锂离子电池基与钛基纳米氧化物负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子二次电池以其优越的综合性能受到各国研究工作者和企业的广泛重视,大量的研究工作集中在寻找更高容量的新型负极材料上,负极材料的纳米化和结构功能化,认为是解决这些问题的有效方法。
     本文分别用水热法与溶胶凝胶法合成了以SnO2及TiO2为主体的基氧化物与钛基氧化物系列复合材料,并用透射电镜(TEM)、扫描电子显微镜(SEM)、X射线电子衍射(XRD)、热重(TG-DTA)等测试手段对材料进行了表征。最终将其以锂为对电极应用于锂离子电池作为电极材料,研究了它们的电化学性能特点。主要工作如下:
     以SnCl2为原料用水热法制备了SnO2纳米颗粒及掺杂了CuOx、NiOx的SnO2纳米复合物,对它们的结构及电化学性质进行了表征。由SEM图像可知,所制备的SnO2纳米复合物基本上为球形的,粒径大约在100 nm~300 nm。
     以K2SnO3为原料用水热法制备了SnO2纳米颗粒,再以所制备的SnO2纳米颗粒为原料制备了SnO2/碳水化合物及Sn/C纳米颗粒。由SEM、TEM图像可知,所制备的SnO2纳米颗粒粒径大约为150 nm,SnO2/碳水化合物其粒径大约为200 nm,而Sn/C纳米颗粒为核壳结构其壳的直径大约在100 nm~250 nm,而核的粒径为30 nm~200 nm。由XRD数据表明所得到Sn/C纳米颗粒是金属和碳的复合物,此外还有很少量的氧化亚存在。由充放电循环性能曲线可知碳含量的增加可以明显改善循环性能,而且在大电流充放电试验也表现出很好的倍率性能。因此,Sn/C纳米颗粒用作锂离子电池负极材料有较好的循环性能及倍率性能。
     通过溶胶-凝胶法制备了TiO2纳米颗粒及掺杂了Cu、Ni、Ru、Sn、Fe的TiO2纳米复合物。由SEM,TEM图像可知,所制备的TiO2纳米颗粒及TiO2纳米复合物均为无定形的,粒径大约在30 nm~50 nm。由XRD图像可知,所制备的TiO2纳米颗粒为锐钛矿相,无金红石相。由充放电循环性能曲线可知,所得到的TiO2纳米颗粒的循环性能较为稳定,在倍率为C/5的条件下经60次循环其可逆容量可维持在195 mAh/g。通过掺杂Ru,TiO2纳米颗粒的循环性能得到明显的提高。
Lithium ion batteries have been paid much attention by world wide researchers and companies due to the advanced electrochemical properties, and have been developed quickly in recent years. A lot of researches have focused on finding new large capacity anode material candidates. The anode material with nanosized and peculiar structure was considered as an appropriate candidate.
     In this thesis, the anode materials based on SnO2 and TiO2 were prepared using the hydrothermal and Sol-Gel technique respectively. They were characterized by Transmission Electron Microscope(TEM), Scanning Electron Microscope(SEM), X-ray Diffraction(XRD), TG-DTA, and other techniques. They were used as the anode materials of the lithium ion battery, and their electrochemical performance were studied in detail. Our work is showed as the following:
     SnO2 nanoparticles and SnO2 nanocomposites were prepared by hydrothermal technique with SnCl2 as material. The structure and electrochemical property were characterized. The SEM images showed that the SnO2 nanocomposites were mainly spherical particles, and the radius was between 100 nm and 300 nm.
     SnO2 nanoparticles were prepared by hydrothermal technique with K2SnO3 as material, then the SnO2 nanoparticles were used to prepare SnO2/carbonhydrate and Sn/C nanocomposites. The SEM and TEM images showed that the radius of SnO2 nanocomposites, SnO2/carbonhydrate were 150 nm, 200 nm respectively. The radius of Sn/C nanocomposites was between 100 nm and 250 nm, and the core radius of Sn/C nanocomposites was between 30 nm and 200 nm. From XRD images, we found that Sn/C nanocomposites were composed of tin and carbon coexisting with a little amount of SnO. The cycle performance was improved obviously with increasing amount of carbon content, and the rate capability was excellent. So these materials which were used as lithium ion anode materials showed better cycle performance and rate capability.
