钛表面定植壳聚糖衍生物的抑菌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     内植物材料已在骨科得到广泛应用,内植物周围感染问题也日益突出。骨科内植物表面宿主免疫低下、磨损颗粒损害周围组织、细菌耐药、生物膜形成等导致这类感染极难治疗,也导致住院时间延长,增加患者痛苦,增加并发症和死亡风险,也造成医疗资源的巨大支出。许多研究致力于内植物表面改性,但往往存在抑菌能力欠佳、导致细菌耐药、妨碍骨整合等缺陷。如能研制出新型抗菌内植物表面,使其具备良好的抗菌能力与生物相容性,且可有效预防细菌粘附与生物膜形成,甚至可促进骨整合,将有一定的研究与应用前景。
     第一部分
     目的
     合成不同取代度的氯乙酰硫脲羧甲基壳聚糖衍生物(CCMC),研究其抑菌性能、细胞毒性以及对骨髓间充质干细胞(MSCs)增殖与分化的影响。
     方法
     1、以抑菌圈试验及抑菌率试验测试其对金黄色葡萄球菌、表皮葡萄球菌的体外抗菌性能;
     2、以MTT比色法研究其对MC3T3-E1细胞的细胞毒性;
     3、以MTT比色法测定其对MSCs增殖的影响;
     4、以碱性磷酸酶活性和骨钙素含量测定其对MSCs分化的影响。
     结果
     1、随着CCMC取代度的增高,其抑菌活性也逐渐增强;
     2、0.88取代度的CCMC具有体外细胞毒性,另两种取代度的CCMC没有体外细胞毒性;
     3、0.24与0.53取代度的CCMC对MSCs的增殖和分化均有一定促进作用,0.88取代度的CCMC对MSCs的增殖和分化均有一定抑制作用。
     第二部分
     目的
     测定不同取代度的CCMC的最小抑菌浓度及最小生物膜清除浓度,以及特定浓度下对金黄色葡萄球菌以及表皮葡萄球菌生物膜抑制率及对生物膜活性的影响。
     方法
     1、以细菌定量法测定不同取代度的CCMC的最小抑菌浓度,以比色法测定各取代度CCMC的最小生物膜清除浓度;
     2、以比色法测定各取代度CCMC在特定浓度下对三种生物膜的抑制率;
     3、以荧光染色比较各取代度CCMC对表皮葡萄球菌生物膜活性的影响。
     结果
     1、随着CCMC取代度的增高,最小抑菌浓度及最小生物膜清除浓度也逐渐减小;
     2、相同浓度下,取代度越高,CCMC对三种生物膜的抑制率越高,0.88与0.53取代度的CCMC在较小浓度下即可有效抑制生物膜生长;
     3、相同浓度下,取代度越高,CCMC对表皮葡萄球菌生物膜活性的抑制能力越强;随着浓度的增高,各取代度CCMC对表皮葡萄球菌生物膜活性的抑制能力越强。
     第三部分
     目的
     钛合金表面共价结合0.53取代度的CCMC(Ti-CCMC),通过与钛合金表面(Ti)的比较,研究这种钛表面抑制生物膜的能力、对成骨细胞粘附与增殖的影响,建立新西兰大白兔感染模型,研究Ti-CCMC对感染局部骨组织的影响与全身性影响。
     方法
     1、以荧光染色法比较Ti-CCMC与Ti在体外对生物膜活性的影响;
     2、以细菌定量法比较Ti-CCMC与Ti在体外对表皮葡萄球菌粘附的影响;
     3、比较Ti-CCMC与Ti对MC3T3-E1细胞粘附与增殖的影响;
     4、以细菌培养定量检测法测定钛棒周围骨组织内细菌含量;
     5、比较两组兔的体重变化,行血细菌培养、X线检查,研究两组兔全身性情况的差异;
     6、对两组兔股骨中段髓腔行革兰氏染色,比较两组细菌局部迁移的差异。
     结果
     1、Ti-CCMC体外对生物膜活性有明显抑制作用;
     2、Ti-CCMCC由一定的抑制表皮葡萄球菌粘附的能力;
     3、Ti-CCMC可促进MC3T3-E1细胞粘附与增殖;
     4、Ti组骨组织内见细菌生长,Ti-CCMC组未见细菌生长;
     5、两组兔体重比较无明显差异,Ti组术后X线检查发现股骨骨质破坏,Ti-CCMC组未见明显异常,未见骨溶解与透亮带;
     6、Ti组兔股骨中段髓腔行革兰氏染色,可见革兰氏蓝染的细菌散在,Ti组未见细菌。
     结论
     壳聚糖酰基硫脲衍生物具有良好的抗菌能力、生物相容性与骨整合能力,可作为骨科内植物表面抗菌的新型材料,具有一定的研究与应用前景。
Background
     With the implant materials beening widely used in orthopedic surgery, infectionof the implant materials has become a difficult issue. Host immunosuppression overorthopedic implant surface, the surrounding tissue damaged by wear particles,bacterial resistance, biofilm formation, result in the extremely difficult treatment ofthis type of infection. It also leads to prolonged hospitalization, increased patientsuffering and the risk of complications and death, and also huge expenditure ofmedical resources. Many studies focus on the implant surface modification, bu oftenresult in poor antibacterial capacity, bacterial resistance and osseointegration defects.Novel antibacterial plant surfaces,which has good antibacterial ability andbiocompatibility, could preventing bacterial adhesion and biofilm formation, andeven promote bone integration, will be a certain amount of research and applicationprospects.
     Part Ⅰ
     Objectives
     Synthesis of different degree of substitution of chloro acetyl thioureacarboxymethyl chitosan derivative (CCMC), to detect its antibacterial properties,cytotoxicity, and the impact of the proliferation and differentiation of bone marrow mesenchymal stem cells (MSCs).
