壁板挤压用模具的强度分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扁挤压筒作为生产大型铝型材整体壁板的重要组成部分,对其进行强度分析和优化,改善其工况具有重要的实际意义。本文主要采用数值模拟与物理模拟相结合的方法,对扁挤压筒的应力分布进行分析,并运用优化技术对其结构进行优化。研究工作主要如下:
     系统研究了有限元模拟的关键技术(包括二维和三维)以及理论求解公式,为后续的数值分析提供了技术条件和理论基础。在此基础上,建立了预紧组合式扁挤压筒的平面和实体有限元模型,应用接触单元和耦合方法,对组合式扁挤压筒进行了数值模拟,并采用间接顺序法解决了扁挤压筒的热一结构耦合分析。分别考虑扁挤压筒单独受预紧力、热载荷,以及内压.预紧和热.预紧.内压的耦合作用的情况,获得了接触应力、温度分布、等效应力分布、轴向应力分布、应力集中区等结果,并指出其产生原因。采用光弹性实验方法对扁挤压筒进行了物理模拟,验证了扁挤压筒的轴向与径向的应力分布。
     建立了结构优化数学模型并运用FEM对其进行优化,比常用的尝试法简单、快捷、准确度高;提出采用新的型腔结构代替传统的结构,并采用变过盈量预紧方式代替传统的预紧方式,缓解了扁挤压筒由于内孔形状不规则而导致的应力集中问题。
Flat receptacle is one of the most important in producing the over-all aluminum wallboard profiles (wallboard or profile in short term). It is significant to study the strength analysis and improve the working condition of the flat receptacle. This literature mainly adopted both numerical simulation and physical simulation to analyze the stress distributing of the flat receptacle, and using optimization technology to optimize the structure. The main work of this literature is as follow:
     Firstly, the key technology of numerical simulation theory and stress equations is discussed to offer the technique support and theories to subsequent analysis (including 2D and 3D). Then, the planar and three-dimensional models of prestressed flat receptacle are built. Moreover, the numerical simulation for the flat receptacle is made by contact element and coupling method and the thermal-structure coupling is simulated by using the indirect ordinal approach. The flat receptacles under the conditions of pressure, prestress, thermal load and their coupling load are simulated respectively, and get the corresponding results and causes. Use the photoelastic experiment to prove the flexibility and the veracity of the results from the FEA.
     The model for structure optimization of the flat receptacle is built, and it is optimized by using the FEM. Adopting the suitable shape of the inner hole and the changeable shrinking range can alleviate the stress centralization caused by the especial shape of the inner hole.
引文
[1] 刘静安.轨道车辆用大型铝合金型材的开发评估及挤压工艺特点.四川有色金属.2001:1,4-10,10-12
    [2] 刘静安.铝材在交通运输工业中的开发与应用.四川有色金属.2001(2):21-29,22-24,23-24,23
    [3] 刘静安,萧今声.德国铝型材生产技术和装备.世界有色金属.1996(4):40-44
    [4] 刘静安,萧今声.日本和德国的大断面铝合金型材生产技术与工艺.世界有色金属.1995:11,40-42,42
    [5] J. D. Edwards, F. C. Frary. The Aluminum Industry. New York: McGraw-Hill Press. 1980: 240, 230-232
    [6] R. Couchman. Aluminum Statistical Review for 1999. Washington, D. C. : The Aluminum Association. . 2000: 24-29, 25
    [7] 刘静安.铝型材挤压模具设计、制造、使用及维修.北京:冶金工业出版社.1999:1-3,51-52,124
    [8] 1988: 1-3, 46-47, 67-69, 108, 196
    [9] 谢建新,刘静安.金属挤压理论与技术.北京:冶金工业出版社.2001:1-2,17-19
    [10] 谢建新,刘静安.大型铝合金型材挤压技术与工模具优化设计.冶金工业出版社.2003:22-23,218-219,213-215,174-189
    [11] 邢淑仪,王世洪.铝合金和钛合金.北京:机械工业出版社.1987:12-15
    [12] N. Solomon, M. Teodorescu, I. Solomon. The Effect of Material Flowing During Deformation on the Extrusion Product Quality. In. J. L. Chenot, J. F. Agassant, P. Montmitonnet, B. Vergnes. Proceedings of the 1st ESAFORM conference on Material Forming. 1998:165-168
    [13] S. Storen. Theory of Extrusion-advances and Challenges. Int. J. Mech. Sci. . 1993: 1007-1020
    [14] V. Legat, J. M. Marchal. Die design: An Implicit Formulation for the Inverse Problem. Int. J. Numer. Methods Fluids. 1993: 16, 29-42
    [15] Y. S. Kang, D. Y. Yang. Investigation into the Thermo-Viscoplastic Finite Element Analysis of Square Die Extrusion of Square Section with Lagrangian Description. Int. J. Mach. Tools Manufact. 1996:906
    [16] X. Q. Zhang, Y. C. Lam, C. Devadas. Progress in Numerical Simulation of Extrusion of Aluminum Sections. Proc. 4th Int. Conf. Tech. Plasticity, Arizona. 1993:16-21
