed to test effects of sample storage under different conditions on soil enzyme activities. The main conclusions were listed as follow:
     1) Soil moisture showed no marked difference between the top layer (0~20 cm) and deeper one (20~40 cm), while there’s significant difference among different land uses, with an order of CTG< ATG< Forest.
     2) All the soils sampled were acid, with a pH of 3.80~3.91 in wet season and 4.00~4.24 in dry season. Soil pH was lower in tea garden, and the acidification was also more serious under older tee plants.
     3) Content of OM, N, P and soil enzyme activities were higher in the top soil, while Mg, Al and K showed no such marked vertical difference. The content of OM was much higher than average tea gardens in other areas. The content of N and OM had an order of CTG< ATG     4) The distribution of soil enzyme activities under three land uses showed no identical order with soil nutrients.
     5) Soil pH significantly correlated with metal elements such as Al, K and Mg. The most significant correlations existed between N and other nutrients. There were certain correlation between nutrients and enzyme activities, too. Unexpectedly, acid phosphatase showed very little correlation with total P and available P, and so did urease with total N and available N, while urease strongly correlated with TP and AP positively.
     6) Correlations between enzyme activities of air-drying soil and other nutrients showed no significant difference from that between enzyme activities of fresh soil and other nutrients.
     7) Inactivation of all enzymes with air-drying pre-treatment was very obvious. The effects of storage temperature and time upon this were different between field-moisture and air-drying samples, and among different soil enzymes. Storage temperature had greater influence on field-moisture samples, while storage time had greater influence on air-drying ones. Refer to the co-effect of temperature and time, field-moisture samples were more fragile to be influence than air-drying ones. Seen in this light, stability of soil enzymes in air-drying samples was much better.
     As a special ecosystem, ATG ecosystem has important ecological and economic value. In order to protect and develop ATG in a sustainable way, it’s suggested that further and more comprehensive research be carried into execution, and participation of research institutes, villagers and government be strengthened.
引文