     Methods
     Inhibition zone test and the inhibition rate test were used to determine theabilities of in vitro antibacterial properties of CCMC against Staphylococcus aureus,Staphylococcus epidermidis. MTT assay was used to determine the cytotoxic towardsMC3T3-E1cells. MSCs proliferation was also determined by the MTT assey.Alkaline phosphatase activity and osteocalcin content were measured for determiningMSCs differentiation.
     Results
     Along with the increase of the degree of substitution of CCMC, the antibacterialactivity gradually increased. CCMC(0.88) had an in vitro cytotoxicity towards toMC3T3-E1cells, while the other two did not. CCMC(0.24) and CCMC(0.53) couldpromote the proliferation and differentiation of MSCs, while CCMC(0.88) had acertain inhibition on it.
     Part Ⅱ
     Objectives
     To determine the minimum inhibitory concentrationand the minimum
     biofilm eradication concentrations of CCMC, as well as the impact of biofilmquantity and biofilm activity against Staphylococcus aureus and Staphylococcusepidermidis biofilm inhibition rate.
     Methods
     Bacterial quantitative method was used to determine the minimum inhibitoryconcentration of different degrees of substitution of CCMC. The minimum biofilmeradication concentration was determined also. The biofilm of each degree ofsubstitution CCMC inhibition rates were determined against three kinds of bacterials.The impact of CCMC on Staphylococcus epidermidis biofilm activity was determinedby the method of immunofluorescence assay.
     Results
     As higher degree of substitution of CCMC, the minimum inhibitoryconcentration and the the minimum biofilm eradication concentration graduallydecreases. As in the same concentration, the inhibition rate of the CCMC againstthree biofilm increased along with the degree of substitution of CCMC. The degree ofsubstitution of0.88and0.53CCMC were effectively in a small concentration ininhibiting biofilm growth. Higher degree of substitution of CCMC had a strongerinhibition capacity on Staphylococcus epidermidis biofilm activity. With the increaseof the concentration of each substituted degrees CCMC, the inhibitory capacity of thebiofilm activity were stronger.
     Part Ⅲ
     Objectives
     Titanium alloy surface covalently bonded with the0.53degree of substitution ofthe CCMC (Ti-CCMC). Through the comparison with the surface of titanium (Ti),the ability to inhibit the biofilm, the impact on the adhesion and proliferation ofosteoblasts were determined. A New Zealand white rabbit infection model was established. local impact of bone tissue and systemic impact of the animals weredetermined.
     Methods
     Immunofluorescence assay was used to compare the ability of Ti-CCMC and Tiagainst biofilm activity.Bacteria quantitative method were used to compare the impactof Ti-CCMC and Ti on adhesion of Staphylococcus epidermidis and MC3T3-E1celladhesion and proliferation. Quantitative detection method was used for thedetermination of the bacterial content in the bone tissue around the titanium rod. Therabbits weight changes, Blood bacterial culture, X-ray examination, were used tocompare the differences in the two groups of rabbits. Differences between the twogroups of rabbits middle femur medullary cavity were compared between the twogroups of bacteria local migration by the method of gram stain.
     Results
     Ti-CCMC had a significantly ability of inhibiting biofilm activity. Ti-CCMCcould also inhibit epidermal aureus adhesion.The Ti-CCMC could promote celladhesion and proliferation of MC3T3-E1.Rabbits in the Ti-CCMC group had nobacterial growth in the bone tissue surounding the rod. Rabbits weighing between thetwo groups showed no significant difference between the two groups. PostoperativeX-ray examination revealed the femur bone destruction in the Ti group, but theTi-CCMC group had no obvious abnormalities, osteolysis or Radiolucent line. Themiddle femur medullary cavity Gram stain in the Ti groups showed bacteria whichwere stained in blue.
     Conlusions
     With the good antibacterial ability, biocompatibility and bone integrationcapabilities. Chitosan acyl thiourea derivatives can be used as a new material of orthopedic implant surface. It deserves further research and has an applicationprospects.
引文
1. Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause ofpersistent infections. Science1999,284(5418):1318-1322.
    2. Bauer TW, Schils J: The pathology of total joint arthroplasty. I. Mechanisms of implantfixation. Skeletal Radiol1999,28(8):423-432.
    3. Periti P, Stringa G, Mini E: Comparative multicenter trial of teicoplanin versus cefazolinfor antimicrobial prophylaxis in prosthetic joint implant surgery. Italian Study Groupfor Antimicrobial Prophylaxis in Orthopedic Surgery. Eur J Clin Microbiol Infect Dis1999,18(2):113-119.
    4. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M: Prophylaxis and treatmentof implant-related infections by antibiotic-coated implants: a review. Injury2006,37Suppl2:S105-112.
    5. Popat KC, Eltgroth M, Latempa TJ, Grimes CA, Desai TA: Decreased Staphylococcusepidermis adhesion and increased osteoblast functionality on antibiotic-loaded titaniananotubes. Biomaterials2007,28(32):4880-4888.
    6. Soundrapandian C, Datta S, Sa B: Drug-eluting implants for osteomyelitis. Crit Rev TherDrug Carrier Syst2007,24(6):493-545.
    7. Baquero F: Gram-positive resistance: challenge for the development of new antibiotics. JAntimicrob Chemother1997,39Suppl A:1-6.
    8. Schierholz J, Beuth J: Implant infections: a haven for opportunistic bacteria. Journal ofHospital Infection2001,49(2):87-93.
    9. Hudson MC, Ramp WK, Frankenburg KP: Staphylococcus aureus adhesion to bonematrix and bone-associated biomaterials. FEMS Microbiol Lett1999,173(2):279-284.
    10. Walenkamp GH, Kleijn LL, de Leeuw M: Osteomyelitis treated with gentamicin-PMMAbeads:100patients followed for1-12years. Acta Orthop Scand1998,69(5):518-522.
    11. Klemm K: The use of antibiotic-containing bead chains in the treatment of chronic boneinfections. Clin Microbiol Infect2001,7(1):28-31.
    12. Fisman DN, Reilly DT, Karchmer AW, Goldie SJ: Clinical effectiveness andcost-effectiveness of2management strategies for infected total hip arthroplasty in theelderly. Clin Infect Dis2001,32(3):419-430.
