锂离子电池负极材料钛酸锂的制备及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石型Li_4Ti_5O_(12)是一种理想的嵌入型电极材料,被称作“零应变”材料。它具有充电次数多、充电过程快、安全性高等优点,因而成为目前锂离子电池负极材料研究和开发的热点。
     本课题是以研制比容量高、循环稳定性好、大电流充放电性能佳、制备工艺简单且成本低廉的锂离子电池负极材料Li_4Ti_5O_(12),分析其电化学性能的影响因素为目的。本实验主要采用固相反应法和直接融盐法制备Li_4Ti_5O_(12),利用TG-DTA、XRD、SEM等测试对电极材料进行表征,使用恒流充放电、CV和EIS等电化学测试手段,确定其最佳合成工艺条件,并通过碳掺杂、碳包覆和金属元素掺杂对其进行改性研究。
     采用固相反应法,结合二次煅烧的方法,制备Li_4Ti_5O_(12)的最佳合成工艺条件为:采用Li_2CO_3和锐钛矿型TiO_2为原料,先于450℃预烧4h,再于900℃煅烧12h。在0.1C倍率下首次放电比容量达165.05mAh·g~(-1),经20次循环放电比容量仍保持在159.90 mAh·g~(-1)。
     采用直接融盐法制备Li_4Ti_5O_(12),以CH_3COOLi·2H_2O和锐钛矿型TiO_2为原料,先于70℃保温5h,再于700℃保温2h,从而得到的3#样品的电化学性能最佳。在0.1C倍率下首次放电比容量达到160.77 mAh·g~(-1),经20次循环放电比容量仍保持在154.68 mAh·g~(-1)。
     利用石墨粉作为单质碳源进行碳掺杂,最佳掺杂量为10%wt;利用葡萄糖作为有机碳源进行碳包覆,最佳掺杂量为20%wt;在Li~+位上掺杂Mg~(2+),最佳掺杂量为x=0.2;在Ti~(4+)位上掺杂Sn~(4+),最佳掺杂量为x=0.10。与未掺杂的纯Li_4Ti_5O_(12)材料相比,掺杂改性后的样品首次放电比容量和充放电效率高,电荷转移阻抗和容量衰减小,可逆性和循环稳定性好,倍率性能佳。
The spinel lithium titanate (Li_4Ti_5O_(12)), which was called as“zero-strain”material, was a sort of perfect insertion electrode material. Owing to its excellent characteristic of reversibility, fast kinetics of charge-discharge process, and safety performance, Li_4Ti_5O_(12) has recently been the hotspot of research and development of negative electrode materials for lithium ion battery
     The purposes of the dissertation were to prepare Li_4Ti_5O_(12) as negative electrode material for lithium ion battery, which has high energy density, long term cycling ability, high current charge-discharge ability, simple synthesis technology and low cost, to analyze the factors which might affect the electrochemical performances of Li_4Ti_5O_(12). Work has been done in order to find the optimal synthesis conditions of Li_4Ti_5O_(12) which was synthesized by solid-state reaction and direct molten-salt method. The materials were characterized by TG-DTA, XRD and SEM, and investigated by constant current charge-discharge test, CV and EIS. Carbon doping, carbon coating and metal ion doping were adopted to improve the performance of Li_4Ti_5O_(12).
     Li_4Ti_5O_(12) has been prepared by solid-state reaction combined with second- calcining. The best material was obtained by pre-heating Li_2CO_3 and anatase TiO_2 at 450℃for 4h, subsequently calcined at 900℃for 12h. The discharge specific capacity is 165.05mAh·g~(-1) after first cycle at 0.1C, and 159.90 mAh·g~(-1)after 20 cycles.
     Li_4Ti_5O_(12) has been synthesized by solid-state reaction. The best sample 3# was obtained by heating CH_3COOLi·2H_2O and TiO_2 at 70℃for 5h, subsequently calcined at 700℃for 2h. The discharge specific capacity is 160.77mAh·g~(-1) after first cycle at 0.1C, and 154.68 mAh·g~(-1)after 20 cycles.
