活性炭在卷烟滤嘴及烟草加工废水中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解卷烟滤嘴用活性炭的应用现状,论文选取国内外8种市售卷烟滤嘴中的活性炭作为吸附剂,对各活性炭进行粒度分析、孔隙分析和红外光谱分析表征,并以氨、乙醛、丁醛、苯、异戊二烯、丙酮、一氧化碳和一氧化氮作为吸附质进行吸附实验,评价其吸附性能,为卷烟滤嘴用活性炭的选择提供一定的理论基础。结果表明:活性炭作为烟滤嘴添加剂目前无统一、具体的标准指标,各品牌市售卷烟中活性炭的添加量、添加方式以及活性炭的粒度、比表面积、孔隙结构都有所不同。由各卷烟滤嘴用活性炭的FTIR谱图以及粒度分布可以推断,各品牌卷烟滤嘴中添加的活性炭多为物理法制备的果壳活性炭,如ZY、SH、SH-2、D、K、M和P;PQR中酸性官能团较多,有可能预先经过改性处理。研究表明二元复合滤嘴中的活性炭(D、K、M和P)由于表面附着大量的三醋酸甘油脂,堵塞部分微孔及中、大孔孔隙并形成空间位阻,增加吸附质分子的传质阻力,导致其吸附性能明显低于三元复合滤嘴中的活性炭(SH)。适当增加活性炭的中、大孔和活性炭表面的C=O结构有利于提高活性炭对大部分吸附质的捕集。
     论文以杏壳为原料,采用H_3PO_4和H_3PO_4复合KH_2PO_4为活化剂制备出不同孔隙和表面含氧官能团的活性炭,采用N_2吸附-脱附、碘吸附值测定、亚甲基蓝吸附值测定、元素分析和Boehm滴定法对其进行孔隙结构、比表面积和含氧官能团含量分析,并以此作为卷烟滤嘴添加剂,采用DZJ单通道吸烟机对卷烟主流烟气中的重金属元素Hg和Pb进行吸附实验。首次研究得出活性炭吸附重金属元素Hg的最可几孔径为0.852-1.096nm之间,而活性炭吸附重金属元素Pb的最可几孔在1.245-1.534nm之间。活性炭的孔隙分布比比表面积更加重要,比表面积与重金属元素Hg和Pb的吸附并无明显相关性。活性炭表面的酸性含氧官能团在吸附过程中发挥着重要的作用,羧基官能团含量与卷烟烟气中重金属元素Hg和Pb的残留含量呈反比例关系。在活性炭吸附处理卷烟烟气中的重金属元素Hg和Pb过程中,Hg和Pb存在竞争吸附现象。
     通过浸渍法制备了四种改性杏壳活性炭(氨水改性活性炭、硫改性活性炭、碘改性活性炭和铁盐改性活性炭),采用N_2吸附-脱附、元素分析、傅立叶变换红外(FTIR)、热重分析(TG)、X-射线衍射(XRD)和X-射线能谱分析等方法对改性活性炭进行表征,首次针对降低卷烟烟气中重金属元素Hg和Pb的危害进行相关吸附剂改性及其吸附性能研究,结果表明:改性后,氨水改性活性炭和硫改性活性炭其孔隙结构有不同程度的发展,而碘改性活性炭和铁盐改性活性炭孔隙和比表面积都发生了不同程度的减小。FTIR分析表明,氨水改性活性炭表面引进胺基;活性炭、KI和H_2SO_4之间发生了化学反应,活性炭表面负载了I_2和磺酸基两种活性位。TG结果表明硫改性活性炭、经KI改性的活性炭稳定性降低;经KI和H_2SO_4改性后的活性炭热稳定性显著降低。各改性活性炭在200℃下均较稳定,为其作为卷烟滤嘴用活性炭提供了前提条件。XRD结果表明铁盐改性活性炭表面负载的为α-Fe_2O_3。
     以上述四种改性活性炭作为吸附剂,采用DZJ单通道吸烟机对卷烟主流烟气中的重金属元素Hg和Pb进行吸附实验,并对安全性作出评价。结果表明:未改性活性炭对主流烟气中的Hg和Pb的吸附能力较弱,主要为物理吸附。活性炭经氨水改性之后,N含量增加使活性炭表面产生新的吸附位,使活性炭的吸附效率显著增加,经N-15吸附后的Hg和Pb含量较对照样分别降低了64.00%和80.00%。硫改性活性炭表现出明显的化学吸附作用,活性炭表面的S与Hg、Pb反应生成HgS、PbS沉积于活性炭孔隙中。S-11吸附能力最强,主流烟气中Hg和Pb含量分别较对照样降低了84.00%和80.00%。在相同制备条件下,适量的添加浓H_2SO_4溶液可以使KI转化为I_2负载在活性炭表面,极大的提高改性活性炭对主流烟气中Hg和Pb的吸附能力。经I-3和I-4吸附后的主流烟气中均未检测出Hg含量。活性炭表面的Fe_2O_3对Hg表现出强烈的亲和力,优先吸附主流烟气中的Hg,表现出强烈的化学吸附作用,Pb的吸附受到Hg的竞争吸附以及活性炭微孔孔隙含量的影响。经F-8吸附后的Hg含量较对照样降低了90.67%,而Pb含量仅降低了70.12%。各种改性活性炭均在一定程度上降低了卷烟主流烟气中TPM含量。由于活性炭改性过程中引入了S、I和Fe元素,为了防止在卷烟抽吸过程中主流烟气带出含S、I和Fe元素颗粒的发生,避免对人体健康造成二次危害,采用能谱分析对吸附前后的剑桥滤片进行元素扫描,结果表明吸附后的剑桥滤片中未发现S、Na_2S、KI、I_2和Fe_2O_3颗粒,保证了改性活性炭作为卷烟滤嘴用添加剂的安全性。
     以杏壳活性炭为原料,通过水蒸气物理活化法、氯化锌化学活化法对原料进行二次活化,采用硫酸氢钠对原料进行改性处理,并将其应用于烟草加工废水中尼古丁的去除。结果表明:AC-N与AC-H对水溶液中尼古丁静态吸附平衡实验数据可用Freundlich吸附等温线方程进行较好的描述。适当的提高反应温度有利于化学吸附的进行。静态实验结果表明,AC-H在45℃、尼古丁初始浓度为750mg/L条件下的饱和吸附量最大,达355.68mg/g。活性炭对水溶液中尼古丁的饱和吸附量随活性炭表面的酚羟基含量的增加而增加,随羧基含量的增加而减小。
In order to understand the application status of activated carbon in cigarette filters,8brands of cigarettes purchased from convenience stores were used to separate activatedcarbons from cigarette filters, and then employed as adsorbent materials for adsorption ofammonia, acetaldehyde, butyraldehyde, benzene, isoprene, acetone, carbon monoxide and nitricoxide. Their adsorption capacities were evaluated to understand the application status ofactivated carbon in cigarettes, and provide theoretical basis for selection of activated carbon.The activated carbons were characterized by particle size analysis, pore structure analysis, andFourier transform infrared spectroscopy (FTIR). The results indicate no unified standardindicator for activated carbons used in cigarette filters, because the addition amounts, addingmodes, particle sizes, surface areas and pore structures of activated carbons were differentamong the8brands. The FTIR and particle size analysis indicated that the activated carbonsused for cigarettes were most physical ones, such as ZY, SH, SH-2, D, K, M and P; PQRcontained the most acidic oxygen groups, probably because it had been modified by chemicals.The adding mode of activated carbon affected its adsorption properties seriously. Comparedwith the ternary complex cigarette filter (SH), the adsorption capacities of activated carbonsused in the binary composite cigarette filters (D, K, M and P) were poorer, probably because ofnumerous glyceryl triacetate on the surface of activated carbon used in the binary compositecigarette filters, which could block pore structures and form steric hindrance, and increase themass transfer resistance of the adsorbate molecules. Appropriately increasing the contents ofmespores, macropores and C=O structures in activated carbons were favorable for improvingthe ability to capture most adsorbates. All the activated carbons could not absorb CO.