    13. Galdbart JO, Morvan A, Desplaces N, el Solh N: Phenotypic and genomic variation amongStaphylococcus epidermidis strains infecting joint prostheses. J Clin Microbiol1999,37(5):1306-1312.
    14. Heilmann C, Hussain M, Peters G, Gotz F: Evidence for autolysin-mediated primaryattachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol1997,24(5):1013-1024.
    15. Vadyvaloo V, Otto M: Molecular genetics of Staphylococcus epidermidis biofilms onindwelling medical devices. Int J Artif Organs2005,28(11):1069-1078.
    16. Ziebuhr W, Hennig S, Eckart M, Kranzler H, Batzilla C, Kozitskaya S: Nosocomialinfections by Staphylococcus epidermidis: how a commensal bacterium turns into apathogen. Int J Antimicrob Agents2006,28Suppl1:S14-20.
    17. Hall-Stoodley L, Costerton JW, Stoodley P: Bacterial biofilms: from the naturalenvironment to infectious diseases. Nat Rev Microbiol2004,2(2):95-108.
    18. Stewart PS, Costerton JW: Antibiotic resistance of bacteria in biofilms. Lancet2001,358(9276):135-138.
    19. Davies D: Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov2003,2(2):114-122.
    20. Anderl JN, Franklin MJ, Stewart PS: Role of antibiotic penetration limitation in Klebsiellapneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial agents andchemotherapy2000,44(7):1818-1824.
    21. Agata De Sena L, Calixto De Andrade M, Malta Rossi A, de Almeida Soares G:Hydroxyapatite deposition by electrophoresis on titanium sheets with different surfacefinishing. J Biomed Mater Res2002,60(1):1-7.
    22. Nakamura T, Yamamuro T, Higashi S, Kokubo T, Itoo S: A new glass-ceramic for bonereplacement: evaluation of its bonding to bone tissue. J Biomed Mater Res1985,19(6):685-698.
    23. Peng Y, Han B, Liu W, Xu X: Preparation and antimicrobial activity of hydroxypropylchitosan. Carbohydr Res2005,340(11):1846-1851.
    24. Alencar de Queiroz AA, Abraham GA, Pires Camillo MA, Higa OZ, Silva GS, del MarFernandez M, San Roman J: Physicochemical and antimicrobial properties ofboron-complexed polyglycerol-chitosan dendrimers. J Biomater Sci Polym Ed2006,17(6):689-707.
    25. Jinno T, Goldberg VM, Davy D, Stevenson S: Osseointegration of surface-blastedimplants made of titanium alloy and cobalt-chromium alloy in a rabbit intramedullarymodel. J Biomed Mater Res1998,42(1):20-29.
    26. Wong M, Eulenberger J, Schenk R, Hunziker E: Effect of surface topology on theosseointegration of implant materials in trabecular bone. J Biomed Mater Res1995,29(12):1567-1575.
    27. Mermel LA: Prevention of intravascular catheter-related infections. Ann Intern Med2000,132(5):391-402.
    28. Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD: Efficacy of antiseptic-impregnatedcentral venous catheters in preventing catheter-related bloodstream infection: ameta-analysis. JAMA1999,281(3):261-267.
    29. Aimin C, Chunlin H, Juliang B, Tinyin Z, Zhichao D: Antibiotic loaded chitosan bar. An invitro, in vivo study of a possible treatment for osteomyelitis. Clin Orthop Relat Res1999(366):239-247.
    30. Alipour SM, Nouri M, Mokhtari J, Bahrami SH: Electrospinning of poly(vinylalcohol)-water-soluble quaternized chitosan derivative blend. Carbohydr Res2009,344(18):2496-2501.
    31. Alburquenque C, Bucarey SA, Neira-Carrillo A, Urzua B, Hermosilla G, Tapia CV:Antifungal activity of low molecular weight chitosan against clinical isolates of Candidaspp. Med Mycol2010,48(8):1018-1023.
    32. Friedman M, Juneja VK: Review of antimicrobial and antioxidative activities of chitosansin food. J Food Prot2010,73(9):1737-1761.
    33. Andrade RV, Da Silva SP, Torres FA, Pocas-Fonseca MJ, Silva-Pereira I, Maranhao AQ,Campos EG, Moraes LM, Jesuino RS, Pereira M et al: Overview and perspectives thetranscriptome of Paracoccidioides brasiliensis. Rev Iberoam Micol2005,22(4):203-212.
    34. Gil G, del Monaco S, Cerrutti P, Galvagno M: Selective antimicrobial activity of chitosanon beer spoilage bacteria and brewing yeasts. Biotechnol Lett2004,26(7):569-574.
    35. Sagoo SK, Board R, Roller S: Chitosan potentiates the antimicrobial action of sodiumbenzoate on spoilage yeasts. Lett Appl Microbiol2002,34(3):168-172.
    36. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ: Antimicrobialnanomaterials for water disinfection and microbial control: potential applications andimplications. Water Res2008,42(18):4591-4602.
    37. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W: Chitosan as antimicrobialagent: applications and mode of action. Biomacromolecules2003,4(6):1457-1465.
    38. Kean T, Thanou M: Biodegradation, biodistribution and toxicity of chitosan. Adv DrugDeliv Rev2010,62(1):3-11.
    39. Qi L, Xu Z, Jiang X, Hu C, Zou X: Preparation and antibacterial activity of chitosannanoparticles. Carbohydr Res2004,339(16):2693-2700.
    40. Zhong Z, Li P, Xing R, Liu S: Antimicrobial activity of hydroxylbenzenesulfonailidesderivatives of chitosan, chitosan sulfates and carboxymethyl chitosan. Int J BiolMacromol2009,45(2):163-168.
    41. Muzzarelli RA, Tanfani F, Emanuelli M, Mariotti S: N-(carboxymethylidene)chitosans and N-(carboxymethyl) chitosans: Novel chelating polyampholytesobtained from chitosan glyoxylate. Carbohydrate Research1982,107(2):199-214.