     Taking graphite and dextrose as carbon resource, the optimal doping quantity is respectively 10%wt and 20%wt. The optimal doping quantity of Mg~(2+) and Sn~(4+) is respectively x=0.2 and x=0.10. Compared with the pure Li_4Ti_5O_(12), the doped Li_4Ti_5O_(12) has high first discharge specific capacity, high charge-discharge efficiency, low charge transfer resistances, low capacity attenuation, excellent reversibility, cyclic stability and high rate capability.
引文
[1]雷永泉,新能源材料,天津:天津大学出版社,2000,1~2
    [2]吴升辉,锂离子电池负极材料的研究,电源技术,1998,20(1):35~39
    [3]吴宇平,戴晓兵,马军旗等,锂离子电池——应用与实践,北京:化学工业出版社,2004,1~13 [4Yoshimatsu I, Hirai T, Yamaki J, Lithium electrode morphology during cycling in lithium cells, Journal of The Electrochemical Society, 1988, 135(10):2422~2426
    [5]Armand M, In materials for advanced batteries, New York: Plenum Press, 1980, 147~149
    [6]Kennedy B, Patterson D, Camilleri S, Use of lithium-ion batteries in electric vehicles, Journal of Power Sources, 2000, 90(2):156~162
    [7]Scrosati B, Lithium rocking chair batteries: and old concept, Electrochem. Soc., 1992, 139(10):2776~2781
    [8]唐致远,刘春燕,徐国祥,锂离子电池的产品现状及其发展前景,河北化工,2001,1(1):6~7
    [9]吴宇平,戴晓兵,马军旗等,锂离子电池——应用与实践,北京:化学工业出版社,2004,29~30
    [10]施思齐,欧阳楚英,锂离子电池中的物理问题及其研究进展,物理,2004,33(3):182~185
    [11]张勇,胡信国,张翠芬.新型化学电源的电极反应原理,电池工业,2004,9(1):33~36
    [12]郭炳焜,徐徽,王先友等,锂离子电池,长沙:中南大学出版社,2002, 259~263
    [13]吴宇平,万春荣,姜长印等,锂离子二次电池,北京:化学工业出版社,2002,336~352
    [14]杨书廷,张焰峰,刘利君等,锂离子电池正负极材料研究进展,河南师范大学学报,2000,28(4):46~49
    [15]邓敏超,锂离子电池负极材料研究进展,电池,2003,31(3):146~149
    [16]魏智,锂离子电池充电器,国外电子元器件,2001,1(2):69~72
    [17]苏金然,秦兴才,贾宏涛,锂离子电池的发展动态,中国电子商情,2006,3(10):40~43
    [18]Prosini P, Mancini R, Petrucci L et al, Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications, Solid State Ionics, 2001, 144: 185~192
    [19]Endo M, Kim C, Nishimura K et al, Recent development of carbon materials for Li-ion batteries, Carbon, 2000, (38):183~197
    [20]Flandrois S, Simon B, Carbon materials for lithium-ion rechargeable batteries, Carbon, 1999, (37):165~180
    [21]吴国良,杨新河,阚素荣等,锂离子电池及其电极材料的研制,电池,1998,28(6):258~262
    [22]Shi H, Barker J, Structure and lithium intercalation properties of synthetic and natural graphite, Electrochem. Soc., 1996, 143(11):3466~3472
    [23]Pasquier A D, Plitz I, Menocal S et al, A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, Journal of Power Sources, 2003, 115:171~178
    [24]吴升辉,尤金跨,林祖赓,锂离子电池碳负极材料的研究,电源技术,1998,22(1):37~38
    [25]Zheng T, High capacity carbon prepared from phenolic resin for anode of lithium-ion batteries, Electrochem. Soc., 1995, 142:211~214
    [26]雷永泉,万群,石永康,新能源材料,天津:天津大学出版社,2000,123~124
    [27]史鹏飞,化学电源工艺学,哈尔滨:哈尔滨工业大学出版社,2000,207~210
    [28]M. Wachtler, J.O. Besenhard, M. Winter, Tin and Tin-Based intermetallics as new anode materials for lithium-ion cells, J. Power Sources, 2001, 94: 189~193
    [29]Y. Takeda, I. Yang, New composite anode systems combined with Li2.6Co0.4N, J. Power Sources, 2001, 97: 244~246
