锂离子电池负极材料钛酸锂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别采用高温固相法和溶胶-凝胶法合成锂离子电池负极材料钛酸锂,并采用室温恒流充放电、交流阻抗、循环伏安等测试方法,以及XRD、SEM、TG-DTA对材料进行了表征。
     考察了固相法制备Li_4Ti_5O_(12)的工艺条件的影响,并对产物进行了循环伏安和交流阻抗的研究。实验结果表明:原料为锐钛矿TiO_2和Li_2CO_3、焙烧温度为900℃、保温时间为16h得到的材料性能最佳;交流阻抗测试表明Li_4Ti_5O_(12)表面并不形成钝化膜,将其用做锂离子电池负极材料,比碳负极材料更安全。
     对固相法制备的钛酸锂材料进行了Ag~+、V~(5+)、Sn~(4+)、Mo~(6+)、Ge~(4+)、Nb~(5+)等离子的掺杂。结果表明:Ag~+的掺杂比为0.2时,0.2C下循环20次后电池比容量还保持在140.89mAh/g;掺杂Sn~(4+)的量为0.1时,0.1C下循环20次后容量还保持在157.10mAh/g;掺杂Mo6+含量为0.2的材料20次循环后比容量保持在145.86 mAh/g;Ge~(4+)离子掺杂比为0.1时,实验电池表现出了较高的首次放电比容量为174.38mAh/g,接近理论比容量。0.1C循环20次后的比容量还保持156.86mAh/g。
     采用溶胶-凝胶法合成了Li_4Ti_5O_(12)材料,考察了不同的操作方法、烧结时间对实验的影响,得到了较为理想的工艺流程。900℃热处理20h后得到的未掺杂钛酸锂,比容量一直保持在120mAh/g左右,有较高的充放电效率。并采用溶胶-凝胶法进行了Mo~(6+)、Nb~(5+)、Ge~(4+)的有效掺杂,掺Mo~(6+)量为0.5材料的大电流放电性能优于未掺杂的,其循环性能也有所改善。
Lithium Titanate was synthesized by solid-state reaction and sol-gel method, respectively. The materials were investigated by constant current charge-discharge test, AC impedance, Cycle Voltammagram (CV) and characterized by X-ray Diffraction (XRD), Scan electron microscope (SEM), Thermogravimetry-differential thermoanalysis (TG-DTA).
     The infection of the synthesis conditions of Li_4Ti_5O_(12) prepared by solid-state reaction were investigated, CV and AC impedance were used to evaluate the product. The results demonstrated that the materials of best performance were prepared with Li2CO3 and anatase TiO2 as starting materials sintered at 900℃for 16h. There is not passivation film on the surface of Li_4Ti_5O_(12) indicated that Li_4Ti_5O_(12) was safer than carbon as Li-ion battery negative material.
     Solid-state reaction was used to gain ion-doped Li_4Ti_5O_(12). The results showed that the ions of Ag~+、V~(5+)、Sn~(4+)、Mo~(6+)、Ge~(4+)、Nb~(5+) were doped availably. The materials doped by Ag~+、Sn~(4+)、Mo~(6+)、Ge~(4+) got best performance with different doping content: 0.2 Ag~+ with 140.89mAh/g discharge capacity after 20cycles at 0.2C, 0.1 Sn~(4+) with 157.10mAh/g discharge capacity after 20cycles at 0.1C, 0.2 Mo~(6+) with 145.86 mAh/g discharge capacity after 20cycles at 0.2C, 0.1 Ge4+ with174.38mAh/g first discharge capacity 156.86mAh/g discharge capacity after 20 cycles at 0.1C.
     Li_4Ti_5O_(12) was synthesized by sol-gel method, different operation ans sintered time were investigated to get the ideal experimental flow. The results showed that the materials sintered at 900℃for 20h got the capacity of 120mAh/g and better high charge-discharge efficiency. Mo~(6+)、Nb~(5+)、Ge~(4+) could also be doped by sol-gel method, the material doped with 0.5 Mo~(6+) was better than other doped. The cyclic stability of doped Li_4Ti_5O_(12) was improved than pure Li_4Ti_5O_(12).