    42. Zhong Z, Xing R, Liu S, Wang L, Cai S, Li P: Synthesis of acyl thiourea derivatives ofchitosan and their antimicrobial activities in vitro. Carbohydr Res2008,343(3):566-570.
    1. Soundrapandian C, Datta S, Sa B: Drug-eluting implants for osteomyelitis. Crit Rev Ther DrugCarrier Syst2007,24(6):493-545.
    2. Walenkamp GH, Kleijn LL, de Leeuw M: Osteomyelitis treated with gentamicin-PMMA beads:100patients followed for1-12years. Acta Orthop Scand1998,69(5):518-522.
    3. Klemm K: The use of antibiotic-containing bead chains in the treatment of chronic boneinfections. Clin Microbiol Infect2001,7(1):28-31.
    4. Fisman DN, Reilly DT, Karchmer AW, Goldie SJ: Clinical effectiveness and cost-effectiveness of2management strategies for infected total hip arthroplasty in the elderly. Clin Infect Dis2001,32(3):419-430.
    5. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ: Antimicrobial nanomaterials forwater disinfection and microbial control: potential applications and implications. Water Res2008,42(18):4591-4602.
    6. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W: Chitosan as antimicrobial agent:applications and mode of action. Biomacromolecules2003,4(6):1457-1465.
    7. van der Lubben IM, Verhoef JC, Borchard G, Junginger HE: Chitosan for mucosal vaccination. AdvDrug Deliv Rev2001,52(2):139-144.
    8. Qi L, Xu Z, Jiang X, Hu C, Zou X: Preparation and antibacterial activity of chitosan nanoparticles.Carbohydr Res2004,339(16):2693-2700.
    9. Eaton P, Fernandes JC, Pereira E, Pintado ME, Xavier Malcata F: Atomic force microscopy study ofthe antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus.Ultramicroscopy2008,108(10):1128-1134.
    10. Kean T, Thanou M: Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev2010,62(1):3-11.
    11. Zhong Z, Li P, Xing R, Liu S: Antimicrobial activity of hydroxylbenzenesulfonailides derivatives ofchitosan, chitosan sulfates and carboxymethyl chitosan. Int J Biol Macromol2009,45(2):163-168.
    12. Zhong Z, Xing R, Liu S, Wang L, Cai S, Li P: Synthesis of acyl thiourea derivatives of chitosan andtheir antimicrobial activities in vitro. Carbohydr Res2008,343(3):566-570.
    13. Muzzarelli RAA: Carboxymethylated chitins and chitosans. Carbohydrate Polymers1988,8(1):1-21.
    14.中华人民共和国卫生部.消毒技术规范[S].中华人民共和国卫生部2006.12.
    15. Kasten P, Luginbuhl R, van Griensven M, Barkhausen T, Krettek C, Bohner M, Bosch U:Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite,beta-tricalcium phosphate and demineralized bone matrix. Biomaterials2003,24(15):2593-2603.
    16. Aimin C, Chunlin H, Juliang B, Tinyin Z, Zhichao D: Antibiotic loaded chitosan bar. An in vitro, invivo study of a possible treatment for osteomyelitis. Clin Orthop Relat Res1999(366):239-247.
    17. Alipour SM, Nouri M, Mokhtari J, Bahrami SH: Electrospinning of poly(vinylalcohol)-water-soluble quaternized chitosan derivative blend. Carbohydr Res2009,344(18):2496-2501.
    18. Alburquenque C, Bucarey SA, Neira-Carrillo A, Urzua B, Hermosilla G, Tapia CV: Antifungal activityof low molecular weight chitosan against clinical isolates of Candida spp. Med Mycol2010,48(8):1018-1023.
    19. Friedman M, Juneja VK: Review of antimicrobial and antioxidative activities of chitosans in food.J Food Prot2010,73(9):1737-1761.
    20. Andrade RV, Da Silva SP, Torres FA, Pocas-Fonseca MJ, Silva-Pereira I, Maranhao AQ, Campos EG,Moraes LM, Jesuino RS, Pereira M et al: Overview and perspectives the transcriptome ofParacoccidioides brasiliensis. Rev Iberoam Micol2005,22(4):203-212.
    21. Gil G, del Monaco S, Cerrutti P, Galvagno M: Selective antimicrobial activity of chitosan on beerspoilage bacteria and brewing yeasts. Biotechnol Lett2004,26(7):569-574.
    22. Sagoo SK, Board R, Roller S: Chitosan potentiates the antimicrobial action of sodium benzoateon spoilage yeasts. Lett Appl Microbiol2002,34(3):168-172.
    23. Andres Y, Giraud L, Gerente C, Le Cloirec P: Antibacterial effects of chitosan powder:mechanisms of action. Environ Technol2007,28(12):1357-1363.
    24. Hadwiger LA, Beckman JM: Chitosan as a Component of Pea-Fusarium solani Interactions. PlantPhysiol1980,66(2):205-211.
    25. Muzzarelli RA, Tanfani F, Emanuelli M, Mariotti S: N-(carboxymethylidene) chitosansand N-(carboxymethyl) chitosans: Novel chelating polyampholytes obtained fromchitosan glyoxylate. Carbohydrate Research1982,107(2):199-214.
    26. Abarrategi A, Gutierrez MC, Moreno-Vicente C, Hortiguela MJ, Ramos V, Lopez-Lacomba JL, FerrerML, del Monte F: Multiwall carbon nanotube scaffolds for tissue engineering purposes.Biomaterials2008,29(1):94-102.
    27. Baldrick P: The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol2010,56(3):290-299.
    28. Tokura S, Tamura H, Azuma I: Immunological aspects of chitin and chitin derivativesadministered to animals. EXS1999,87:279-292.
    29. Kassem M, Abdallah BM: Human bone-marrow-derived mesenchymal stem cells: biologicalcharacteristics and potential role in therapy of degenerative diseases. Cell Tissue Res2008,331(1):157-163.