    [30]苏岳锋,吴锋,陈朝峰,纳米微晶TiO2合成Li4Ti5O12及嵌锂行为,物理化学学报,2004,20(7):707~711
    [31]阳晓霞,钛酸锂新型电极材料的开发与研究,硕士学位论文,天津大学,2007
    [32]陈方,梁海潮,李仁贵等,负极活性材料Li4Ti5O12的研究进展,无机材料学报,2005,20(3):537~544
    [33]雷永泉,万群,石永康,新能源材料,天津:天津大学出版社,2000,123~124
    [34]高剑,姜长印,应皆容等,锂离子电池负极材料钛酸锂的研究进展,电池,2005,35(5):390~392
    [35]官云龙,仇卫华,赵海雷等,液相法合成Li4Ti5O12负极材料电化学性能的研究,第十三次全国电化学会议,广州:2005,432~433
    [36]Nakayama M, Ishida Y, Ikuta H, et al, Mixed conduction for the spinet type (1-x)Li4/3Ti5/3O4-xLiCrTiO4 system, Solid State Ionics, 1999, 117:265~271
    [37]B. Scrosati, S. Panero, P. Reale et al, Investigation of new types of lithium-ion battery materials, Journal of Power Sources, 2002, 105:161~168
    [38]吴国良,杨新河,阚素荣等,锂离子电池及其电极材料的研制,电池,1998,28(6):258~262
    [39]Huang S H, Wen Z Y, Zhu X J, Preparation and electrochemical performance of Ag doped Li4Ti5O12, Electrochemistry Communications, 2004, 6:1093~1097
    [40]Idota Y, Kubota T, Matsufuji A et al, Tin-based Amorphous Oxide: A High- capacity Lithium Ion Storage Material, Science, 1997, 276:1395~1397
    [41]M. Broussely, LiNiO2-a Promising Cathode for Rechargeable Lithium Batteries,Journal of Power Sources, 1995, 54:101~104
    [42]胡玉才,戴寰,结晶化学导论,北京:人民教育出版社,1981,133~173
    [43]Sun Y.K, Jung D.J, Synthesis and electrochemical characterization of spinel Li[Li(1-x)/3CrxTi(5-2x)/3]O4 anode materials, J. Power Sources, 2004, 125:242~245
    [44]Lippens P. E, Womes M, Kubiak P et al, Electronic structure of the spinel Li4Ti5O12 studied abinitio calculations and X-ray absorption spectroscopy, Solid State Sciences, 2004, 6:161~166
    [45]彭久云,曾照强等,锂离子蓄电池负极材料Li4Ti5O12的研究进展,电源技术,2002,26(6):452~456
    [46]Kubiak P, Garcia A, Womes M, Phase transition in the spinel Li4Ti5O12 induced by lithium insertion Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe, Power Sources, 2003, 119:626~630
    [47]Jung K.N, Pyun S.I, Kim S.W, Thermodynamic and linetic approaches to lithium intercalation into Li[Ti5/3Li1/3]O4 film electrode, Power Sources, 2003, 121:637~643
    [48]Pyun S.I, Kim S.W, Shin H.C, Lithium transport through Li1+δ[Ti2-yLiy]O4 (y=0,1/3) electrodes by analyzing current transients upon large potential steps Power Sources, 1999, 81: 248~254
    [49]Guerfi A, Sevigny S, Lagace M et al, Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators, Journal of Power Sources, 2003, 119:88~94
    [50]Guerfi A, Charest P, Nano electronically conductive titanium-spinel as lithium ion storage native electrode, Power Sources, 2004, 126:163~168
    [51]高玲,仇卫华,赵海雷,Li4Ti5O12作为锂离子电池负极材料电化学性能,北京科技大学学报,2005,27(1):82~85
    [52]杨建文,钟晖,钟海云等,Li4Ti5O12的合成及影响因素,中南大学学报,2002,36(1):82~85
    [53]Tsutomu O, Atsushi U, Zreo-strain insertion materials of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, Journal of the Electrochemical Society, 1995, 140: 1431~1435
    [54]Shen C.M, Zhang X.G, Zhou Y. K et al, Preparation and characterization of nanocrystalling Li4Ti5O12 by sol-gel method, Materials Chemistry and Physics, 2002, 78:437~441