安韶山,黄懿梅,李壁成,刘梦云,2005.用典范相关性分析研究宁南宽谷丘陵区不同土地利用方式土壤酶活性与土壤肥力因子的关系.植物营养与肥料学报,11(15):704~709
    曹慧,孙辉,杨浩,孙波,赵其国,2003.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,9(1):105~109
    陈红伟,2005.普洱贡茶之乡——倚邦.中国茶叶加工,2005(1): 45~46
    戴伟,白红英,1995.土壤过氧化氢酶活度及其动力学特征与土壤性质的关系.北京林业大学学报,17(1):37~41
    丁瑞兴,黄骁,1991.茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响.土壤学报,28(3):229~236
    冯娜娜,李廷轩,张锡洲,王永东,夏建国,2006.不同尺度下低山茶园土壤有机质含量的空间变异.生态学报,26(2):349~356
    高梁,1995.热带土壤的定位研究.天津科技出版公司:天津
    高祥斌,2007.森林土壤化学性质与土壤酶活性典型相关分析.林业科技,32(1):11~13
    耿玉清,白翠霞,赵铁蕊,王树森,陈峻崎,2006.北京八达岭地区土壤酶活性及其与土壤肥力的关系.北京林业大学学报,28(5):7~11
    顾谦,陆锦时,叶宝存,2002.茶叶化学.中国科技大学出版社:合肥
    关松荫等,1986.土壤酶及其研究法.农业出版社:北京
    郭剑芬,杨玉盛,陈光水,林鹏,谢锦升,2006.森林凋落物分解研究进展.林业科学,42(4):93~100
    国家林业局, 1999.森林土壤分析方法(LY/T 1210~1275~1999).北京标准出版社: 北京
    韩文炎,石元值,马立峰, 2004.茶园钾素研究进展与施钾技术.中国茶叶, 26(1): 22~24
    何电源,许国焕,范腊梅,廖先苓,1989.茶园土壤的养分状态与茶叶品质及其调控的研究.土壤通报,1989(6):24~28
    何国球,赵其国,1993.我国热带亚热带森林土壤养分循环特点与成土过程研究. 土壤,25(6):292~298
    胡承孝,黄芳鹤,1997.湖北省部分茶园土壤肥力及茶树营养状况的分析.华中农业大学学报,16(3):287~290
    李崇兴,2004.临沧地区古茶树资源概况.临沧科技,91:9~11
    李东坡,武志杰,陈利军,朱平,任军,2005.长期定位培肥黑土土壤蔗糖酶活性动态变化及其影响因素.中国生态农业学报,13(2):102~105
    李海涛,余贵瑞,李家永,梁涛,陈永瑞,2007.井冈山森林凋落物分解动态及磷、钾释放速率.应用生态学报,18(2):233~240
    李明锐,沙丽清,2005.西双版纳不同土地利用方式下土壤氮矿化作用研究.应用生态学报,16(1):54~58
    李跃林,李志辉,彭少麟,任海,朱日光,李志安,2002.典范相关分析在桉树人工林地土壤酶活性与营养元素关系研究中的应用.应用与环境生物学报,8(5):544~549
    李志建,倪恒,周爱国,2001.额济纳旗盆地土壤过氧化氢酶活性的垂直变化研究.干旱区资源与环境,18(1):86~89
    李忠佩,丁瑞兴,1990.有机物质在茶园土壤中的转化特征.土壤,22(6):298~301
    李忠佩,1997.亚热带茶园土壤的某些生物化学性状研究.热带亚热带土壤科学,16(3):162~170
    梁名志,夏丽飞,张俊,方成刚,陈继伟,陈林波,段志芬,孙荣琴,2006.老茶树与台地茶品质比较研究.云南农业大学学报,493~497
    刘艳,周国逸,褚国伟,刘菊秀,张倩媚,2005.鼎湖山针阔叶混交林土壤酸度与土壤养分的季节动态.生态环境,14(1):81~85
    龙春林,王洁如,李延辉,裴盛基,1997a.西双版纳轮歇龙也生态系统生物多样型研究论文报告集,57,64
    廖万有,1997.我国茶园土壤物理性质研究概况与展望.土壤,29(3):121~124,136
    廖万有,1996.茶园土壤养分动态特点及其调节.福建茶叶,1996(4):25~27
    陆景陵,2003.植物营养学.北京:中国农业大学出版社.
    罗亮,谢忠雷,刘鹏,徐根娣,罗虹,2006.茶树对铝毒生理响应的研究.农业环境科学学报,25(2):305~308
    罗淑华,1991.茶园管理技术——谈谈茶树营养与施肥.茶叶通讯,1991(1):58~61
    潘根生,王正周,1986.茶树栽培生理.上海科技出版社:196~198
    浦继红,2004.勐腊古茶产业史话.茶苑,2004(3): 36~37
    齐丹卉,郭辉军,崔景云,盛才余,2005.云南澜沧县景迈古茶园生态系统植物多样性评价.生物多样性,13(3): 221~231
    阮建云,管彦良,吴洵,2002.茶园土壤镁供应状况及镁肥施用效果研究.中国农业科学,35(7):815~820
    阮建云,王国庆,石元值,马立峰,2003.茶园土壤动态及茶树铝吸收特性.茶叶科学,23(增):16~20
    沙丽清,郭辉军,2005.云南古茶资源有效保护与合理利用.王如松主编,循环、整合、和谐-第二届全国复合生态与循环经济学术讨论会论文集.北京:科技出版社,362~365
    石锦芹,丁瑞兴,刘友兆,孙玉华,1999.尿素和茶树落叶对土壤的酸化作用.茶叶科学,19(1):7~12
    沈有信,周文君,刘文耀,戴开结,2005.云南松根际与非根际磷酸酶活性与磷的有效性.生态环境,14(1):91~93
    宋永全,苏祝成,2005.云南古茶树资源现状与保护对策林业调查规划,30(5):108~111
    [苏]哈兹耶夫,1980.土壤酶活性.科学出版社:北京.