    30. Kulterer B, Friedl G, Jandrositz A, Sanchez-Cabo F, Prokesch A, Paar C, Scheideler M, Windhager R,Preisegger KH, Trajanoski Z: Gene expression profiling of human mesenchymal stem cellsderived from bone marrow during expansion and osteoblast differentiation. BMC Genomics2007,8:70.
    31. Turksen K, Bhargava U, Moe HK, Aubin JE: Isolation of monoclonal antibodies recognizing ratbone-associated molecules in vitro and in vivo. J Histochem Cytochem1992,40(9):1339-1352.
    1. Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistentinfections. Science1999,284(5418):1318-1322.
    2. Mermel LA: Prevention of intravascular catheter-related infections. Ann Intern Med2000,132(5):391-402.
    3. Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD: Efficacy of antiseptic-impregnated centralvenous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA1999,281(3):261-267.
    4. Galdbart JO, Morvan A, Desplaces N, el Solh N: Phenotypic and genomic variation amongStaphylococcus epidermidis strains infecting joint prostheses. J Clin Microbiol1999,37(5):1306-1312.
    5. Heilmann C, Hussain M, Peters G, Gotz F: Evidence for autolysin-mediated primary attachmentof Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol1997,24(5):1013-1024.
    6. Broekhuizen CA, de Boer L, Schipper K, Jones CD, Quadir S, Feldman RG, Dankert J,Vandenbroucke-Grauls CM, Weening JJ, Zaat SA: Peri-implant tissue is an important niche forStaphylococcus epidermidis in experimental biomaterial-associated infection in mice. InfectImmun2007,75(3):1129-1136.
    7. Boelens JJ, Dankert J, Murk JL, Weening JJ, van der Poll T, Dingemans KP, Koole L, Laman JD, ZaatSA: Biomaterial-associated persistence of Staphylococcus epidermidis in pericathetermacrophages. J Infect Dis2000,181(4):1337-1349.
    8. Vadyvaloo V, Otto M: Molecular genetics of Staphylococcus epidermidis biofilms on indwellingmedical devices. Int J Artif Organs2005,28(11):1069-1078.
    9. Ziebuhr W, Hennig S, Eckart M, Kranzler H, Batzilla C, Kozitskaya S: Nosocomial infections byStaphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int JAntimicrob Agents2006,28Suppl1:S14-20.
    10. Hall-Stoodley L, Costerton JW, Stoodley P: Bacterial biofilms: from the natural environment toinfectious diseases. Nat Rev Microbiol2004,2(2):95-108.
    11. Costerton JW, Montanaro L, Arciola CR: Bacterial communications in implant infections: a targetfor an intelligence war. Int J Artif Organs2007,30(9):757-763.
    12. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W: Chitosan as antimicrobial agent:applications and mode of action. Biomacromolecules2003,4(6):1457-1465.
    13. Senel S, McClure SJ: Potential applications of chitosan in veterinary medicine. Adv Drug DelivRev2004,56(10):1467-1480.
    14. Davies D: Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov2003,2(2):114-122.
    15. Stewart PS, Costerton JW: Antibiotic resistance of bacteria in biofilms. Lancet2001,358(9276):135-138.
    16. Anderl JN, Franklin MJ, Stewart PS: Role of antibiotic penetration limitation in Klebsiellapneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial agents andchemotherapy2000,44(7):1818-1824.
    17. Agata De Sena L, Calixto De Andrade M, Malta Rossi A, de Almeida Soares G: Hydroxyapatitedeposition by electrophoresis on titanium sheets with different surface finishing. J BiomedMater Res2002,60(1):1-7.
    18. Nakamura T, Yamamuro T, Higashi S, Kokubo T, Itoo S: A new glass-ceramic for bone replacement:evaluation of its bonding to bone tissue. J Biomed Mater Res1985,19(6):685-698.
    19. Peng Y, Han B, Liu W, Xu X: Preparation and antimicrobial activity of hydroxypropyl chitosan.Carbohydr Res2005,340(11):1846-1851.
    20. Shi Z, Neoh KG, Kang ET, Poh CK, Wang W: Surface functionalization of titanium withcarboxymethyl chitosan and immobilized bone morphogenetic protein-2for enhancedosseointegration. Biomacromolecules2009,10(6):1603-1611.
    21. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A: The Calgary Biofilm Device: newtechnology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J ClinMicrobiol1999,37(6):1771-1776.
    22. Arciola CR, Campoccia D, Baldassarri L, Donati ME, Pirini V, Gamberini S, Montanaro L: Detectionof biofilm formation in Staphylococcus epidermidis from implant infections. Comparison of aPCR-method that recognizes the presence of ica genes with two classic phenotypic methods. JBiomed Mater Res A2006,76(2):425-430.
    23. Jang CH, Park H, Cho YB, Choi CH: Effect of vancomycin-coated tympanostomy tubes onmethicillin-resistant Staphylococcus aureus biofilm formation: in vitro study. J Laryngol Otol2010,124(6):594-598.
    24. Norowski PA, Jr., Bumgardner JD: Biomaterial and antibiotic strategies for peri-implantitis: areview. J Biomed Mater Res B Appl Biomater2009,88(2):530-543.
    25. Zhong Z, Li P, Xing R, Liu S: Antimicrobial activity of hydroxylbenzenesulfonailides derivatives ofchitosan, chitosan sulfates and carboxymethyl chitosan. Int J Biol Macromol2009,45(2):163-168.
    1. Bauer TW, Schils J: The pathology of total joint arthroplasty. I. Mechanisms of implantfixation. Skeletal Radiol1999,28(8):423-432.
    2. Periti P, Stringa G, Mini E: Comparative multicenter trial of teicoplanin versus cefazolin forantimicrobial prophylaxis in prosthetic joint implant surgery. Italian Study Group forAntimicrobial Prophylaxis in Orthopedic Surgery. Eur J Clin Microbiol Infect Dis1999,18(2):113-119.