     Activated carbons were prepared from almond shells by chemical activation with H_3PO_4orH_3PO_4-KH_2PO_4composite. The samples were characterized by N_2adsorption-desorption,iodine adsorption number determination, methylene blue adsorption number determination,elemental analysis and Boehm titration, and their textures and surface chemistry were studied.Then they were used as adsorbents in the cigarette filters and experiments were carried out toabsorb the heavy metals of Hg and Pb in cigarette main stream by DZJ single-channel smokingmachine. The results are first to show that: The pore size within0.852-1.096nm is conducive toHg adsorption, and the pore size within1.245-1.534nm is conducive to Pb adsorption. The poresize distributions are more important than the surface areas of activated carbons, as there is noobvious relationship between the surface areas and Hg/Pb adsorption amount. The surfaceacidic oxygen groups play an important role in the adsorption; improving the carboxyl groupcontents is favorable for adsorption of Hg and Pb, and Hg was competing with Pb for the sameactive sites during the adsorption.
     Four modified activated carbons (modified by ammonia, sulfur, iodine, or iron salt) wereprepared by impregnation, and almond shell-based activated carbon was used as raw materials.The modified activated carbons were characterized by N_2adsorption-desorption, elementalanalysis, FTIR, thermogravimetric analysis (TG), X-ray diffraction (XRD) and X-rayenergy-dispersive spectrum (EDS). It was the first time to reduce the harms of Hg and Pb incigarette stream smoke by adsorbents related with their modified methods and adsorptionproperties. The results show that: After the modification, the pore structure contents in bothammonia-modified and sulfur-modified activated carbons were improved to different degrees,while the pore contents and surface areas in both iodine-modified and iron salt-modifiedactivated carbons decreased to varying degrees. FTIR analysis showed that amino group wasintroduced onto the surface of ammonia-modified activated carbon; chemical reactions occurredamong activated carbon, KI and H_2SO_4, which led to the generation of two types of active sites(iodine and sulfuric acid group) on the surface of activated carbon. The TGA results indicatedthat the stabilities of sulfur-modified, KI/H_2SO_4composite modified and KI-modified activatedcarbons decreased, especially for KI/H_2SO_4composite-modified activated carbon; eachmodified activated carbon was stable below200℃, and it provided the preconditions formodified activated carbons to be used in cigarette filters. The XRD results show that the surfaceof iron salt-modified activated carbons was loaded with α-Fe_2O_3.
     The above four modified activated carbons were explored as adsorbents in cigarette filters,and experiments were carried out to absorb the Hg and Pb in cigarette main stream by DZJsingle-channel smoking machine, and their securities were evaluated. The results show that:The adsorption of Hg and Pb by non-modified activated carbon was weak and was mainlyphysical adsorption. Modification by ammonia could improve the N content in modifiedactivated carbons and lead to the generation of a new active site, so the adsorption efficiency ofammonia-modified activated carbons developed significantly. Compared with the blank sample,the contents of Hg and Pb in the cigarette stream smoke after adsorption by N-15decreased64.00%and80.00%, respectively. The adsorption on sulfur-modified activated carbons wasobviously chemical adsorption; the S on the surface of sulfur-modified activated carbons couldreact with Hg and Pb to produce HgS and PbS, which were deposited in the pores of theactivated carbons. S-11had the strongest adsorption capacity. Compared with the blank sample,the contents of Hg and Pb in the cigarette stream smoke after adsorption decreased84.00%and80.00%, respectively. A proper addition of H_2SO_4could transform KI to I_2and load on thesurface of activated carbon under the same preparation conditions, which greatly improved Hgand Pb adsorption capacities of modified activated carbons. There was no Hg in the cigarettestream smoke after adsorption by I-3and I-4. α-Fe_2O_3on the surface of modified activatedcarbons exhibited a strong affinity to Hg; the iron salt-modified activated carbons preferred toabsorb Hg and it was chemical adsorption. Pb adsorption by iron salt-modified activatedcarbons was influenced by the competitive adsorption of Hg and the content of micropores.Compared with the blank sample, Hg content and Pb content in the cigarette stream smoke afteradsorption by F-8decreased90.67%and70.12%respectively. Each modified activated carbon could reduce the TPM content in cigarette main stream to varying degrees. Because S, I and Featoms were introduced into activated carbons during modification, in order to prevent theparticles containing S, I and Fe from exiting through with cigarette stream smoke duringpumping, and to avoid secondary harm to health, the Cambrige filter films which adsorbedbefore and after were analyzed by EDS. The results showed no S, Na_2S, KI, I_2or Fe_2O_3particles on the Cambrige filter films after adsorption experiments, which ensured the safety ofmodified activated carbons to be used in cigarette filters.
     Finally, almond-shell-based activated carbon was reactivated or modified with steam, zincchloride and sodium bisulfate separately. Then the reactivated/modified activated carbons wereapplied for nicotine adsorption in the tobacco processing wastewater. The results show that:The nicotine adsorption experimental equilibrium data of reactivated/modified activatedcarbons could be described by Langmuir and Freundlich isotherm equations. Appropriatelyincreasing the reaction temperature could promote chemical adsorption. The static experimentaldata show that the saturated adsorption amount was best at45°C and nicotine initialconcentration was750mg/L by AC-H, which was355.68mg/g. The nicotine adsorptionamounts increased with the increasing phenolic hydroxyl content in activated carbons, butdecreased with the increasing carboxyl content.
引文
[1]张岩磊,谢文浩,戴亚.卷烟降焦工程[M].北京:中国轻工业出版社,2000.
    [2]杜雪晴.卷烟主流烟气中多环芳烃、有机氯农药和重金属研究[D].广州:中国科学院广州地球化学研究所.2006
    [3]Froggatt P. Determinants of Policy on smoking and health[J]. Int J Epidemiol,2001,18(1):1-9.
    [4]Schuman L M. The Origins of the report of the advisory committee on smoking and health to the surgeongeneral[J]. J Public Health Policy,1981,2(1):19-27.