     TiO2 nanoparticles and TiO2 nanocomposites with Cu, Ni, Ru, Sn, Fe were prepared by Sol-Gel technique. The SEM and TEM images showed that TiO2 nanoparticles and TiO2 nanocomposites were amorphous, and the radius was between 30 nm and 50 nm. From XRD images, we found that the phase of TiO2 nanocomposites was anatase without rutile. The stability of cycle performance was excellent, and the reversible capacity maintains 195 mAh/g with rate C/5 after 60 cycle. The cycle performance of TiO2 nanoparticles with Ru enhanced apparently.
引文
[1]郭炳馄,徐徽,王先友等,锂离子电池[M].中南大学出版社,2002, 1-4
    [2]管从胜,杜爱玲,杨玉国,高能化学电源[M].化学工业出版社,2005, 332-379
    [3] Whittingham M. S., Lithium batteries and cathode materials[J]. Chem. Rev., 2004, 104(10): 4271-4301
    [4] Grey C. P., Dupre N., NMR studies of cathode materials for lithium-ion rechargeable batteries [J]. Chem. Rev., 2004, 104(10): 4493-4512
    [5]马千里,顾利霞,锂电池的研究进展[J].材料导报,1999, 6 (l3): 28-37
    [6]王占良,雷荣,锂离子电池研究进展[J].河北化工,2000, 5(1): 4-5
    [7]张世超,锂离子电池关键材料的现状与发展[J].新材料产业,2004, 123(2): 32-40
    [8]刘先龙,宋怀河,陈晓红,锂离子电池类炭负极材料的改性[J].炭素技术,2003, 128(5): 27-33
    [9]李景虹,先进电池材料[M].北京:化学工业出版社,2004: 3-39
    [10]吴宇平,戴晓兵,马军旗等,锂离子电池-应用与实践[M].北京:化学工业出版社,2004: 2-30
    [11] Thomas M. G. S. R., Bruce P. G., Goodenough J. B., Lithium mobility in the layered oxide Li1-xCoO2[J]. Solid State Ionics, 1985, 17(1), 13-19
    [12] Mizushima K., Jones P. C., Wiseman P. J., et.al, LixCoO2(0    [13] Auborn J. J., Barberio Y. L., Lithium intercalated cells without metallic lithium[J]. J. Electrochem. Soc., 1987, 134(3): 638-641
    [14] Nagaura T., Tozawa K., Lithium ion rechargeable battery[J]. Prog. Batts. Sol. Cell., 1990, 9: 209-217
    [15] Dahn J. R., Sacken V. U., The electrochemical society extended abstracts, vol. 902, Seattle, 1990: 66
    [16] Nagarura T., 4th international rechargeable battery seminar, Florida, 1990
    [17] Fenton D. E., Parker J. M, Wright P. V., Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14, 589-590
    [18] Eschbach F. O., Oliver M., US Patent 5631103, May, 1997
    [19] Nishi Y., Lithium ion secondary batteries: past 10 years and the future[J]. J. Power Sources, 2001, 100(1-2): 101-106
    [20] Tarascon J. M., Armand M., Issues and challenges facing rechargeable lithium batteries[J].Nature, 2001, 414, 359-367
    [21]胡进,锂离子电池纳米结构负极材料储锂性能研究[D].中国科学院物理研究所博士学位论文,2005
    [22]魏英进,锂离子电池锰基正极材料的合成与表征[D].吉林大学博士学位论文,2004
    [23] Bitsche O., Gutmann G., Systems for hybrid cars[J]. J. Power Sources, 2004, 127(1-2): 8-15
    [24] Wolfenstine J., Electrical conductivity of doped LiCoPO4[J]. J. Power Sources, 2006, 158(2): 1431-1435
    [25] Wolfenstine J., Read J., Allen J. L., Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4[J]. J. Power Sources, 2007, 163(2): 1070-1073
    [26] Yamada A., Kudo Y., Liu K. Y., Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4 (0    [27] Fomin V. I., Gnezdilov V. P., Kumosov V. S., et.al, Raman scatting in a LiNiPO4 single crystal[J]. Low Temp. Phys., 2002, 28(3): 203-209
    [28] West W. C., Whitacre J. F., Ratuakumar B. V., Radio frequency magnetron-sputtered LiCoPO4 Cathodes for 4.8 V thin-film batteries[J]. J. Electrochem. Soc., 2003, 150(12): A1660-A1666
    [29] Morgan D., Van A.V. D., Ceder G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni)olivine materials[J]. Electrochem. Solid-State Lett., 2004, 7(2): A30-A32