    孙波,赵其国,张桃林,俞慎,1997.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标.土壤,1997(5):225~234
    唐剑锋,胡孔锋,尹健,孙丽梅,熊建伟,2007.信仰市茶园土壤有机质和速效氮磷钾的分布.河南农业科学,2007(5):81~84
    田应兵,秦志经,周治安,1995.无机肥料用量对棉田土壤蔗糖酶活性的影响.湖北农学院学报,15(1):6~10
    田永辉,2001.人工生态茶园有机质和氮磷钾动态变化研究.茶叶,27(3):27~30
    谭和平,陈能武,黄苹,叶善蓉,2006.川北茶区土壤营养元素背景值研究.安徽农业大学学报, 33(4):563~568
    童雄才,1990.茶园土壤的演变趋向.蚕桑茶叶通讯, (3):8~12
    王效举,1995.土壤植茶的环境效应.土壤通报,26(2):91~93
    王泽州,王宪章,1990.茶园土壤化学性质的研究.四川农业大学学报,8(1):44~50
    王晓萍,阮建云,韩文炎,1995.茶树钾营养特性的研究.作物学报,21(3): 324~329
    王耀生,张玉龙,黄毅,王宇飞,刘洋,魏忠平,2006.灌溉对保护地土壤脲酶和过氧化氢酶活性的影响.安徽农业科学,34(1):103~105
    吴乐知,蔡祖聪,2006.中国土壤有机质含量变异性与空间尺度的关系.地球科学进展,21(9):965~972
    吴全,陆锦石,1999.四川茶园土壤中脲酶活性研究.土壤肥料, 1: 30~32
    吴洵,1994.茶树的钙镁营养及土壤调控.茶叶科学,14(2):115~121
    许迪,丁昆仑,2003.区域表层土壤ECs和pH时空变异性分布及其相关性.灌溉排水学报,22(5):1~5
    徐冬梅,刘广深,李克斌,刘维屏,2003.酸雨胁迫下有机-无机复合污染对土壤过氧化氢酶活性的影响.农业环境科学学报,22(1):31~33
    徐建民,王海珍,2004.土壤质量指标及评价体系研究进展.中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇).
    许玫,王平盛,唐一春,宋维希,矣兵,陈玫,2005.云南古茶树群落的分布和多样性.中国茶叶,2005(6):12~13
    薛冬,姚槐应,黄昌勇,2005.植茶年龄对茶园土壤微生物特性及酶活性的影响. 水土保持学报,19(2):84~87
    薛敬意,唐建维,沙丽清,孟盈,2003.西双版纳望天树林地土壤养分含量及其季节变化.植物生态学报,27(3):373~379
    严昶升,1988.土壤肥力研究方法.农业出版社:北京
    杨玉盛,郭剑芬,陈银秀,陈光水,郑燕明,2004.附件柏和杉木人工林凋落物分解及养分动态的比较.林业科学,40(3):19~25
    杨正亮,冯贵颖,2002.重金属对土壤脲酶活性的影响.干旱地区农业研究,20(3): 41~43
    姚国坤,葛铁钧,1986.茶树密植对茶叶产量、品质及茶园生态的影响.茶叶科学,6(1):21~28
    俞慎卜,何振立,张荣光,陈国潮,黄昌勇,李炳良,2003.红壤茶树根层土壤基础呼吸作用和酶活性.应用生态学,14(2):179~183
    赵其国,王明珠,何国球,1991.我国热带亚热带森林凋落物及其对土壤的影响. 土壤,23(1):8~15
    赵少华,宇万太,张璐,沈善敏,马强,2004.土壤有机磷研究进展.应用生态学报,15(11):2189~2194
    张亚莲,1995.土壤养分.茶叶通讯,1995(2):47~48
    张咏梅,周国逸,吴宁,2004.土壤酶学的研究进展.热带亚热带植物学报,12(1):83~90
    中国科学院南京土壤研究所微生物室,1985.土壤微生物研究法.科学出版社:北京
    中国农业科学院茶叶研究所,1986.中国茶树栽培学.上海科学技术出版社:上海
    张一平,刘洋,2005.云南古茶园与常规茶园小气候特征比较研究.华南农业大学学报,26(24): 17~24
    周礼恺,1987.土壤酶学.科学出版社:北京.