    [5]Brownlee K A. A review of “smoking and health”[J]. J Amer Statistical Assoc,1965,60(311):722-739.
    [6]张素苹,童建.吸烟与肺癌易感性关系研究进展[J].现代预防医学,2007,34(14):2654-2656.
    [7]韦华.吸烟与慢性阻塞性肺疾病的关系及对老年患者肺功能的影响[J].中国老年学杂志,2012,32:2737-2739.
    [8]罗太阳,雷涛,刘小慧,等.吸烟的冠心病患者戒烟现状及影响因素分析[J].中华心血管病杂志,2011,39(5):406-409.
    [9]周晓梅,齐保申,徐成丽,等.长期吸烟对心血管功能和血脂水平的影响[J].2004,5(6):422-424.
    [10]杨功焕,马杰民,刘娜,等.中国人群2002年吸烟和被动吸烟的现状调查[J].中华流行病医学杂志,2005,26(2):77-83.
    [11]张梅,王丽敏,李镒冲,等.2010年中国成年人吸烟与戒烟行为现状调查[J].中绘预防医学杂志,2012,46(5):404-408.
    [12]陆新.利用生物活性材料降低卷烟主流烟气关键有害成分含量的研究[D].无:江南大学.2008.
    [13]周平.烟草企业废水处理及再生回用技术的应用[J].烟草科技,2007(3):19-22.
    [14]Raki V, Damjanovi L, Rac V, et al. The adsorption of nicotine from aqueous solution on differentzeolite structure[J]. Water Res,2010,44(6):2047-2057.
    [15]金闻博,戴亚.烟草化学[M].北京:清华大学出版社,1994.
    [16]李汉超,王淑娴.烟草·烟气化学及分析[M].河南:河南科学技术出版社,1991.
    [17]Hoffman D, Hoffman I. The changing cigarette,1950-1995[J]. J Toxicol Environ Health,1997,50(4):307-64.
    [18]吕辉雄,司学芝,樊静,等.流动注射催化光度法测定中药和香烟中的汞(Ⅱ)[J].分析测试学报,2004,23(1):97-99.
    [19]张艳玲,周汉平.烟草重金属研究概述[J].烟草科技,2004(12):20-23,27.
    [20]史宏志,刘国顺,常思敏,等.烟草重金属研究现状及农业减害对策[J].中国烟草学报,2011,17(3):89-94.
    [21]巴金莎,杜咏梅,侯小东,等.烟叶中重金属铅向主流烟气中的迁移分析[J].中国烟草科学,2010,31(6):1-4.
    [22]潘文杰.基于人工神经网络技术的烤烟金属积累特征研究[D].重庆:西南大学,2005.
    [23]吴玉萍,夏振远,雷丽萍.烟草中痕量汞的检测及烟株中汞的分布[J].分析试验室,2007,26(11):85-87.
    [24]张川东,何腾兵,林昌虎.几种重金属对烟草的影响研究进展[J].贵州农业科学,2008,36(6):78-80.
    [25]樊慧丽,肖蕴英,张建涛.烟草香烟中的汞和镉[J].陕西农业科学,2003(5):23.
    [26]陈庆华,陈玉成.吸烟过程中的重金属来源解析及预防[J].微量元素与健康研究.2005,22(5):47-49.
    [27]王晓敏.贵州植烟区土壤重金属污染状况及其对烟叶安全的影响评价[D].贵阳:贵州大学,2009.
    [28]高璇,陆书明.卷烟微量重金属控制技术研究[J].山东农业大学学报,2011,42(3):401-405.
    [29]王平军,周明华,孙宏.卷烟纸中四种重金属元素来源及前处理方法探讨[A].全国特种纸技术交流会暨特种纸委员会第六届年会论文集[C].北京:中国造纸学会,2011:139-143.
    [30]倪朝敏,汤建国,王海丽,等.动态反应池电感耦合等离子体质谱法同时测定彩色卷烟纸中7种重金属[J].光谱实验室,2010,27(2):472-476.
    [31]施红林,缪恩铭,黄海涛,等.用电感耦合等离子体质谱法测定烟用辅料中的重金属元素[J].分析测试学报,2005,24(增刊):365-366.
    [32]马名扬,张朝阳,毕鸿亮.吸烟过程中重金属挥发量的测定[J].光谱实验室,2005,22(4):852-854.
    [33]张领弟,林春丽,杨增,等.吸烟过程中铅和镉挥发性的研究[J].中国卫生检验杂志,2001,11(5):520-521.
    [34]Mizoue T, Tokui N, Nishisaka K, et al. Prospective study on the relation of cigarette smoking with cancerof the liver and stomach in an endemic region[J]. Int J Epidemiol.2000,29:232-237.
    [35]Nair A K, Brandt Jr E N. Effects of smoking on health care costs[J]. J Okla State Med Assoc,2000,93:245-250.
    [36]Wang X, Zuckerman B, Pearson C, et al. Maternal cigarette smoking, metabolic gene polymorphism, andinfant birth Weight[J]. JAMA,2002,287:195-202.
    [37]王晓蕾,时艺珊,柏松.吸烟2型糖尿病大鼠肿瘤坏死因子α的变化[J].中国实验诊断学,2012,16(4):582-584.
    [38]Vilcins G, Lephardt J O. Ageing processes of cigarettes smoke: formation of methyl nitrite[J]. Chem Ind,1975,15:974-975.
    [38]Vilcins G. Determination of ethylene and isoprene in the gas phase of cigarette smoke by infra-redspectroscopy[J]. Beitr Tabakforsch Int,1975,8(4):181-185.
    [40]王海艳,赵阁,谢复炜,等. HPLC-MS/MS检测卷烟主、侧流烟气中的杂环胺[J].烟草化学,2010(2):28-34.
    [41]朱文静,杨俊,刘百战,等. UPLC-MS/MS对卷烟烟气中4种烟草特有亚硝胺的快速测定[J].分析测试学报,2010,29(1):26-30.
    [42]王兆宇,王界,王娟,等.烟气中烟草特有亚硝胺LC-MS/MS分析方法的改进[J].烟草化学,2010(6):57-67.
    [43]钱晓春,谢国勇,银董红,等. LaFeO3系钙钛复合氧化物降低卷烟烟气中的NOx[J].烟草化学,2010(3):42-55.
    [44]Wei F, Yang J Y, Gao L, et al. Capturing nitrosamines in tobacco-extract solution by hydrophobicmesoporous silica[J]. J Hazard Mater,2009,172:1482-1490.
    [45]Mitsios I K, Golia E E, Telios A. Heavy metals content in tobacco leaves in different growing regions inThessaly area (Central Greece)[C]. Agro-Phyto Groups, CORESTA Congress,2001.
    [46]Malissionvas N, Katsalirou E. Influence of soil properties on heavy metal concentrations in soil and theiruptake from tobacco plants[C]. Agro-Phyto Groups, CORESTA Congress,2001.