    3. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M: Prophylaxis and treatment ofimplant-related infections by antibiotic-coated implants: a review. Injury2006,37Suppl2:S105-112.
    4. Popat KC, Eltgroth M, Latempa TJ, Grimes CA, Desai TA: Decreased Staphylococcus epidermisadhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes.Biomaterials2007,28(32):4880-4888.
    5. Butler J, Jayson GG, Swallow AJ: The reaction between the superoxide anion radical andcytochrome c. Biochim Biophys Acta1975,408(3):215-222.
    6. Wu P, Grainger DW: Drug/device combinations for local drug therapies and infectionprophylaxis. Biomaterials2006,27(11):2450-2467.
    7. Agata De Sena L, Calixto De Andrade M, Malta Rossi A, de Almeida Soares G: Hydroxyapatitedeposition by electrophoresis on titanium sheets with different surface finishing. J BiomedMater Res2002,60(1):1-7.
    8. Nakamura T, Yamamuro T, Higashi S, Kokubo T, Itoo S: A new glass-ceramic for bone replacement:evaluation of its bonding to bone tissue. J Biomed Mater Res1985,19(6):685-698.
    9. Peng Y, Han B, Liu W, Xu X: Preparation and antimicrobial activity of hydroxypropyl chitosan.Carbohydr Res2005,340(11):1846-1851.
    10. Alencar de Queiroz AA, Abraham GA, Pires Camillo MA, Higa OZ, Silva GS, del Mar Fernandez M,San Roman J: Physicochemical and antimicrobial properties of boron-complexedpolyglycerol-chitosan dendrimers. J Biomater Sci Polym Ed2006,17(6):689-707.
    11. Jinno T, Goldberg VM, Davy D, Stevenson S: Osseointegration of surface-blasted implants madeof titanium alloy and cobalt-chromium alloy in a rabbit intramedullary model. J Biomed MaterRes1998,42(1):20-29.
    12. Wong M, Eulenberger J, Schenk R, Hunziker E: Effect of surface topology on the osseointegrationof implant materials in trabecular bone. J Biomed Mater Res1995,29(12):1567-1575.
    13. Shi Z, Neoh KG, Kang ET, Poh CK, Wang W: Surface functionalization of titanium withcarboxymethyl chitosan and immobilized bone morphogenetic protein-2for enhancedosseointegration. Biomacromolecules2009,10(6):1603-1611.
    14. Burmolle M, Thomsen TR, Fazli M, Dige I, Christensen L, Homoe P, Tvede M, Nyvad B,Tolker-Nielsen T, Givskov M et al: Biofilms in chronic infections-a matter of opportunity-monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol2010,59(3):324-336.
    15. Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W: Staphylococcus aureus smallcolony variants in prosthetic joint infection. Clin Infect Dis2006,43(8):961-967.
    16. Garvin K, Feschuk C: Polylactide-polyglycolide antibiotic implants. Clin Orthop Relat Res2005(437):105-110.
    17. Kanellakopoulou K, Giamarellos-Bourboulis EJ: Carrier systems for the local delivery ofantibiotics in bone infections. Drugs2000,59(6):1223-1232.
    18. Rutledge B, Huyette D, Day D, Anglen J: Treatment of osteomyelitis with local antibioticsdelivered via bioabsorbable polymer. Clin Orthop Relat Res2003(411):280-287.
    19. Zalavras CG, Patzakis MJ, Holtom P: Local antibiotic therapy in the treatment of open fracturesand osteomyelitis. Clin Orthop Relat Res2004(427):86-93.
    20. Wininger DA, Fass RJ: Antibiotic-impregnated cement and beads for orthopedic infections.Antimicrob Agents Chemother1996,40(12):2675-2679.
    21. Reading NC, Sperandio V: Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett2006,254(1):1-11.
    22. Burny F, Donkerwolcke M, Moulart F, Bourgois R, Puers R, Van Schuylenbergh K, Barbosa M, PaivaO, Rodes F, Begueret JB et al: Concept, design and fabrication of smart orthopedic implants.Med Eng Phys2000,22(7):469-479.
    23. Fairman R, Akerfeldt KS: Peptides as novel smart materials. Curr Opin Struct Biol2005,15(4):453-463.
    24. Hu SG, Jou CH, Yang MC: Protein adsorption, fibroblast activity and antibacterial properties ofpoly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan andchitooligosaccharide after immobilized with hyaluronic acid. Biomaterials2003,24(16):2685-2693.
    25. Galdbart JO, Morvan A, Desplaces N, el Solh N: Phenotypic and genomic variation amongStaphylococcus epidermidis strains infecting joint prostheses. J Clin Microbiol1999,37(5):1306-1312.
    26. Heilmann C, Hussain M, Peters G, Gotz F: Evidence for autolysin-mediated primary attachmentof Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol1997,24(5):1013-1024.
    27. Hall-Stoodley L, Costerton JW, Stoodley P: Bacterial biofilms: from the natural environment toinfectious diseases. Nat Rev Microbiol2004,2(2):95-108.
    28. Stewart PS, Costerton JW: Antibiotic resistance of bacteria in biofilms. Lancet2001,358(9276):135-138.
    29. Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistentinfections. Science1999,284(5418):1318-1322.
    30. Davies D: Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov2003,2(2):114-122.
    31. Anderl JN, Franklin MJ, Stewart PS: Role of antibiotic penetration limitation in Klebsiellapneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial agents andchemotherapy2000,44(7):1818-1824.
    1. Dobbins JJ, Seligson D, Raff MJ: Bacterial colonization of orthopedicfixation devices in the absence of clinical infection. The Journal of infectiousdiseases1988:203-205.
    2. Arciola CR, Campoccia D, Baldassarri L, Donati ME, Pirini V, Gamberini S,Montanaro L: Detection of biofilm formation in Staphylococcus epidermidisfrom implant infections. Comparison of a PCR-method that recognizes thepresence of ica genes with two classic phenotypic methods. J Biomed MaterRes A2006,76(2):425-430.