    周礼恺,陈冠雄,陈利军,武志杰,2004.土壤酶学研究的新近进展.中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇)
    朱永兴,陈福兴,2000.南方丘陵红壤茶园的镁营养.茶叶科学,20(2): 95~100 Acosta-Martínez V., Zobeck T.M., Gill T.E., Kennedy A.C., 2003. Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertilizer of Soils, 38:216~227
    Angers D.A., Bissonnette N., Légère A., Samson N., 1993. Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Canadian Journal of Soil Science, 73: 39~50
    Aon M.A., Colaneri A.C., 2001.ⅡTemporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Applied Soil Ecologyl, 18: 255~270
    Badiane N.N.Y., Chotte J.L., Pate E., Masse D., Rouland C., 2001. Use of soil enzyme activities to monitor soil quality in natural and improved fallows insemi-arid tropical regions. Applied Soil Ecology, 18: 229~238
    Bergstrom D.W., Monreal C.M., Millette J.A., King D.J., 1998. Spatial dependence of soil enzyme activities along a slope. Soil Science Society of America Journal, 62: 1302~1308
    Boerner R.E.J., Brinkman J. A., Smith A., 2005. Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biology and Biochemistry, 37: 1419~1426
    Chen H.J., 2003. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir(Cunninghamia lanceolata) plantation. Forest Ecology and Management, 178: 301~310
    Cooper, P.J.M., 1972. Arylsulfatase activity in Northern Nigerian soils. Soil Biology and Biochemistry, 4: 333~337
    Corstanje R., Schulin R., Lark R.M., 2007. Scale-dependent relationships between soil organic carbon and urease activity. European Journal of Soil Science, 58: 1087~1095
    Dang M.V., 2005. Soil-plant nutrient balance of tea crops in the northern mountainous region,Vietnam.Agriculture Ecosystem and Environment,105:413~418
    Deng S.P., Tabatai M.A., 1996. Effect of tillage and residue management on enzyme activities in soils. II. Glycosidases. Biology and Fertility of Soils, 22: 208~213
    Dick W.A., Cheng L., Wang P., 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry, 32: 1915~1919
    Dinkelaker, B., Marschner, H., 1992. In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil, 144: 199~205
    Dong D.M., Xie Z.L., Du Y.G., 2001. The bioavailability of Al in soils to tea plants. Apllied Geochemistry, 16: 1413~1418
    Fierer N., Schimel J.P., 2002. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34: 777~787
    Fioretto A., Papa S., Fuggi A., 2003. Litter-fall and litter decomposition in a low Mediterranean shrubland. Biology and Fertility of Soils, 39: 37~44
    Grierson P.F., Adams M.A., 2000. Plant species affect acid phosphatase, ergosterol, and microbial P in a Jarrah(Eucalyptus marginata Donn ex Sm.)forest in south-western Australia. Soil Biology and Biochemistry, 32: 1817~1827
    Han W.Y., Kemmitt S.J., Brookes P.C., 2007. Soil microbial biomass and activity inChinese tea gardens of varying stand age and productivity. Soil Biology and Biochemistry, 39: 1468~1478
    Harr A.F.,何念祖,1990.土壤有机磷:文献述评.土壤学进展:18(4):11~19,5
    Hinojosa M.B., Carreira J.A., García-Ruíz R., Dick R.P., 2004. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biology and Biochemistry, 36: 1559~1568
    Hirekurabar, B.M., Satyanarayana, T., Sarangmath, P.A., Manjunathaiah, H.M., 2000. Forms of potassium and their distribution in soils under cotton based cropping system in Karnataka. Indian Society of Soil Science, 48: 604~608
    Ishaque M., Cornfield A.H., 1972. Nitrogen mineralization and nitrification during incubation of east Pakistan‘Tea’soils in relation to pH. Plant and Soil, 37: 91~95
    Kandeler E., Gerber H., 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertilization of Soils, 6: 68~72
    Kr?mer S., Green D.M., 2000. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32: 179~188
    Li X.Z., Sarah P., 2003. Enzyme activities along a climatic transect in the Judean Desert. Catena, 53: 349~363.