    [47]Adamu C A, Mulchi C L, Bell P F. Relationships between soil pH, clay, organic matter and CEC andheavy metal concentrations in soils and tobacco[J]. Tob Sci,1989,33:96-100.
    [48]王绍坤,罗华元,程昌新,等.卷烟中6种重金属的燃吸转移率与分布研究[J].云南农业大学学报,2011,26(5):656-661,667.
    [49]陈红云,季守莲,宋正蕊,等.卷烟中铅和匐的测定及评价[J].生命科学仪器,2010,8:20-22.
    [50]庞永强,陈再根,陈欢,等.冷原子吸收光谱法测定卷烟主流烟气中的汞[J].烟草化学,2010(9):47-50.
    [51]孔维松,汤丹俞,曾晓鹰,等.原子荧光法测定卷烟主流烟气中的汞·砷·铅[J].安徽农业科学,2009,37(21):9837-9838.
    [52]苏贤坤,庄文贤,李继新,等.重金属对烤烟的影响及其治理技术与策略[J].中国烟草科学,2008,29(4):57-61.
    [53]王雷,曲跃军,杜人杰,等.转星星草金属硫蛋白基因烟草的获得及其抗重金属镉能力分析[J].植物生理学通讯,2009,45(4):318-322.
    [54]李正兵,郭怡卿,欧阳文,等.有机种植方式对卷烟原料质量安全性的影响[J].西南农业学报,2012,25(3):826-830.
    [55]招启柏,朱卫星,胡钟胜,等.改良剂对土壤重金属(Cd、Pb)的固定以及对烤烟生长影响[J].中国烟草学报,2009,15(4):26-32.
    [56]田吉林,沈瑞娟,何玉科. merB基因的序列修饰及转基因烟草对有机汞的搞抗作用[J].科学通报,2002,47(23):1815-1819.
    [57]生吉萍,李汉臣,刘开朗,等.转小鼠金属硫蛋白(MT)基因烟草不同器官中金属离子铅和锌的分布[J].光谱学与光谱分析,2008,28(10):2401-2403.
    [58]刘俏春,曾远芳.新型除毒卷烟过滤嘴及其生产方法:中国, CN1302570A[P].2001-7-11.
    [59]C-G贝克曼.烟草烟雾过滤器:中国, CN1867270A[P].2006-11-22.
    [60][德]H凯利, E巴德.活性炭及其工业应用[M].北京:中国环境科学出版社,1990,7.
    [61]Jones E C, Alan B. Norman. History of cigarette design[C].52ndTob Sci Res Conf——Responding toChange in Our Industry,1999:27-37.
    [62]娄性义,潘绪森,李文珍.用炭纸做卷烟复合滤嘴材料的初步研究[J].烟草科技,1994,(2):7-9.
    [63]刘颖涛,尹宏越,王俊茹.烟嘴中一种新的填充物——活性碳纤维素的应用研究[J].化学工程师,1996,6:49-50.
    [64]胡群,马静,周玉庆,等.低焦油卷烟设计中“三纸一棒”技术的研究与探讨[A].卷烟降焦技术国际研讨会论文集[C].深圳:国家烟草专卖局外事司、科教司,中国烟草学会等,1999:106-110.
    [65]胡群,马静,刘志华,等.活性炭在低焦油卷烟滤嘴设计中的研究[J].烟草科学研究(创刊号),1999:67-69.
    [66]浦跃朴,尹立红.香烟烟气致遗传毒性的研究[J].中国公共卫生学报,1991,10(6):356-360.
    [67]施荫锐.活性炭的性质及其在卷烟滤嘴中的应用[J].吸烟与健康,1992,5:27.
    [68]何金星.带有活性炭纤维层的滤棒和滤嘴[P].中国专利: CN200720140698.2,2008-01-16.
    [69]霍晓晖,王玉林,胡秀峰,等.卷烟滤嘴用纤维过滤材料减害降焦效果研究进展[J].科技导报,2007,25(22):77.
    [70]郭立民,张谋真,刘勇.壳聚糖-活性炭复合吸附剂在烟草工业中的应用研究[J].科研与开发,2002,1:17-18.
    [71]谢兰英,钟军,刘琪,等.微孔材料降低卷烟烟气有害成分研究进展[J].化工进展,2005,24(12):1342-1346.
    [72]曹玉登.煤制活性炭及污染治理[M].北京:中国环境科学出版社,1995.
    [73]谢志刚,刘成伦.活性炭的制备及其应用进展[J].工业水处理,2005,25(7):10-17.
    [74]Daud W M A W, Ali W S W.Comparison on pore development of activated carbon produced from palmshell and coconut shell[J]. Bioresour Technol,2004,93(1):63-69.
    [75]周烈兴.活性炭吸附处理苯和甲苯气体的性能及机理研究[D].昆明:昆明理工大学,2010.
    [76]Pesabento M, Profumo A, Alberti G, et al. Adsorption of lead(Ⅱ) and copper(Ⅱ) on activated carbon bycomplexation with surface functional groups[J]. Anal Chim Acta,2003,480(1):171-180.
    [77]Chen J P, Wu S. Acid/base-treated activated carbons: characterization of functional groups and metaladsorptive properties[J]. Langmuir,2004,20(6):2233-2242.
    [78]HASEGAWA T, SASAKI T ATOBE I, SAKAKI T.卷烟活性炭滤嘴的回顾与展望[J].中国烟草学报,2007,13(3):24.
    [79]龚金龙.世界烟草业过滤技术的发展[J].烟草科技,2001(7):30.
    [80]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术,2003(3):23.
    [81]解晓翠,常纪恒,于川芳.活性炭在卷烟滤嘴中的应用研究综述[J].郑州轻工业学院学报(自然科学版).2012,27(2):40-45.
    [82]Tokida A, Toda T, Maeda K. Selective removal of semivolatile components of cigarette smoke byactivated carbon fibers[J]. Sen-i Gakkaishi,1985(12):539.
    [83]Tokida A, Toda T,Maeda K. Selective adsorption of the vapor phase components of cigarette smoke byactivated carbon fibers[J]. S Sen-i Gakkaishi,1986(8):435.
    [84]贾伟萍.活性炭孔结构对主流烟气粒相物过滤效率的影响[D].郑州:中国烟草总公司郑州烟草研究院,2010.
    [85]邱晔,惠娟,彭金辉.烟用活性炭及其改性处理对卷烟主流烟气的影响[J].昆明理工大学学报(理工版),2006,31(5):82-86.
    [86]冉国莹,王华,王建民.活性炭部分指标对烟气中低分子醛酮类物质含量的影响[J].应用化工,2010,39(4):549-551.
    [87]Kim B K, Kwak D K, Ra D Y. Adsorption behavior of propylamine on activated carbon fiber surfaces asinduced by oxygen functional complexes[C]. Corosta Presentation, Jeju:[s.n.],2007.
    [88]周平.烟草企业废水处理及再生回用技术的应用[J].烟草科技,2007(3):20-22.
    [89]汪美贞.烟草加工废水处理及其微生物学机制研究[D].杭州:浙江大学,2010.