引文
[1]吴生晖等,锂离子电池负极材料的研究,电源技术,1998,(1):35~39
    [2]Flandrois S, Simon B, Carbon materials for lithium-ion rechargeable batteries, Carbon, 1999, (37):165~180
    [3]Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li-ion batteries, Carbon, 2000, (38):183~197
    [4]Prosini P.P, Mancini R, Petrucci L, et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications, Solid State Ionics, 2001,144:185~192
    [5]吴宇平,戴晓兵,马军旗等,锂离子电池——应用与实践,北京:化学工业出版社,2004:14,29~30
    [6]Armand M, In materials for advanced batteries. Plenum Press, New York, 1980:147~149
    [7]Scrosati B, Lithium rocking chair batteries: and old concept, Electrochem. Soc., 1992, 139(10):2776~2781
    [8]B.B.Owens, W.H.Smyrl, J.J.Xu, R&D on lithium batteries in the USA: high-electrode materials, Journal of Power Source, 1999, 81-82:150~155
    [9]杨林,中日韩三国锂离子电池的发展概况,中国金属通报,2006,8:4~7
    [10]冯熙康,王伯良,陈爱松等,电动汽车锂离子动力电池系统的研制,电源技术,2002,26(2):63~65
    [11]施思齐,欧阳楚英,王兆翔,锂离子电池中的物理问题及其研究进展,物理,2004,33(3):182~185
    [12]刘东强,锂离子电池负极材料Li4Ti5O12的合成研究:[硕士学位论文],四川;四川大学,2004:14
    [13]邓敏超等,锂离子电池负极材料研究进展,电池,2003,31(3):146~149
    [14]郭炳焜,徐微,王先友等,锂离子电池,长沙:中南工业大学出版社,2002
    [15]吴国良,杨新河,阚素荣等,锂离子电池及其电极材料的研制,电池,1998,28(6):258~262
    [16]Shi H, Barker J, Structure and lithium intercalation properties of synthetic and natural graphite, Electrochem Soc, 1996, 143(11):3466~3472
    [17]Pasquier A.D, Plitz I, Menocal S, et al. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, Journal of Power Sources, 2003, 115:171~178
    [18]化学电源工艺学,史鹏飞主编,哈尔滨工业大学出版社,207-210页
    [19]Zheng T, High capacity carbon prepared from phenolic resin for anode of lithium-ion batteries, Electrochem. Soc., 1995, 142:211~214
    [20]雷永泉,万群,石永康,新能源材料[M],天津:天津大学出社,2000:123~124
    [21]Idota Y, Kubota T, Matsufuji A, et al. Tin-based Amorphous Oxide: A High-capacity Lithium Ion Storage Material, Science, 1997, 276:1395~1397
    [22]苏岳锋,吴锋,陈朝峰,纳米微晶TiO2合成Li4Ti5O12及嵌锂行为,物理化学学报,2004,20(7):707~711
    [23]陈敬波,胡国容,彭忠东等,锂离子电池氧化物负极材料研究进展,电池,2003,33(3):183~186
    [24]陈方,梁海潮,李仁贵等,负极活性材料Li4Ti5O12的研究进展,无机材料学报,2005,20(3):537~544
    [25]彭久云,曾照强,苗赫濯等,锂离子蓄电池负极材料Li4Ti5O12的研究进展,电源技术,2002,26(6):452~456
    [26]高剑,姜长印,应皆容等,锂离子电池负极材料钛酸锂的研究进展,电池,2005,35(5):390~392
    [27]官云龙,仇卫华,赵海雷等,液相法合成Li4Ti5O12负极材料电化学性能的研究,第十三次全国电化学会议,广州,24th~28th,2005:432~433
    [28]Nakayama M, Ishida Y, Ikuta H, etal. Mixed conduction for the spinet type (1-x)Li4/3Ti5/3O4-xLiCrTiO4 system, Solid State Ionics, 1999, 117:265~271
    [29]B. Scrosati, S. panero, P. Reale et al. Investigation of new types of lithium-ion battery materials, Journal of Power Sources. 2002, 105:161~168
    [30]杨建文,钟晖,钟海云等,无定形TiO2合成尖晶石Li4Ti5O12的性能,中南大学学报,2005,5(2):170~174
    [31]Nakahara K, Nakajima R, Matsushima T. et al. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells, Journal of Power Sources, 2003,117:131~136
    [32]A.N.Jansen, A.J.Kahaian, K.D.Kepler et al. Development of a high-power lithium-ion battery, Journal of Power Sources, 1999, 81-82:902~905
    [33]Huang S.H, Wen Z.Y. et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12, Electrochemistry Communications, 2004, 6: 1093~1097
    [34]Guerfi A, Sevigny S, Lagace M. et al. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators, Journal of Power Sources, 2003,119-121:88~94
    [35]贺连星,柳汉印,李毅,B位异价离子(Ar,Cr)置换对Li3xLa2/3-xTiO3离子电导率的影响,无机材料学报,2004,19(4):809~815
    [36]Guerfi A, Charest P. et al. Nano electronically conductive titanium-spinel as lithium ion storage native electrode, Power Sources, 2004, 126:163~168
    [37]Zaghib et al. Li4Ti5O12, Li(4-α)ZαTi5O12 or Li4ZβTi(5-β)O12 particles, processes for obtaining same and use as electrochemical generators, United States: 0202934 A1, Oct.14, 2004
    [38]Robertson A.D, Tukamoto H, Irvine J.T.S, et al. Li1+xFe1-3xTi1+2xO4 (0.0≤x≤0.33) based spinels: Possible negative electrode materials for future Li-ion batteries, Journal of the Electrochemical society, 1999, 146(11): 3958~3962