    [30]吴宇平,万春荣,姜长印,锂离子二次电池[M].北京:化学工业出版社,2002: 57-59
    [31] Moumouzias G., Ritzoulis G., Siapkas D., et.al, Comparative Study of LiBF4, LiAsF6, LiPF6, and LiClO4 as electrolytes in propylene carbonate-diethyl carbonate solutions for Li/LiMn2O4 cells[J]. J. Power Sources, 2003, 122(1): 57-66
    [32] Zhang S. S., Xu K., Jow T. R., Study of LiBF4 as an electrolytes salt for a Li-ion battery[J]. J. Electrochem. Soc., 2002, 149(5): A586-A590
    [33] Zinigrad E., Liraz L. A., Gnanaraj J. S., et.al, On the thermal stability of LiPF6[J]. Thermochim. Acta, 2005, 438(l-2): 184-191
    [34] Aurbach D., Markovsky B., Levi M. D., et.al, New insights into the interactions between electrode materials and electrolytes solutions for advanced non-aqueous batteries[J]. J. Power Sources, 1999, 81-82: 95-111
    [35] Ostrovskii D., Ronci F., Scrosati B., et.al, Reactivity of lithium battery electrode materials toward non-aqueous electrolytes: spontaneous reactions at the electrode-electrolyte interface investigated by FTIR[J]. J. Power Sources, 2001, 103(1): 10-17
    [36] Aurbach D., A review on new solutions, new measurements procedures and new materials for rechargeable Li batteries[J]. J. Power Sources, 2005, 146(l-2): 71-78
    [37] Adachi M., Tanak K. Sekai K., Aromatic compounds as redox shuttle additives for 4 V classsecondary lithium batteries[J]. J. Electrechem. Soc., 1999, 146(4): 1256-1261
    [38] Aurbach D., Markovsky B., Salitra G., et.al, Review on electrode-electrolyte interactions, related to cathode materials for Li-ion batteries[J]. J. Power Sources, 2007, 165(2): 491-499
    [39] Aurbach D., Gamolsky K., Markovsky B., et.al, The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M = Ni, Mn)[J]. J. Electrochem. Soc., 2000, 147(4): 1322-1331
    [40] Zhu Y. W., Dong Q. F., Zheng M. S., et.al, Study on overcharging additives of Li-ion battery[J]. Chin. Batt. Mon., 2006, 36(3): 168-169
    [41]雷永泉,万群,石永康,新能源材料[M].天津:天津大学出版社,2000, 114-120
    [42] Imhof R., Novak P., In situ investigation of the electrochemical reduction of carbonate electrolyte solutions at graphite electrodes[J]. J. Electrochem. Soc., 1998, 145(4): 1081-1087
    [43] Veeraraghavan B., Durairajan A., Haran B., et.al, Study of Sn-coated graphite as anode material for secondary lithium-ion batteries[J]. J. Electrochem. Soc., 2002, 149(6): A675-A681
    [44] Aurbach D., Markovsky B., Nimberger A., et.al, Electrochemical Li-insertion processes into carbons produced by milling graphitic powders: The impact of the carbons surface chemistry[J]. J. Electrochem. Soc., 2002, 149(2): A152-A161
    [45] Holze R., Wu Y. P., Novel composite anode materials for lithium ion batteries with lows sensitivity towards humidity[J]. J. Solid State Electrochem., 2003, 8(l): 66-72
    [46] Wu Y. P., Holze R., Anode materials for lithium ion batteries obtained by mild and uniformly controlled oxidation of natural graphite[J]. J. Solid State Electrochem., 2003, 8(1): 73-78
    [47] Zhang G., Huang K. L., Liu S. Q., et.al, Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders[J]. J. Alloy Compd., 2006, 426(l-2): 432-437
    [48] Winter M., Besenhard J. O., Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochim. Acta, 1999, 45(l-2): 31-50
    [49] Zuo P. J., Yin G. P., Zhao J., et al. Electrochemical reaction of the SiMn/C composite for anode in lithium ion batteries[J]. Electrochim. Acta, 2006, 52(4): 1527-1531