    [90]李斌龙,谢晓莉,彭解英,等.大蒜素对尼古丁致人牙周膜成纤维细胞氧化毒性的保护作用[J].华西口腔医学杂志,2011,29(1):9-12.
    [91]Picciotto M R, Zoli M. Nicotinic receptors in aging and dementia[J]. Neurobiol,2002,53:641-655.
    [92]杨玉梅,刘耕陶.卷烟烟气水溶性提取物对小鼠心肌慢性损伤[J].中国公共卫生,2004,20(4):455-456.
    [93]郭翠梨,张金利,袁兵,等.活性炭吸附处理甲基紫废水过程研究(Ⅱ)——模型研究[J].天津大学学报,2001,34(4):485-489.
    [94]于大伟,关晓彤,张之明,等.活性炭吸附-微波诱导氧化处理糠醛废水[J].水处理技术,2011,37(4):118-120.
    [95]蔡洪涛,崔节虎,刘刚.粉末活性炭吸附对氨基苯酚模拟废水的效果[J].光谱实验室,2011,28(4):1723-1726.
    [96]Dural M U, Cavas L, Papageorgiou S K, et al. Methylene blue adsorption on activated carbon preparedfrom Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies[J]. Chem Eng J,2011,168:77-85.
    [97]Ahmad A A, Hameed B H. Fixed-bed adsorption of reactive azo dye onto granular activated carbonprepared from waste[J]. J Hazard Mater,2010,175:298-303.
    [98]张安超,向军,孙路石,等.新型吸附剂性能表征及脱Hg0实验研究[A],中国工程热物理学会第十四届年会论文集[C],西安:中国工程热物理学会2008年燃烧学学术会议,2008.
    [99]井娟丽.化学改性壳聚糖脱除烟气中汞和砷的实验研究[D].武汉:华中科技大学,2009.
    [100]沈曾民.活性炭材料的制备与应用[M].北京:化学工业出版社,2006.
    [101]高尚愚,胡成文.活性炭在卷烟工业中的应用前景[J].林产化工通讯,1992(1):21-22,25.
    [102]曹建华.改性醋酸纤维丝束及其在烟气过滤中的应用研究[D].上海:东华大学,2006.
    [103]刘春波,刘志华,陈永宽,等.降低卷烟危害的滤嘴棒材料醋酸纤维的制备方法.中国:CN101914866A[P].2010-12-15.
    [104]陈育如,骆跃军,李雪梅.酞菁类化合物作为卷烟降害剂的应用.中国: CN1709171[P].2005-12-21.
    [105]马昭德.卷烟降焦减害材料及制作方法.中国: CN1491595[P].2004-4-28.
    [106]娄性义,蒯景辕,靳学明.一种卷烟复合过滤嘴棒.中国: CN2181192[P].1994-11-2.
    [107]刘立全,李维娜,王月侠,等.特殊滤嘴研究进展[J].烟草科技,2004,3:17-24.
    [108]刘泽春,黄华发,刘江生,等.不同三醋酸甘油酯添加量的醋纤滤棒对卷烟烟气主要酚类的过滤效率[J].烟草化学,2010,7:22-25.
    [109]傅成诚,梅凡民,周亮,等.改性活性炭对氨气吸附性能的研究[J].纺织高校基础科学学报,2009,22(3):386-389.
    [110]汤进华,梁晓怿,龙东辉,等.活性炭孔结构和表面官能团对吸附甲醛性能影响[J].炭素技术,2007,26(3):21-25.
    [111]张学军,范国强,韩春旭,等.活性炭纤维的氧化处理研究[J].环境污染治理技术与设备,2005,6(10):58-61.
    [112]Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons withdifferent pore size distributions and surface oxygen groups for benzene and toluene adsorption at lowconcentrations[J]. Carbon,2005,43:1758-1767.
    [113]闫波,姜蔚,李芬,等.污泥活性炭吸附剂同时脱除硫化氢和氨气研究[J].哈尔滨商业大学学报(自然科学版),2010,26(6):662-666.
    [114]程玉良.活性炭材料的改性及其应用[J].科技论坛,2005(19):66-67.
    [115]Marsh H, Diaz-Estebanez M A D. Physical adsorption and porosity in carbons[M]. Marsh H,Rodriguez-Reinoso F. Sciences of Carbon Materials. Alicante: Universidad de Alicante,2000:353-377.
    [116]Inagaki M. Porous carbons [M]. New Carbons, Control of Structure and Functions. Amsterdam: Elsevier,2000:124-145.
    [117]Kyotani T. Porous carbon[M]. Yasuda E, Inagaki M, et al. Carbon Alloys. Amsterdam: Elsevier,2003:109-127.
    [118]Inagaki M, Kang F. Pore development in carbon materials[M]. Carbon Materials Science andEngineering. Beijing:TsinghuaUniv. Press,2006,184-225.
    [119]Centeno T A, Fernandez J A,Stoeckli F. Correlation between heats of immersion and limitingcapacitances in porous carbons[J]. Carbon,2008,46(7):1025-1030.
    [120]黄维秋,吕艳丽,饶原刚.油气回收吸附剂的再生方法[J].石油学报(石油加工),2010,26(3):486-492.
    [121]CHANG Y, CHANG P, HUANG C. Effects of pore structure and temperature on VOC adsorption onactivated carbon[J]. Carbon,2000,39(4):523-534.
    [122]Kolade M A, Kogebauer A, Alpay E. Adsorptive reactor technology for VOC abatement[J]. Chem EngSci,2009,64(6):1167-1177.
    [123]Inagaki M. Pores in carbon materials-importance of their control[J]. New Carbon Mater,2009,24(3):193-232.
    [124]Li G, Liu X. Water adsorption and the micropore structures of activated carbon fibers[J]. Ion Exchangeand Adsorption,2001,17(4):355-359.
    [125]Salame I I, Bandosz T J. Role of surface chemistry in adsorption of phenol on activated carbons[J]. JColloid Inter Sci,2003,264:307-312.
    [126]Skodras G. Diamantopoulou I, Sakellaropoulos G P. Role of activated carbon structural properties andsurface chemistry in mercury adsorption[J]. Desalination,2007,210:281-286.
    [127]SHANGGUAN J, LI C, MIAO M, et al. Surface characterization and SO2removal activity of activatedsemi-coke with heat treatment[J]. New Carbon Mater,2008,23(1):37-43.
    [128]梅凡民,傅成诚,杨青莉,等.活性炭表面酸性含氧官能团对吸附甲醛的影响[J].环境污染与防治,2010,32(3):18-22.
    [129]刘伟,李立清,姚小龙,等.活性炭孔隙结构在其丙酮吸附中的作用[J].中南大学学报(自然科学版),2012,43(4):1574-1583.
    [130]谢涛,黄泳彤,徐旸.用ICP-MS法测定卷烟烟气中的重金属元素[J].烟草科技,2003(1):27-29.