    [55]HaoY.J, Lai Q.Y, Xu Z.H et al, Synthesis by TEA sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery, Solid State Ionics, 2005, 176:1201~1206
    [56]Li J.R, Tang Z.L, Zhang Z.G, Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12, Electrochemistry Communications, Electrochemistry Communications, 2005, 7:894~899
    [57]Chen C, Spears M, Wondre F et al, Studies of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0≤x≤1) for Lithium Batteries, Journal of Crystal Growth, 2003, 250(1):139~145
    [58]Nakahara K, Nakajima R, Matsushima T et al, Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells, Journal of Power Sources, 2003, 117:131~136
    [59]Tan K S, Reddy M V, SubbaRao G V et al, High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries, Journal of Power Sources, 2005, 147:241~248
    [60]Ying Bai, Hongjun Shi, ZhaoxiangWang et al, Performance improvement of LiCoO2 by molten salt surface modification, Journal of Power Sources, 2007, 167:504~509
    [61]Tang W P, Yang X J, Liu Z H et al, Preparation ofβ-MnO2 nanocrystal/ acetylene black composites for lithium batteries, Journal of Materials Chemistry, 2002, 12(10):2991~2997
    [62]Hyung Wook Ha, Kyung Hee Jeong, KeonKim, Effect of titanium substitution in layered LiNiO2 cathode material prepared by molten-salt synthesis, Journal of Power Sources, 2006, 161:606~611
    [63]Cheng L, Hai Jing Liu, Jing Jun Zhang et al, Nanosized Li4Ti5O12 Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors, Journal of the Electrochemical Society, 2006, 1538:1472~1477
    [64]郝艳静,锂离子电池负极材料Li4Ti5O12的制备、改性及电化学性能研究,硕士学位论文,四川大学,2007
    [65]许江枫,李建玲,王新东,电极活性材料Li4/3Ti5/3O4的制备性能研究,第十三次全国电化学会议,广州:2005,436~437
    [66]Zaghib K, Simoneau M, Armand M. et al,Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries, Journal of Power Sources, 1999, 81:300~305
    [67]刘东强,锂离子电池负极材料Li4Ti5O12的合成研究,硕士学位论文,四川大学,2004
    [68]张卫民,杨永会,孙思修,二次锂离子电池正极活性材料LiCoO2制备研究进展,无机材料学报,2000,6(116):873~878
    [69]王焕磊,锂离子电池正极材料LiMn2O4的研究现状,佛山陶瓷,2004,9(93):1~4
    [70]邓斌,阎杰,张朝帅,LiCoO2掺杂稀土元素研究,电池,2003,33(2):74~76
    [71]Huang H, Yin S C, Nazar L F, Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochemical Solid-State Letters, 2001, 4:A170
    [72]王兆翔,锂离子电池的研究进展,物理,2004,33(3):182~185
    [73]Huang S, Preparation and cycling performance of Al3+ and F- co-substituted compounds Li4AlxTi5-xFyO12-y, Electrochem. Acta, 2005, 50:4057~ 4062
    [74]Robertson A.D, Tukamoto H, Irvine J.T.S, Li1+xFe1-3xTi1+2xO4(0.0≤x≤0.33) based spinels: Possible negative electrode materials for future Li-ion batteries Electrochem. Soc, 1999, 146(11):3958~3962
    [75]华兰,杨晓燕,康石林等,掺杂Li4Ti5O12作为锂离子电池的负极材料,电池,2001,31(5):218~221
    [76]Huang S. H, Wen Z. Y, Zhu X. J et al, Preparation and electrochemical performance of Ag doped Li4Ti5O12, Electrochemistry Communications, 2004, 6: 1093~1097
    [77]武鹏,唐致远,管道安,锂离子电池负极材料钛酸锂的改性研究,第十三次全国电化学会议,广州:2005,440~441