    3. Jang CH, Park H, Cho YB, Choi CH: Effect of vancomycin-coatedtympanostomy tubes on methicillin-resistant Staphylococcus aureus biofilmformation: in vitro study. J Laryngol Otol2010,124(6):594-598.
    4. Norowski PA, Jr., Bumgardner JD: Biomaterial and antibiotic strategies forperi-implantitis: a review. J Biomed Mater Res B Appl Biomater2009,88(2):530-543.
    5. Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common causeof persistent infections. Science1999,284(5418):1318-1322.
    6. Dunne WM: Bacterial adhesion: seen any good biofilms lately? Clinicalmicrobiology reviews2002,15(2):155-166.
    7. Waters CM, Bassler BL: Quorum sensing: cell-to-cell communication inbacteria. Annu Rev Cell Dev Biol2005,21:319-346.
    8. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP,Iglewski BH: Quinolone signaling in the cell-to-cell communication system ofPseudomonas aeruginosa. Proceedings of the National Academy of Sciences1999,96(20):11229-11234.
    9. Surette MG, Miller MB, Bassler BL: Quorum sensing in Escherichia coli,Salmonella typhimurium, and Vibrio harveyi: a new family of genesresponsible for autoinducer production. Proceedings of the National Academyof Sciences1999,96(4):1639-1644.
    10. De Kievit TR, Iglewski BH: Bacterial quorum sensing in pathogenicrelationships. Infection and Immunity2000,68(9):4839-4849.
    11. Watnick P, Kolter R: Biofilm, city of microbes. Journal of Bacteriology2000,182(10):2675-2679.
    12. O'Toole G, Kaplan HB, Kolter R: Biofilm formation as microbial development.Annual Reviews in Microbiology2000,54(1):49-79.
    13. Mah T-FC, O'Toole GA: Mechanisms of biofilm resistance to antimicrobialagents. Trends in microbiology2001,9(1):34-39.
    14. Schierholz J, Beuth J: Implant infections: a haven for opportunistic bacteria.Journal of Hospital Infection2001,49(2):87-93.
    15. Livermore D: Antibiotic uptake and transport by bacteria. Scandinavianjournal of infectious diseases Supplementum1990,74:15.
    16. Anderl JN, Franklin MJ, Stewart PS: Role of antibiotic penetration limitationin Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin.Antimicrobial agents and chemotherapy2000,44(7):1818-1824.
    17. Gordon C, Hodges N, Marriott C: Antibiotic interaction and diffusion throughalginate and exopolysaccharide of cystic fibrosis-derived Pseudomonasaeruginosa. Journal of antimicrobial chemotherapy1988,22(5):667-674.
    18. Nichols WW, Dorrington S, Slack M, Walmsley H: Inhibition of tobramycindiffusion by binding to alginate. Antimicrobial agents and chemotherapy1988,32(4):518-523.
    19. De Beer D, Stoodley P, Roe F, Lewandowski Z: Effects of biofilm structures onoxygen distribution and mass transport. Biotechnology and bioengineering2004,43(11):1131-1138.
    20. Zhang TC, Bishop PL: Evaluation of substrate and pH effects in a nitrifyingbiofilm. Water environment research1996:1107-1115.
    21. Stewart PS, William Costerton J: Antibiotic resistance of bacteria in biofilms.The Lancet2001,358(9276):135-138.
    22. Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VG:Production of chitooligosaccharides and their potential applications inmedicine. Mar Drugs2010,8(5):1482-1517.
    23. Muzzarelli RA: Native, industrial and fossil chitins. EXS1999,87:1-6.
    24. Bhatnagar A, Sillanpaa M: Applications of chitin-and chitosan-derivatives forthe detoxification of water and wastewater--a short review. Adv ColloidInterface Sci2009,152(1-2):26-38.
    25. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM: Recent advances onchitosan-based micro-and nanoparticles in drug delivery. J Control Release2004,100(1):5-28.
    26. Alonso MJ, Sanchez A: The potential of chitosan in ocular drug delivery. JPharm Pharmacol2003,55(11):1451-1463.
    27. Anraku M, Arahira M, Mady FM, Khaled KA, Yamasaki K, Seo H, Imai T,Otagiri M: Enhancement of dissolution and bioavailability of flurbiprofen bylow molecular weight chitosans. Pharmazie2010,65(7):461-466.
    28. Baldrick P: The safety of chitosan as a pharmaceutical excipient. RegulToxicol Pharmacol2010,56(3):290-299.
    29. Bernkop-Schnurch A: Chitosan and its derivatives: potential excipients forperoral peptide delivery systems. Int J Pharm2000,194(1):1-13.
    30. Sannan T, Kurita K, Iwakura Y: Studies on chitin,2. Effect of deacetylation onsolubility. Die Makromolekulare Chemie1976,177(12):3589-3600.
    31. Aimin C, Chunlin H, Juliang B, Tinyin Z, Zhichao D: Antibiotic loadedchitosan bar. An in vitro, in vivo study of a possible treatment forosteomyelitis. Clin Orthop Relat Res1999(366):239-247.
    32. Alipour SM, Nouri M, Mokhtari J, Bahrami SH: Electrospinning of poly(vinylalcohol)-water-soluble quaternized chitosan derivative blend. Carbohydr Res2009,344(18):2496-2501.
    33. Alburquenque C, Bucarey SA, Neira-Carrillo A, Urzua B, Hermosilla G, TapiaCV: Antifungal activity of low molecular weight chitosan against clinicalisolates of Candida spp. Med Mycol2010,48(8):1018-1023.
    34. Friedman M, Juneja VK: Review of antimicrobial and antioxidative activitiesof chitosans in food. J Food Prot2010,73(9):1737-1761.
    35. Andrade RV, Da Silva SP, Torres FA, Pocas-Fonseca MJ, Silva-Pereira I,Maranhao AQ, Campos EG, Moraes LM, Jesuino RS, Pereira M et al: Overviewand perspectives the transcriptome of Paracoccidioides brasiliensis. RevIberoam Micol2005,22(4):203-212.