    [50] Limthongkul P., Jang Y. I., Dudney N. J., Electrochemically-driven solid-state amorphization in lithium-metal anodes[J]. J. Power Sources, 2003, 119: 604-609
    [51] Lee Y. S., Lee J. H., Kim Y. W., et.al, Rapidly solidified Ti-Si alloys/carbon composites as anode for Li-ion batteries[J]. Electrochim. Acta, 2006, 52(4): 1523-1526
    [52] Wang K., He X. M., Ren J. G., et.al, Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides[J].Electrochimi. Acta, 2006, 52(3): 1221-1225
    [53] Yuan L., Guo Z. P., Konstantinov K., et.al, Nano-structured spherical porous SnO2 anodes for lithium ion batteries[J]. J. Power Sources, 2006, 159(1): 345-348
    [54] Grey I. E., Bordet P., Li C., et.al, Phase stability and non-stoichiometry in M-phase solid solutions in the system LiO0.5-NbO2.5-TiO2[J]. J. Solid State chem., 2004, 177(3): 660-669
    [55] Poizot P., Laruelle S., Grugeon S., et.al, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407: 496-499
    [56] Zhou Y. N., Zhang H., Xue M. Z., et.al, The electrochemistry of nanostructured In2O3 with lithium[J]. J. Power Sources, 2006, 162(2): 1373-1378
    [57] Hu J., Li H., Huang X. J., et.al, Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries[J]. Solid State Ionics, 2006, 177(26-32): 2791-2799
    [58] Sun H., He X. M., Li J. J., Hard carbon/Li2.6Co0.4N composite anode materials for Li-ion batteries[J]. Solid State Ionics, 2006, 177(15-16): 1331-1334
    [59] Gregory D. H., Meare P. M. O., Gordon A. G., et.al, Layered ternary transition metal nitrides; synthesis, structure and physical properties[J]. J. Alloy. Compd., 2001, 317-318: 237-244
    [60] Nishijima M., Kagohashi T., Takeda Y., et.al, Electrochemical studies of a new anode material, Li3-xMxN (M = Co, Ni, Cu)[J]. J. Power Sources, 1997, 68(2): 510-514
    [61] Takeda Y., Nishijima M., Yamahata M., et.al, Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N, as the anode[J]. Solid State Ionics, 2000, 130(1-2): 61-69
    [62] Liu Y., Matsumura T., Imanishi N., et.al, Lithium transition metal nitrides with the modified morphology characteristics as advanced anode materials for lithium ion batteries[J]. Electrochem. Commun., 2004, 6(7): 632-636
    [63]付丽君,杨黎春,刘浩等,锂离子电池纳米负极材料的研究和开发[J].先进材料工业,2004, 5: 25-32
    [64] Mabuchi A., Fujimoto H., Tokumitsu K., et.al, High capacity carbon anode for Li-ion battery-A theoretical explanation[J]. Carbon, 1999, 37(10): 1599-1605
    [65] Zhao X. B., Cao G. S., A study of Zn4Sb3 as a negative electrode for secondary lithium cell[J]. Electrochimi. Acta, 2001, 46(6): 891-896
    [66] Idota Y., Kubota T., Matsufuji A., et.al, Tin-based amorphous oxide: a high capacity lithium ion strorage material[J]. Science, 1997, 276(5317): 1395-1397
    [67] Courtney I. A., Dhan J. R., Key factors controlling the reversibility of the reaction of lithium with SnO2 and SnBPO6[J]. J. Electrochem. Soc., 1997, 144(6): 2943-2948
    [68] Courtney I. A., Dhan J. R., Electrochemical and in-situ X-ray diffraction studies of the reaction of lithium with the oxide composite[J]. J. Electrochem. Soc., 1997, 144(6): 2045-2052
    [69]吴宇平,万春荣,姜长印,锂离子二次电池的氧化物负极材料的研究[J].化学通报, 1998, 10: 24-26
    [70] Liu W., Huang X., Wang Z., et.al, Studies of stannic oxide as an anode material for lithium-ion batteries[J]. J. Electrochem. Soc., 1998, 145(1): 59-62