    [78]肖婕,詹晖,周运鸿,层状结构LiMn1-xCrxO2材料合成电化学性能研究,电化学,2004,10(3):324~329
    [79]K. Hayashi, Y. Nemoto, S. I. Tobishima et al, Mixed Solvent Electrolyte for High Voltage Lithium Metal Secondary Cells, Electrochem. Acta, 1999, 44: 2337~2344
    [80]Ariyoshi K, Yamamoto S, Ohzuku T, Three-Volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4, Journal of Power Sources, 2003, 119:959~963
    [81]Panero S, Satolli D, Salomon M et al, A new type of lithium-ion cell based on the Li4Ti5O12 / Li2Co0.4Fe0.4Mn3.2O8 high-voltage electrode combination, Electro- chem Communications, 2000, 2: 810~813
    [82]Rho Y.H, Kanamura K, Fujisaki M et al, Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol-gel method, Solid State Ionics, 2002, 151:151~157
    [83]Pasquier A, Plitz I, Gural J, Power-ion battery: bridging the gap between Li-ion and supercapacitor chemistries, Journal of Power Sources, 2004, 136:60~ 70
    [84]G. Moumouzias, G. Ritzoulis, D. Siapkas et al, Comparative Study of LiBF4, LiAsF6, LiPF6, and LiClo4 as Electrolytes in Propylene Carbonate-Diethyl Carbonate Solutions for Li/LiMn2O4 Cells, Journal of Power Sources, 2003, 122:57~66
    [85]Pasquier A, Laforgue A, Simon P, Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device, Journal of Power Sources, 2004, 125:95~102
    [86]黄峰,周运鸿,锂离子电池电解质现状与发展,电池,2001,31(6):290~293
    [87]Ue M., Advance in electrochemical capacitors-electrolytes for electrochemical capacitors, Denki Kagaku, 1998, 66(9):904~911
    [88]董继荣,许体弘,陈华民等,超级电容器隔膜研制及应用,第27届全国化学与物理电源学术年会论文集,东莞:中国电子学会化学与物理电源技术分会,2006,C13~C14.
    [89]杨晓燕,华寿南,张树文,锂钛复合氧化物锂离子电池负极材料的研究,电化学,2000,6(3):350~356
    [90]Zaghib, Li4Ti5O12, Li(4-α)ZαTi5O12 or Li4ZβTi(5-β)O12 particles, processes for obtaining same and use as electrochemical generators, United States: 0202934 A1, Oct.14, 2004
    [91]Yamawaki, Nonaqueous secondary battery with lithium titanium cathode Japan: 986722, July 6, 2004
    [92]Izquierdo G, West A R, Melting behaviour of Li2TiSiO5, Materials Research Bulletin, 1980, 15(11):1655~1660
    [93]高玲,仇卫华,赵海雷,合成温度对Li4Ti5O12电化学性能的影响,电池,2004,34(5):351~352
    [94]《正交试验法》编写组,正交试验法,北京:国防工业出版社,1976,25~33
    [95]夏伯忠,侯化国,王玉民,正交试验法,吉林:吉林人民出版社,1985,234~265
    [96]李玥,赵海雷,仇卫华等,二次锂离子电池负极材料Li4Ti5O12的研究进展,硅酸盐通报,2007,26(1):92~96
    [97]Kavan L, Gratzet M, Facile synthesis of nanocrystalline Li4Ti5O12 (spinet) exhibiting fast Li-insertion, Electrochemical and Solid-State Letters, 2002, 5(2): A39~A42
    [98]Abe Y, Matsui E, Senna M, Preparation of phase pure and well-crystallized Li4Ti5O12 nanoparticles by precision control of starting mixture and calcining at lowest possible temperatures, Journal of Physics and Chemistry of Solids, 2007, 68:681~686
    [99]阮艳莉,唐致远,彭庆文,尖晶石型Li4Ti5O12电极材料的合成与电化学性能研究无机材料学报,2006,21(4):873~879
    [100]Yoshinori A, Masahiro Y, Yasuo O, Non-aqueous electrolyte secondary cell, EP: 1180811-A2,Nov.19, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700