    [131]Olivares-Marn M, Ferndez-Glez C, Macas-Garca A, et al. Thermal behavior of lignocellulosic materialin the presence of phosphoric acid. Influence of the acid content in the initial solution[J]. Carbon,2006,44:2347.
    [132]SOLUM M S, PUGMIRE R J, JAGTOYEN M, et al. Evolution of carbon structure in chemicallyactivated wood[J]. Carbon,1995,33(9):1247-1254.
    [133]AHMADPOUR A, DO D D. The preparation of activated carbon from macadamia nutshell by chemicalactivation[J]. Carbon,1997,35(12):1723-1732.
    [134]Lim W C, Srinivasakannan C, Balsubramanian N. Activation of palm shells by phosphoric acidimpregnation for high yielding activated carbon[J]. J Anal Appl Pyrolysis,2010,88:181-186.
    [135]Suarez-Garcia F. Martinez-Alonso A, Tascón J M D. Porous texture of activated carbons prepared byphosphoric acid activation of apple pulp[J]. Carbon,2001,39(7):1111-1115.
    [136]Freeman J J, Gimblett F G R, Roberts R A, et al. Carbon,1987,25(4):559-563.
    [137]Freeman J J, F. Gimblett G R. Carbon,1987,25(4):565-568.
    [138]Freeman J J, Gimblett F G R, Roberts R A, et al. Carbon,1988,26(1):7-11.
    [139]Freeman J J, Gimblett F G R. Carbon,1988.26(4):501-505.
    [140]王贵珍,李丽欣,李永真,等.毛竹活性炭制备及其对含苯酚废水吸附的研究[J].高校化学工程学报,2010,24(4):700-704.
    [141]Chen Q, Wang Z, Long D, et al. Role of pore structure of activated carbon fibers in the catalyticoxidation of H2S[J]. Ind Eng Chem Res,2010,49(7):3152-3159.
    [142]Cheng B, Le Y, Cai Wei, et al. Synthesis of hierarchical Ni(OH)2and NiO nanosheets and theiradsorption kinetics and isotherms to Congo red in water[J].J Hazard Mater,2011,185(2/3):889-897.
    [143]杨骏兵,凌立成,刘朗.利用聚合物共混法对活性炭材料的孔径分布进行控制的原理和方法[J].材料导报,2000,14(1):48-50.
    [144]谭艳芝,王秀芳,钟国英.新型竹活性炭对水体违禁药物孔雀石绿吸附性能的影响[J].2010,41(4):1287-1291.
    [145]Inomata K, Otake Y. Nanoscopic observation of mesoporous carbons prepared by catalyticcarbonization of Fe-and Ni-containing phenol formaldehyde resins[J]. J Mater Sci,2009,44(15):4200-4204.
    [146]金璇,马鲁铭,王红武.表面化学改性活性炭对有机物吸附的研究进展[J].江苏环境科技,2006,19(2):43-45.
    [147]杨金辉,王劲松,周书葵,等.活性炭改性方法的研究进展[J].湖南科技学院学报,2010,31(4):90-93.
    [148]张浩,颜家保,夏明桂,等.改性活性炭吸附脱除RFCC柴油中碱性氮化物的工艺研究[J].武汉科技大学学报(自然科学版),2006,29(3):244-250.
    [149]韩严和,全燮,薛大明,等.活性炭改性研究进展[J].环境污染治理技术与设备,2003,4(1):33-37.
    [150]刘慧英,冯霞.以果物核壳为原料制备活性炭及其改性研究[J].宁夏大学学报(自然科学版),1996,17(2):32-35.
    [151]陈永,程玉珍,李玲,等.磷酸盐活化法制备椰壳纤维基活性炭研究[J].科学技术与工,2010,10(14):1671-1815.
    [152]Nabais J M V, Laginhas C E C, Carrott P J M, et al. Production of activated carbons from almondshell[J]. Fuel Process Technol,2011,92:234-240.
    [153]YANG J L, ZHOU J B. Adsorption of Nicotine from Aqueous Solution by Activated Carbons Preparedfrom Chinese Fir Sawdust[J]. Acta Phys-Chim Sin,2013,29(2):377-384.
    [154]柳萌,王金娥.改性颗粒活性炭吸附低浓度甲醛的试验研究[J].安全与环境工程,2012,19(5):20-23.
    [155]郭嘉,向守信,桂本,等.磷酸浸渍法制备生物质活性炭吸附氨气[J].化学工程师,2007,141(6):1-4.
    [156]罗锦英.改性活性炭对烟气中气态汞的吸附研究[D].厦门:厦门大学,2009.
    [157]王欣,曾汉才,许绿丝,等.活性炭吸附剂控制Hg排放的研究进展[J].热力发电,2006,35(1):52-53.
    [158]徐宏英,李亚新,岳秀萍,等.厌氧颗粒污泥吸附去除废水中Hg2+的研究[J].环境工程学报,2009,3(4):601-606.
    [159]蔡芬芬,朱义年,梁美娜.活性炭改性的研究进展及其应用[A].中国环境科学学会2008年学术年会论文集[C].重庆:中国环境科学学会2008年学术年会,2008,776-780.
    [160]高洪亮,周劲松,骆仲泱,等.改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J].中国电机工程学报,2007,27(8):26-30.
    [161]胡长兴,周劲松,李建新,等.活性炭表面模拟烟气与元素汞间均/异相氧化反应特性[J].化工学报,2012,63(5):1536-1542.
    [162]田菲,吴圣姬,周洁,等.活性炭脱除烟气中单质汞及其生成汞化合物的形态分析[J].中国工程热物理学会2010年燃烧学学术会议论文集[C].广州:中国工程热物理学会2010年燃烧学学术会议,2010.
    [163]Lee S S, Lee J Y, Keener T C. The effect of methods of preparation on the performance of cupricchloride-impregnated sorbents for the removal of mercury from flue gases[J]. Fuel,2009,88:2053-2056.
    [164]Mom ilovi M, Purenovi M, Boji A, et al. Removal of lead(II) ions from aqueous solutions byadsorption onto pine cone activated carbon[J]. Desalination,2011,276(1-3):53-59.
    [165]Acharya J, Sahu J N, Mohanty C R, et al. Removal of lead(II) from wastewater by activated carbondeveloped from Tamarind wood by zinc chloride activation[J]. Chem Eng J,2009,149(1-3):249-262.
    [166]Goel J, Kadirvelu K, Rajagopal C, et al. Removal of lead(II) by adsorption using treated granularactivated carbon: Batch and column studies[J]. J Hazard Mater,2005,125(1-3):211-220.
    [167]Vitela-Rodriguez A V, Rangel-Mendez J R. Arsenic removal by modified activated carbons with ironhydro(oxide) nanoparticles[J]. J Eviron Manage,2013,114(15):225-231.
    [168]Zhang Q L, Lin Y C, Chen X, et al. A method for preparing ferric activated carbon compositesadsorbents to remove arsenic from drinking water[J]. J Hazard Mater,2009,168(1):430-437.
    [169]Chang Q, Lin W, Ying W. Preparation of iron-impregnated granular activated carbon for arsenicremoval from drinking water[J]. J Hazard Mater,2010,184(1-3):515-522.