    [71] Read J., Foster D., Wolfenstine J., et.al, SnO2-carbon composites for lithium ion battery anodes[J]. J. Power Sources, 2001, 96(2): 277-281
    [72]陈立泉,锂离子电池最新动态和进展[J].电池,1998, 28(6): 255-257
    [73] Retoux R., Brousse T., Schleich D. M., High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for Lithium-ion batteries[J]. Electrochem. Soc., 1999, 146(7):2472-2476
    [74]刘伟峰,锂离子电池负极相关材料研究[D].北京:中国科学院物理所,1997
    [75] Yu A., French R., Mesoporous tin oxides as lithium intercalation anode materials[J]. J. Power Sources, 2002, 104(l): 97-100
    [76] Abraham K. M., Pasquariello D. M., Willstaedt E. B., Preparation and characterization of some lithium insertion anodes for secondary lithium batteries[J]. J. Electrochem. Soc., 1990, 137(3): 743-749
    [77] Pietro B. D., Patriarca M., Scrosati B., On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries[J]. J. Power Sources, 1982, 8(2): 289-299
    [78] Weydanz W. J., Way B. M., Van B. T., et.al, Behavior of nitrogen-substituted carbon (NzC1-z) in Li/Li (NzC1-z)6 cells[J]. J. Electrochem. Soc., 1994, 141(4): 900-907
    [79] Way B. M., Dahn J. R., The effect of boron substitution in carbon on the intercalation of lithium in Lix(B2C1-z)6[J]. J. Electrochem. Soc., 1994, 141(4): 908-912
    [80] Xue J. S., Myrtle K., Dahn J. R., An epoxy-silane approach to prepare anode materials for rechargeable lithium ion batteries[J]. J. Electrochem. Soc., 1995, 142(9): 2927-2935
    [81] Tsutomu M., Lithium ion secondary battery[P]. EP: 0762 521, 1997
    [82]华寿南,杨晓燕,康石林,掺杂Sn的Li4Ti5O12作为锂离子电池负极研究[A].哈尔滨:第二十四届中国化学与物理电源学术年会论文集[C]. 2000, 304-305
    [83] Branci C., Benjelloun N., Sarradin J., et.al, Vitreous tin oxide-based thin film electrodes for Li-ion micro-batteries[J]. Solid State Ionics, 2000, 135(1-4): 169-174
    [84] Belliard F., Irvine J. T. S., Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery[J]. J. Power Sources, 2001, 97-98: 219-222
    [85] Mohamedi M., Lee S. J., Takahashi D., et.al, Amorphous tin oxide films: preparation and characterization as an anode active material for lithium in batteries[J]. Electrochimi. Acta, 2001, 46(8): 1161-1168
    [86] Wan K. B., Li S. F. Y., Gao Z. Q., et.al, Tin-based oxide anode for lithium-ion batteries with low irreversible capacity[J]. J. Power Sources, 1998, 75(l): 9-12
    [87] Yang J., Takeda Y., Imanishi N., et.al, Novel composite anodes based on nano-oxides and Li2.6Co0.4N for lithium ion batteries[J]. Electrochimi. Acta, 2001, 46(17): 2659-2664
    [88] Huang H., Kelder E. M., Chen L., et.al, Electrochemical characteristics of Sn1-xSixO2 as anode for lithium-ion batteries[J]. J. Power Sources, 1999, 81-82: 362-367
    [89] Maier J., Nanoionics: ion transport and electrochemical storage in confined systems[J]. Nat. Mater., 2005, 4(11): 805- 815
    [90] Arico A. S., Bruce P., Scrosati B., et.al, Nanostructured materials for advanced energy conversion and storage devices[J]. Nat. Mater., 2005, 4(5): 366-377
    [91] Jamnik J., Maier J., Nanocrystallinity effects in lithium battery materials aspects of nano-ionics[J]. Phys. Chem., 2003, 5(23): 5215-5220
    [92] Singhal A., Skandan G., Amatucci G., et.al, Nanostructured electrodes for next generation rechargeable electrochemical devices[J]. J. Power Sources, 2004, 129(1): 38-44
    [93] Schoonman J., Nanostructured materials in solid state ionics[J]. Solid State Ionics 2000, 135(1-4): 5-19