    36. Gil G, del Monaco S, Cerrutti P, Galvagno M: Selective antimicrobial activityof chitosan on beer spoilage bacteria and brewing yeasts. Biotechnol Lett2004,26(7):569-574.
    37. Sagoo SK, Board R, Roller S: Chitosan potentiates the antimicrobial action ofsodium benzoate on spoilage yeasts. Lett Appl Microbiol2002,34(3):168-172.
    38. Abarrategi A, Gutierrez MC, Moreno-Vicente C, Hortiguela MJ, Ramos V,Lopez-Lacomba JL, Ferrer ML, del Monte F: Multiwall carbon nanotubescaffolds for tissue engineering purposes. Biomaterials2008,29(1):94-102.
    39. Tokura S, Tamura H, Azuma I: Immunological aspects of chitin and chitinderivatives administered to animals. EXS1999,87:279-292.
    40. Andres Y, Giraud L, Gerente C, Le Cloirec P: Antibacterial effects of chitosanpowder: mechanisms of action. Environ Technol2007,28(12):1357-1363.
    41. Hadwiger LA, Beckman JM: Chitosan as a Component of Pea-Fusariumsolani Interactions. Plant Physiol1980,66(2):205-211.
    42. Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu le J: Antibacterialmechanism of chitosan microspheres in a solid dispersing system against E.coli. Colloids Surf B Biointerfaces2008,65(2):197-202.
    43. Takahashi T, Imai M, Suzuki I, Sawai J: Growth inhibitory effect on bacteriaof chitosan membranes regulated with deacetylation degree. BiochemicalEngineering Journal2008,40(3):485-491.
    44. Gerasimenko DV, Avdienko ID, Bannikova GE, Zueva O, Varlamov VP:[Antibacterial effects of water-soluble low-molecular-weight chitosans ondifferent microorganisms]. Prikl Biokhim Mikrobiol2004,40(3):301-306.
    45. Tokura S, Ueno K, Miyazaki S, Nishi N: Molecular weight dependentantimicrobial activity by Chitosan. Macromolecular Symposia1997,120(1):1-9.
    46. Jeon Y-J, Park P-J, Kim S-K: Antimicrobial effect of chitooligosaccharidesproduced by bioreactor. Carbohydrate Polymers2001,44(1):71-76.
    47. No HK, Park NY, Lee SH, Meyers SP: Antibacterial activity of chitosans andchitosan oligomers with different molecular weights. Int J Food Microbiol2002,74(1-2):65-72.
    48. Shin Y, Yoo DI, Jang J: Molecular weight effect on antimicrobial activity ofchitosan treated cotton fabrics. Journal of Applied Polymer Science2001,80(13):2495-2501.
    49. Zheng L-Y, Zhu J-F: Study on antimicrobial activity of chitosan withdifferent molecular weights. Carbohydrate Polymers2003,54(4):527-530.
    50. Jenkins DW, Hudson SM: Review of vinyl graft copolymerization featuringrecent advances toward controlled radical-based reactions and illustratedwith chitin/chitosan trunk polymers. Chemical Reviews-Columbus2001,101(11):3245-3274.
    51. Alves NM, Mano JF: Chitosan derivatives obtained by chemicalmodifications for biomedical and environmental applications. Int J BiolMacromol2008,43(5):401-414.
    52. Lim S-H, Hudson SM: Synthesis and antimicrobial activity of a water-solublechitosan derivative with a fiber-reactive group. Carbohydrate Research2004,339(2):313-319.
    53. Muzzarelli RA, Tanfani F, Emanuelli M, Mariotti S:N-(carboxymethylidene) chitosans and N-(carboxymethyl)chitosans: Novel chelating polyampholytes obtained from chitosanglyoxylate. Carbohydrate Research1982,107(2):199-214.
    54. Wang X, Du Y, Fan L, Liu H, Hu Y: Chitosan-metal complexes asantimicrobial agent: Synthesis, characterization and Structure-activitystudy. Polymer Bulletin2005,55(1):105-113.
    55. Liu H, Du Y, Wang X, Hu Y, Kennedy JF: Interaction between chitosan andalkyl β-d-glucopyranoside and its effect on their antimicrobial activity.Carbohydrate Polymers2004,56(2):243-250.
    56. Wang X, Du Y, Liu H: Preparation, characterization and antimicrobialactivity of chitosan–Zn complex. Carbohydrate Polymers2004,56(1):21-26.
    57. Travan A, Marsich E, Donati I, Benincasa M, Giazzon M, Felisari L, Paoletti S:Silver-polysaccharide nanocomposite antimicrobial coatings for methacrylicthermosets. Acta Biomater2011,7(1):337-346.
    58. Ong S-Y, Wu J, Moochhala SM, Tan M-H, Lu J: Development of achitosan-based wound dressing with improved hemostatic and antimicrobialproperties. Biomaterials2008,29(32):4323-4332.
    59. Lim SH, Hudson SM: Synthesis and antimicrobial activity of a water-solublechitosan derivative with a fiber-reactive group. Carbohydr Res2004,339(2):313-319.
    60. Aiedeh K, Taha MO: Synthesis of iron-crosslinked chitosan succinate andiron-crosslinked hydroxamated chitosan succinate and their in vitroevaluation as potential matrix materials for oral theophyllinesustained-release beads. European journal of pharmaceutical sciences2001,13(2):159-168.
    61. Chen Y-L, Chou C-C: Factors affecting the susceptibility ofStaphylococcus aureus CCRC12657to water soluble lactose chitosanderivative. Food microbiology2005,22(1):29-35.
    62. Liu N, Chen X-G, Park H-J, Liu C-G, Liu C-S, Meng X-H, Yu L-J: Effect ofMW and concentration of chitosan on antibacterial activity ofEscherichia coli. Carbohydrate Polymers2006,64(1):60-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700