    [170]Cuypers F, Dobbelaere C De, Hardy A, et al. Thermal behaviour of arsenic trioxide adsorbed onactivated carbon[J]. J Hazard Mater,2009,166(2-3):1238-1243.
    [171]Chuang C L, Fan M, Xu M, et al. Adsorption of arsenic(V) by activated carbon prepared from oathulls[J]. Chemosphere,2005,61(4):478-483.
    [172]周建斌,张合玲,邓先伦,等.改性活性炭对木糖液脱色性能的研究[J].福建农林学院学报,2008,28(4):369-373.
    [173]张合玲.活性炭对木糖液脱色性能的研究[D].南京:南京林业大学,2009.
    [174]田生友,梅华.表面改性活性炭吸附CS2及微波场中再生的研究[J].现代化工,2012,32(1):41-45.
    [175]熊银伍,杜铭华,步学鹏,等.改性活性焦脱除烟气中汞的实验研究[J].中国电机工程学报,2007,27(35):17-22.
    [176]秦恒飞,刘婷逢,周建斌. Na2S·HNO3改性活性炭对水中低浓度Pb2+吸附性能的研究[J].环境工程学报,2011,5(2):306-310.
    [177]张安超.改性壳聚糖吸附剂脱除烟气中汞的实验与机理研究[D].武汉:华中科技大学,2010.
    [178]程继鹏,张孝彬,戈桂芬.含铁粒子修饰碳纳米管的初步研究[J].浙江大学学报(工学版),2006,40(4):676-678.
    [179]Cheng J, Zhang X, Liu F, et al. Synthesis of carbon nanotubes filled with Fe3C nanowires by CVD withtitanate modified palygorskite as catalyst[J]. Carbon,2003,41(10):1965-1970.
    [180]Emmenegger C, Bonard J M, Mauron P, et al. Synthesis of carbon nanotubes over Fe catalyst onaluminium and suggested growth mechanism[J]. Carbon,2003,41(3):539-547.
    [181]Arenillas A, Rubiera F, Parra J B, et al. Surface modification of low cost carbons for their application inthe environmental protection[J]. Appl Surf Sci,2005,252:619-624.
    [182]Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86(12-13):1781-1788.
    [183]Arami-Niya A, Daud W M A W, Mjalli F S. Comparative study of the textural characteristics of oil palmshell activated carbon produced by chemical and physical activation for methane adsorption. Chem EngRes Des,2011,89(6):657-664.
    [184]潘红艳,李忠,夏启斌,等.氨水改性活炭纤维吸附苯乙烯的性能[J].功能材料,2008,39(2):324-327.
    [185]Shafeeyan M S, Daud W M A W, Houshmand A, et al. Ammonia modification of activated carbon toenhance carbon dioxide adsorption: Effect of pre-oxidation[J]. Appl Surf Sci,2011,257:3936-3942.
    [186]丁良鑫,王士瑞,郑小龙,等.炭载体改性对炭载Pd催化剂电催化性能的影响[J].物理化学学报,2010,26(5):1311-1316.
    [187]Leuch L M Le, Bandosz T J. The role of water and surface acidity on the reactive adsorption ofammonia on modified activated carbons[J]. Carbon,2007,45(3):568-578.
    [188]Shaarani F W, Hameed B H. Ammonia-modified activated carbon for the adsorption of2,4-dichlorophenol[J]. Chem Eng J,2011,169:180-185.
    [189]蒋海涛.载硫活性炭微波再生特性实验研究[D].济南:山东大学,2012.
    [190]Carrado K A, Xu L, Roseann C, et al. Use of Organo-and Alkoxysilanes in the Synthesis of Grafted andPristine Clays[J]. Chem Mat,2001,13(10):3766-3773.
    [191]Bandosz T J. Effect of pore structure and surface chemistry of virgin activated carbons on removal ofhydrogen sulfide[J]. Carbon,1999,37(3):483-491.
    [192]He H, Duchet J, Galy J, et al. Grafting of swelling clay materials with3-aminopropyltriethoxysilane[J].J Colloid Inter Sci,2005,288(1):171-176.
    [193]鹿存房,刘清才,高威,等.载硫活性炭微观结构和表面形态研究[J].环境工程学报,2009,3(8):1521-1523.
    [194]朱再盛,袁彦超,陈炳焾. Hg2+-交联壳聚糖配合物的合成与表征.化学通报,2007,5:388-391.
    [195]袁彦超,石光,陈炳稔,等.交联壳聚糖-Co配聚物结构与性能初步研究[J].功能高分子学报,2004,17(3):148-150.
    [196]Nguyen-Thanh D, Bandosz T J. Activated carbons with metal containing bentonite binders asadsorbents of hydrogen sulfide[J]. Carbon,2005,43(2):359-367.
    [197]宋庆锋,张永春,周锦霞.铁盐改性活性炭纤维常温脱除硫化氢的研究[J].现代化工,2007,27(增刊1):272-276.
    [198]刘孝坤,刘永军活性炭的改性条件及其对硫化氢吸附性能的影响[J].化工进展,2012,31(3):676-680.
    [199]舒俊生.降低卷烟主流烟气中羰基化合物和一氧化氮的研究[D].无:江南大学,2010.
    [200]The U. S. Department of Energy. Reduction of NOxand SO2Using Gas Reburning, Sorbent Injection,and the Integrated Technologies[R]. Topical Report no.3,1993.
    [201]The U. S. Department of Energy. Reburing Technologies for the Control of Nitrogen Oxides Emissionsfrom Coal-Fired Boilers[R]. Topical Report no.14,1999.
    [202]刘义,曹子栋,唐强,等.水涤脱附条件下活性炭脱硫中吸附反应空间的研究[J].西安交通大学学报,2004,38(1):73-76.
    [203]Uberoi M, Punjak W A, Shadman F. The kinetics and mechanism of alkali removal from flue gas bysolid sorbents [J]. Prog. Energy. Combust,1990,16:205-211.
    [204]汪昆平,张昱,齐嵘,等.活性炭表面含氧官能团对水中卤乙酸吸附去除的影响[J].化学学报,2006,57(7):1559-1663.
    [205]陈元端.改性活性炭吸附单质汞的研究现状[J].广州化工,2010,38(9):25-27,75.
    [206]Lee S H, Park Y O. Gas-phase mercury removal by carbon-based sorbents[J]. Fuel Process Technol,2003,84(1-3):197-206.
    [207]邓先伦,蒋剑春.除汞载硫活性炭研发[J].林产化工通讯,2004,38(3):13-16.
    [208]闵玉涛,袁丽,刘阳生.载硫活性炭纤维(ACF/S)吸附脱除模拟焚烧烟气中的铅[J].北京大学学报(自然科学版),2012,48(6):989-997.
    [209]Lee S Y, Seo Y C, Jurng J S. Removal of gas-phase elemental mercury by iodine-andchorine-impregnated activated carbon[J]. Atmos Environ,2004,38:4887-4893.