    [94] Kasuga T., Hiramatsu M., Hoson A., et.al, Formation of titanium oxide nanotube[J]. Langmuir, 1998, 14(12): 3160-3163
    [95] Wang Y. Q., Hu G. Q., Duan X. F., et.al, Microstructure and formation mechanism of titanium dioxide nanotubes[J]. Chem. phys. Lett., 2002, 365(5-6): 427-431
    [96] Yuan Z. Y., Colomer J. F., Su B. L., Titanium oxide nanoribbons[J]. Chem. Phys. Lett., 2002, 363(3-4): 362-366
    [97] Zhang X. Y., Yao B. D., Zhao L. X., et.al, Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays[J]. J. Electrochem. Soc., 2001, 148(7): G398-G400
    [98] Zhang S. L., Zhou J. F., Zhang Z. J., et.al, Morphological structure and physicochemical properities of TiO2 nanotube[J]. Chin. Sci. Bull., 2000, 45(16): 1533-1536
    [99] Wagemaker M., Kearley G. J., Well A. A. V., et al. Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase[J]. J. Am. Chem. Soc., 2003, 125(3): 840-848
    [100]杨晓燕,华寿南,张树永,锂钛复合氧化物锂离子电池负极材料的研究[J].电化学,2000, 6: 350-356
    [101] Nam S. C., Yoon Y. S., Cho W. I., et.al, Enhancement of thin film tin oxide negative electrodes for lithium batteries[J]. Electrochem. Commun., 2001, 3(1): 6-10
    [102] Courtney I., Mckinnon W. R., Dahn J. R, et.al, On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium[J]. J. Electrochem. Soc., 1999, 146(1):59-68
    [103]张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2001
    [104]杨宁,熊大民,王剑华,锂离子电池负极材料的研究进展[J].电工材料,2004, 201(3): 32-34
    [105]吴升晖,尤金跨,锂离子电池碳负极材料的研究[J].电源技术,1998, 22(1): 35-38
    [106] Armstrong G., Armstrong A. R., Bruce P. G., et.al, TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polylmer electrolyte[J]. Adv. Mater., 2006, 18(19): 2597-2600
    [107] Hu Y. S., Kienle L., Guo Y. G., et.al, High lithium electroactivity of nanometer-sized rutile TiO2[J]. Adv. Mater., 2006, 18(11): 1421-1426
    [108] Zhou Y. K., Cao L., Zhang F. B., et.al, Lithium insertion into TiO2 nanotube prepared by hydrothermal Process [J]. J. Electrochem. Soc., 2003, 150(9): A1246-A1249
    [109] Krol R. V. D., Goossens A., Schoonman J., Spatial extent of lithium intercalation in anatase TiO2[J]. J. Phys. Chem. B., 1999, 103(34): 7151-7159
    [110] Wagemaker M., Krol R. V. D., Kentgens A. P. M., et.al, Two phase morphology limits lithium diffusion in TiO2 (Anatase): a 7Li MAS NMR study[J]. J. Am. Chem. Soc., 2001, 123(46): 11454-11461
    [111] Hibino M., Abe K., Mochizuki M., et.al, Amorphous titanium oxide electrode for high-rate discharge and charge[J]. J. Power Sources, 2004, 126(1-2): 139-143
    [112] Robert A. A., Graham A., Jesus C., et.al, TiO2-B nanowires as negative electrodes for rechargeable lithium batteries[J]. J. Power Sources, 2005, 14691-2): 501-506
    [113] Jinyoung K., Jaephil C., Rate characteristics of anatase TiO2 nanotubes and nanorods for Lithium battery anode materials at room temperature[J]. J. Electrochem. Soc., 2007, 154(6): A542-A546
    [114] Wang K., Wei M., Morris M A., et.al, Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries[J]. Adv. Mater., 2007, 19(19): 3016-3020
    [115] Bao S. J., Bao Q. L., Li C. M., et.al, Novel porous anatase TiO2 nanorods and their high Lithium electroactivity[J]. Electrochem. Commun., 2007, 9(5): 1233-1238
    [116] Yamada H., Yamato T., Moriguchi I., et.al, Interconnected macroporous TiO2 (anatase) as a lithium insertion electrode material[J]. Solid State Ionics, 2004, 175(1-4): 195-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700