    [39]Huang S, Wen Z, Gu Z. et al. Preparation and cycling performance of Al3+ and F- co-substituted compounds Li4AlxTi5-xFyO12-y, Electrochimica Acta, 2005, 50:4057~4062
    [40]武鹏,唐致远,管道安,锂离子电池负极材料钛酸锂的改性研究,第十三次全国电化学会议,广州,24th~28th,2005:440~441
    [41]Kubiak P, Garcia A, Womes M. et al. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe, Journal of Power Sources, 2003, 119-121:626~630
    [42]Shen C-m., Zhang X-g., Zhou Y-k et al. Preparation and characterization of nanocrystalling Li4Ti5O12 by sol-gel method, Materials Chemistry and Physics, 2002, 78: 437~441
    [43]Belharouak I, Amine K, Li2MTi6O12 (M=Sr, Ba): New anodes for lithium-ion batteries, Electro-chemistry Communications, 2003, 5:435~438
    [44]Sun Y.K, Jung D.J, Lee Y.S. et al. Synthesis and electrochemical characterization of spinel Li[Li(1-x)/3CrxTi(5-2x)/3]O4 anode materials, Journal of Power Sources, 2004, 125:242~245
    [45]Ariyoshi K, Yamamoto S, Ohzuku T, Three-Volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4, Journal of Power Sources, 2003, 119-121: 959~963
    [46]Panero S, Satolli D, Salomon M. et al. A new type of lithium-ion cell based on the Li4Ti5O12 / Li2Co0.4Fe0.4Mn3.2O8 high-voltage, electrode combination, Electrochem. Communications, 2000, 2: 810~813
    [47]Rho Y.H, Kanamura K, Fujisaki M, et al. Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol-gel method, Solid State Ionics. 2002, 151:151~157
    [48]Prosini P.P, Mancini R, Petrucci L. et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications, Solid State Ionics, 2001, 144:185~192
    [49]Zaghib K, Simoneau M, Armand M. et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries, Power Sources, 1999, 81-82:300~305
    [50]Pasquier A.D, Plitz I, Gural J. et al. Power-ion battery: bridging the gap between Li-ion and supercapacitor chemistries, Power Sources, 2004, 136:160~170
    [51]Pasquier A.D, Laforgue A, Simon P, Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device, Journal of Power Sources, 2004, 125:95~102
    [52]Jamnik J. Impedance spectroscopy of mixed conductors with semi-blocking boundaries.Solid StateI onics,2003,157:19-28
    [53]Prosini P P, Lisi M, Zane D Z, et al. Determination of the chemical diffusion coefficient of lithium in LiFeP04. Solid State Ionics, 2002,148:45-51
    [54]Izquierdo G, West A R. Materials Research Bulletin, 1980,15(11):1655-1660
    [55]高玲,仇卫华,赵海雷,合成温度对Li4Ti5O12电化学性能的影响,电池,2004,34(5):351~352
    [56]高玲,仇卫华,赵海雷,Li4Ti5O12作为锂离子电池负极材料电化学性能,北京科技大学学报,2005,27(1):82~85
    [57]杨晓燕,华寿南,张树文,电化学,2000,6(3):350—356.
    [58]杨建文,钟晖,钟海云等,Li4Ti5O12的合成及影响因素,中南大学学报,2002,36(1):55~59
    [59]Yamawaki et al. Nonaqueous secondary battery with lithium titanium cathode [P]. Japan: 986722, July 6, 2004
    [60]吴宇平,万春荣,姜长印等,锂离子二次电池,北京:化学工业出版社,2002
    [61]Evans R C,胡玉才,戴寰,新民译结晶化学导论,北京:人民教育出版社,1981:133~173
    [62]Lippens P. E, Womes M, Kubiak P, et al. Electronic structure of the spinel Li4Ti5O12 studied ab initio calculations and X-ray absorption spectroscopy, Solid State Sciences, 2004, 6:161~166
    [63]Jung K.N, Pyun S.I, Kim S.W, Thermodynamic and linetic approaches to lithium intercalation into Li[Ti5/3Li1/3]O4 film electrode, Power Sources, 2003, 119-121:637~643
    [64]Pyun S.I, Kim S.W, Shin H.C, Lithium transport through Li1+δ[Ti2-yLiy]O4 (y=0,1/3) electrodes by analyzing current transients upon large potential steps, Power Sources, 1999, 81-82: 248~254
    [65]曹楚南,张鉴清著,电化学阻抗谱导论,北京:科学出版社,2002
    [66]Kavan L, Gratzet M, Facile synthesis of nanocrystalline Li4Ti5O12 (spinet) exhibiting fast Li-insertion, Electrochemical and Solid-State Letters, 2002, 5(2): A39-A42
    [67]李玥,赵海雷,仇卫华,李雪,二次锂离子电池负极材料Li4Ti5O12的研究进展[J]:硅酸盐通报,2007,26(1):92-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700