    [210]任建莉,周劲松,骆仲泱,等.燃煤电站汞排放分布及控制研究的进展.电站系统工程,2006,22:44-48.
    [211]郭盼.燃煤烟气汞在氧化铁表面吸附机理研究[D].武汉:华中科技大学,2011.
    [212]訾凤兰.氧化物在载体表面的单层分散及结构研究[D].北京:北京化工大学,2004.
    [213]Adnadjevic B, Lazarevic N, Jovanovic J. A study of the kinetics of isothermal nicotine desorption fromsilicon dioxide[J]. Appl Surf Sci,2010,257:1425-1430.
    [214]Chen Z, Zhang L, Tang Y, et al. Adsorption of nicotine and tar from the mainstream smoke of cigarettesby oxidized carbon nanotubes[J]. Appl Surf Sci,2006,252:2933-2937.
    [215]Ak ay G, Yurdako K. Removal of nicotine and its pharmaceutical derivatives from aqueous solutionby raw bentonite and dodecylammonium-bentonite[J]. J Sci Ind Res,2008,67:451-454.
    [216]Lazarevic N, Adnadjevic B, Jovanovic J. Adsorption of nicotine from aqueous solution ontohydrophobic zeolite type USY[J]. Appl Surf Sci,2011,257:8017-8023.
    [217]Shin J H, Park S S, Ha C S. Adsorption behavior of nicotine on periodic mesoporous organosilicas[J].Colloids Surf B: Biointerfaces,2011,84:579-584.
    [218]马光友,赵晓林,张方.硝酸改性对活性炭吸附脱硫性能的影响[J].精细石油化工进展,2010,11(10):55-58.
    [219]范延臻,王宝贞,王琳,等.改性活性炭的表面特性及其对金属离子的吸附性能[J].环境化学,2001,20(5):437-443.
    [220]侯方,陈明,佟明友.硝酸处理对活性炭性质的影响[J].化学与生物工程,2011,28(5):70-76.
    [221]丁春生,彭芳,黄燕,等.硝酸改性活性炭的制备及其对Cu2+的吸附性能[J].金属矿山,2011,10:135-138,143.
    [222]储志兵,周新光,水恒福,等.反相高效液相色谱法测定烟草中烟碱的含量[J].农业环境科学学报,2006,25(增刊):751-754.
    [223]Mour o P A M, Laginhas C, Custódio F, et al. Influence of oxidation process on the adsorption capacityof activated carbons from lignocellulosic precursors[J]. Fuel Process Technol,2011,92:241-246.
    [224]Ip A W M, Barford J P, McKay G. Production and comparison of high surfacearea bamboo derivedactive carbons[J]. Bioresour Technol,2008,99:8909-8916.
    [225]Tang L, Zhan L, Yang G Z, et al. Preparation of mesoporous carbon microsphere/activated carboncomposite for electric double-layer capacitors[J]. New Carbon Mater.2011,26:237-240.
    [226]Wang H, Kang J, Liu H, et al. Preparation of organically functionalized silica gel as adsorbent forcopper ion adsorption[J]. J Environ Sci,2009,21:1473-1479.
    [227] Hanafiah M A K M, Ngah W S W, Zolkafly S H, et al. Acid Blue25adsorption on base treated Shoreadasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis[J]. J Environ Sci,2012,24:261-268.
    [228]Dandekar A, Baker R T K, Vannice M A. Characterization of activated carbon, graphitized carbonfibers and synthetic diamond power using TPD and DRIFTS[J]. Carbon,1998,36:1821-1831.
    [229]Ishizaki C, Marti I. Surface oxide structures on a commercial activated carbon[J]. Carbon,1981,19:409-412.
    [230]Tongpoothorn W, Sriuttha M, Homchan P, et al. Preparation of activated carbon derived from Jatrophacurcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemicalproperties[J]. Chem Eng Res Des,2011,89:335-340.
    [231]陈云嫩.废麦糟生物吸附剂深度净化水体中砷、镉的研究[D].湖南:中南大学,2009.
    [232]陈素红.玉米秸秆的改性及其对六价铬离子吸附性能的研究[D].济南:山东大学,2012.
    [233]Wang S, Zhu Z H. Effects of acidic treatment of activated carbons on dye adsorption[J]. Dyes andPigments,2007,75(2):306-314.
    [234]Hameed B H, Ahmad A A, Aziz N. Isotherms, kinetics and thermodynamics of acid dye adsorption onactivated palm ash[J]. Chem Eng J,2007,133(1-3):195-203.
    [235]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1989.
    [236]Ferrero F. Adsorption of Methylene Blue on magnesium silicate: Kinetics, equilibria and comparisonwith other adsorbents[J]. J Environ Sci,2010,22(3):467-473.
    [237]Tempkin M J, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts[J]. ActaPhysiochim URSS,1940,12:217-222.
    [238]齐亚凤.改性甘蔗渣对重金属离子吸附行为研究[D].武汉:武汉工程大学,2012.
    [239]Temkin M I, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts[J]. Acta PhysiochimURSS,1940,12:327-356.
    [240]Lataye D H, Mishra I M, Mall I D. Adsorption of2-picoline onto bagasse fly ash from aqueoussolution[J]. Chem Eng J,2008,138(1):35-46.
    [241]Hameed B H. Equilibrium and kinetics studies of2,4,6-trichlorophenol adsorption onto activatedclay[J]. Colloid Surf A-Physicochem Eng Asp,2007,307(1):45-52.
    [242]Lazarevic N, Adnadjevic B, Jovanovic J. Adsorption of nicotine from aqueous solution ontohydrophobic zeolite type USY[J]. Appl Surf Sci,2011,257(18):8017-8023.
    [243]Srivastava V C, Mall I D, Mishra I M. Adsorption thermodynamics and isosteric heat of adsorption oftoxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA)[J]. Chem Eng J,2007,132(1-3):267-278.
    [244]胡祖美,张艳,王金渠,等.苯在活性炭纤维上吸附等温线的测定及分析[J].石油学报(石油加工),2008,24(4):484-487.
    [245]Zhao Z, Li X, Li Z. Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organicframework MIL-101[J]. Chem Eng J,2011,173(1):150-157.
    [246]SU W, ZHOU Y, WEI L, et al. Effect of microstructure and surface modification on the hydrogenadsorption capacity of active carbons[J]. New Carbon Mater.2007,22:135-140.
    [247]Skodras G, Diamantopoulou I, Sakellaropoulos G P. Role of activated carbon structural properties andsurface chemistry in mercury adsorption[J]. Desalination,2007,210:281-286.
    [248]Figueiredo J L, Mahata N, Pereira M F R, et al. Adsorption of phenol on supercritically activated carbonfibres: Effect of texture and surface chemistry[J]. J Colloid Interf Sci,2011,357:210-214.
    [249]Daifullah A A M, Girgis B S. Impact of surface characteristics of activated carbon on adsorption ofBTEX[J]. Colloid Surf A-Physicochem Eng Asp,2003,214:181-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700