    [17] H. G. Mooi, J. Huetink. Simulation of Complex Aluminum Extrusion Using an Arbitrary Eulerian Lagrangian Formulation. Proc. 5th Int. Conf. Num. Meth. Indust. Forming Processes, 1995:869-874
    [18] L. Tong. FE Simulation of Bulk Forming Processes With a Mixed Eulerian-Lagrangian Formulation. [Swiss Federal Institute of Technology, PhD thesis]. 1995:12-13
    [19] H. G. Mooi. Finite Element Simulation of Aluminum Extrusion. [University of Twente, PhD thesis]. 1996:5
    [20] 谢建新,毛倩,李静媛等.80MN挤压机用扁挤压筒的初步设计.锻压技术,1999(3):48-50,51,49,50
    [21] 刘志强,谢建新,刘静安.大型整体壁板用扁挤压筒受力的有限元分析.锻压技 术.1998:12-16,15
    [22] 黄晓林,刘静安,易幼平.组合扁孔挤压筒非均匀预应力场分析.重型机械.1997,32(4):240-248
    [23] 徐盈辉,谢水生,张学军.扁挤压筒装配应力计算与受力分析.稀有金属.2000,24(3):182-187
    [24] 易幼平,郑志莲,刘静安.大型扁挤压筒强度分析.模具工业.2000,8(2):112-116
    [25] 周光灿.扁挤压筒的等强度设计理论.成都:第一次全国机械零件计算方法学术交流会论文集.1983,1-15,1-8,7
    [26] 刘全坤,俞芙芳,刘汉武.挤压凹模强度的光弹性与有限元优化综合分析.实验力学.1992,7(3):226-229
    [27] 易幼平,钟掘,高云章.扁挤压筒型腔有限元应力分析及形线优化.上海有色金属.1996,17(2):12-16
    [28] Joeri Lof. Developments in Finite Element Simulations of Aluminum Extrusion. [University of Twente, PhD thesis]. 2000, 6-7
    [29] 陈泽中.铝型材挤压CAD/CAE/CAO技术研究.南昌大学博士学位论文.2002:6-7,8
    [30] D. Y. Yang, C. H. Lee. Analysis of Three Dimensional Extrusion of Sections Through Curved Dies by Conformal Transformation. Int. J. Mech. Sci. . 1978, 35 (2): 541
    [31] 谢水生,贺金宇,徐盈辉.扁挤压筒结构参数优化及分析研究.塑性工程学报.2001,32(4):12-16
    [32] 易日.使用ANSYS6.1进行结构力学研究.北京大学出版社.2002:1-2
    [33] 洪深泽.挤压工艺及模具设计.北京:机械工业出版社.1995:1-6,188-189,212
    [34] Courant, R., Varitional Method for Solutions of Problem of Equilibrium and Vibration. AM Math. Soc. 1943: 1-23
    [35] 刘静安,赵云路.铝材生产关键技术.重庆:重庆大学出版社.1997:148-151
    [36] 杨世铭,陶文铨.传热学.第三版,北京:高等教育出版社.2000:420-421
    [37] 唐兴伦,范群波.ANSYS工程运用教程—热与电磁学篇.中国铁道出版社.2002(2):9-11,3-7
    [38] 孔祥谦.有限元法在传热学中的应用.北京:科学出版社.1986:112-114,130-134
    [39] 竹田内一郎.热应力.北京:科技出版社.1989:25-30,50-56
    [40] 美国ANSYS公司北京办事处.ANSYS耦合场分析指南.1998:2-4,28-30
    [41] Huang hui, Wang yun. The Finite Element Analysis of Flat Container Under the Condition of Thermal Load. Journal of Harbin Institute of Technology. 2005. 9 (12)
    [42] 王开坤,谢建新.内孔四层套扁挤压筒的组合应力分析.北京科技大学学报.2000,22(5):464-466
    [43] http://www. jci. jx. cn/sci/kjzc/kjzcl-jxzy. htm.罗贤海.机械最优化设计的应用及若干问题的探讨
    [44] 陈钏棠.General Research on Three-Dimensional Structural Shape Optimization.[台湾元智大学硕士学位论文].1996:30-45
    [45] O. C. Zienkiewicz, J. S. Campbell. Shape Optimization and Sequential Linear Programming. Optimal Structure Design, R. H. Gallagher, O. C. Zienkiewicz eds., New York: Optimal Structural Design. 1973:109-126
    [46] V. Braibant, C. Flury. Shape Optimal Design Using B-Spline. Computer Methods in Applied Mechanics and Engineering. 1984, 3(44): 247-267
    [47] http://www2. nsysu. edu. tw/csmlab/fem/proiect/ansysprj. htm. 曾中庆.应用ANSYS有限元素软件于最优化设计题
    [48] P. Pedersen, C. L. Laursen. Design for Minimum Stress Concentration by Finite Elements and Linear Programming. Journal of Structural Mechanics. 1982, 4(10): 375-391
    [49] S. S. Bhavikatti, C. V. Ramakrishnan. Optimum Shape Design of Rotating Disks. Computers and structures. 1980:397-401
    [50] Wang yun, Liu Quankun. Structure Optimization for Prestressed Flat Receptacle with Augmented Multiplier Method. Hefei: ISPMM2002. 2002:523-526
    [51] 美国ANSYS公司北京办事处.ANSYS高级技术分析指南优化设计.1998:12-18
    [52] 王匀,许桢英.耦合作用下的扁挤压筒有限元分析.锻压技术.2006:4
    [53] 闫洪,包忠诩,柳和生.铝型材挤压模CAD/CAE/CAM研究进展.轻合金加工技术.1999,27(10):1-2,2-3,3
    [54] 蔡薇,柳瑞清.高温挤压变形的模拟实验研究.锻压技术.1999,24(1):8-9
    [55] 柯斯克 G.罗伯逊,王爕山,黄杰藩译.光弹性应力分析.上海科学技术出版社.1979,12-46
    [56] 阮孟光,郭明洁,管大椿.光测力学.北京:科学出版社.1995:122-128,140-145,143
    [57] 王赛玉,黄楚云.型材挤压模面压分布研究.锻压技术.2001,26(2):121-123
    [58] ANSYS9.0软件自带帮助手册.
    [59] 王匀.扁挤压筒强度分析与设计方法研究.燕山大学博士学位论文.2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700