    Martius C., H?fer H., Garcia M., R?mbke J., Hanagarth W., 2004. Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutrient Cycling in Agroecosystems, 68:137~154
    Mehra M.S., Singh J.S., 1985. Pattern of wood litter fall in five forests located along an altitudinal gradient in Central Himalaya. Plant Ecology, 63(1):3~11
    Nguyen B.T., Marschner P., 2005. Effect of drying and rewetting on phosphorus transformation in red brown soils with different soil organic matter content. Soil Biology and Biochemistry, 37: 1573~1576
    Nielsen J.D., Eiland F., 1980. Investigation on the relationship between P-fertility, phosphatase activity and ATP content in soil. Plant and Soil, 57: 95~103
    Nourbakhsh F., Monreal C.M., 2004. Effects of soil properties and trace metals onurease activities of calcareous soils. Biology and Fertilizer of Soils, 40: 359~362
    Rao M.A., Sannino F., Nocerino G.., Puglisi E., Gianfreda L., 2003. Effect of air-drying treatment on enzymatic activities of soils affected by anthropogenic activities. Biology and Fertilizer of Soils, 38: 327~332
    Rodríguez-Kábana R., Truelove B., 1982. Effects of crop rotation and fertilization on catalase activity in a soil of the southeastern United States. Plant and Soil, 69: 97~104
    Ross D.J., 1965. Effects of air-dry, refrigerated and frozen storage on activities of enzymes hydrolyzing sucrose and starch in soils. Journal of Soil Science, 1965, 16(1): 86~94
    Sahrawat K.L., 1984. Effects of temperature and moisture on urease activity in semi-arid tropical soils. Plant and Soil, 78: 401~408
    Samac D.A., Tesfaye M., 2003. Plant improvement for tolerance to aluminum in acid soils- a review. Plant Cell, Tissue and Organ Culture , 75: 189~207
    Shiyin L., Lixiao N., Pangying P., Cheng S., Liansheng W., 2004. Effects of pesticides and their hydrolysates on catalase activity in soil. Bulletin of Environmental Contamination and Toxicology, 72: 600~606
    Silberbush M., Shomer-llan A., Waisel Y., 1981. Root surface phosphatase activity in ecotypes of Aegilops peregrina. Physiologia Plantarum, 53(4):501~504
    Sinsabaugh R.L., 1994. Enzymic analysis of microbial pattern and process. Biology and Fertilizer of Soils, 17: 69~74
    Trasar-Cepeda C., Leirós M.C., Gil-Sotres F., 2000. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood)in an area of the European temperate- humid zone (Galicia, NW Spain): specific parameters. Soil Biology and Biochemistry, 32: 747~755
    Venkatesan S., Senthurpandian V.K., 2006. Comparison of enzyme activity with depth under tea plantations and forested sites in south India. Geoderma, 137: 212~216
    Wan F.X., Chen P., 2004. Soil enzyme activities under Agroforestry systems in Northern Jiangsu Province. Forestry Studies in China, 6(2): 21~26
    Wang X.J., Hu X.F., Chen H.Z., 1997. Some Biogeochemical Characteristics of Tea Soils. Pedosphere, 7(3): 275~280
    Weeraratna C.S., 1977. Effect of mineralization of tea prunings on some soil charact- eristics. Plant and Soil, 46: 93~99
    Wickremasinghe K.N., Sivasubramaniam S., Nalliah P., 1981. Urea hydrolysis in some tea soils. Plant and Soil, 62: 473~477
    Wright A.L., Reddy K.R., 2001. Phosphorus loading effects on extracellular enzyme activity in everglades wetland soils. Soil Science Society of America, 65: 588~595
    Xin L.H., Han S.J., Li L., Zhou Y.M., Zheng J.Q., 2007. Responses of soil enzymes to long-term CO2 enrichment in forest ecosystem of Changbai Mountains. Journal of Forestry Research, 18(1): 119~122
    Zornoza R., Guerrero C., Mataix-Solera J., Arcenegui V., Garcia-Orenes F., Mataix-Beneyto J., 2006. Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions. Soil Biology and Biochemistry, 38: 2125~2134
    Zornoza R., Guerrero C., Mataix-Solera J., Arcenegui V., Garcia-Orenes F., Mataix-Beneyto J., 2007. Assessing the effects of air-drying and rewetting pre-treatment on soil microbial biomass, basal respiration, metabolic quotient and soluble carbon under Mediterranean conditions. Soil Biology, 43: 120~129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700