二氧化钛光催化剂改性及光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1972年,日本学者藤岛昭和本多健一在n型半导体TiO_2电极上发现了水的光电催化分解作用。以此为契机,开始了多相催化研究的新纪元。半导体光催化氧化技术是一种新型的现代水处理技术,由于它能广泛地利用天然能源-太阳能,且对多种有机物有明显的降解效果,因此具有广阔的应用前景。
     但是以TiO_2为典型代表的光催化剂在传统方法上的应用存在着量子效率低以及回收困难等缺点而限制其工业化的推广应用,因此国内外学者积极展开了对这方面的系统研究,其中包括TiO_2催化剂的表面修饰、固载、重金属沉积、复合半导体、掺杂稀土元素等技术。
     本课题旨在开展对二氧化钛与杭锦2~#土的复合条件以及光催化降解亚甲基蓝的研究,探索其最佳制备工艺条件及降解有机物的一般规律,以期进一步充实光催化剂的负载技术以及有机污水治理方面的研究,为光催化剂的工业化推广运用补充血液。
     本论文主要由以下六部分组成:
     第一部分:系统回顾了光催化材料的发展状况及优点,全面阐述了纳米TiO_2光催化技术在应用、改性、制备、载体等方面的研究情况。
     第二部分:将原杭锦2~#土经过杭锦2~#土的前处理、杭锦2~#土的活化、水洗分酸、干燥粉碎四个步骤制成活性白土。通过XRD和FTIR对样品进行了表征。
     第三部分:以钛酸丁酯和活化土为原料,采用溶胶-凝胶法制备了一系列TiO_2/杭锦2~#土复合光催化剂。用XRD、FTIR、BET、SEM、XPS和TG等分析方法对复合光催化剂的物相组成、晶相等物化性质进行了表征。
     第四部分:采用溶胶-凝胶法掺杂LiF和Sr分别制备了LiF-TiO_2/杭锦2~#土和Sr-TiO_2/杭锦2~#土复合光催化剂。用XRD和FTIR对催化剂进行了表征。
     第五部分:以亚甲基蓝水溶液为光降解体系,在紫外光照射下,利用不同条件下制备的样品作为光催化剂进行光催化降解,考察了不同制备条件下的样品的光催化性能,并探索出复合光催化剂的最佳制备条件。
     第六部分:结论及展望。
Since A. Fujishima and K. Honda first reported the photosensitized decomposition of water into hydrogen and oxygen by titanium dioxide (TiO_2) electrode in 1972, a lot of research works have focused on understanding the fundamental processes and on enhancing the photocatalytic efficiency of semiconductor catalysts. The technique of photocatalytic oxidation which utilizes a semiconductor as a catalyst is a new kind of water treatment process with great potential application in water treatment for its good ability to utilize natural resource-solar energy and its outstanding effect on degradation of organic substances.
     However, the use of conventional photocatalyst that is typically delegated by titanium dioxide results in disadvantages of low quanta efficiency and of separation after the reaction, which confined the industrial application. And different methods including surface modification of TiO_2, support, deposition of heavy metals, the compound semiconductors, the rare elements mixed into TiO_2 were studied abroad and at home.
     The aim of this dissertation is to initiate the research of the synthesis conditions of titanium dioxide based on Hangjin 2~# clay and the degradation of methylene blue (MB) aqueous solution in order to seek optimal condition and general degradation rules, by which we look forward to building up the base for further research.
     This thesis mainly consists of six major parts:
     Part 1: This part systemically reviewed the development and the advantages of the photochemical catalysis material. The application, modification, preparation and carrier research situation of the nanometer TiO_2 photochemical catalysis technology are described in detail.
     Part 2: After pre-treatment, acid activation, washing and dehydration, Hangjin 2~# clay changed into activated clay. Then the samples were characterized by XRD and FTIR.
     Part 3: A series of TiO_2 /Hangjin 2~# clay compounds were successfully synthesized by a sol-gel process using Ti (OC4H9)4 and activated clay as raw materials. The composite catalysts were characterized by means of XRD, FTIR, BET, SEM, XPS and TG.
     Part 4: TiO_2/Hangjin 2~# clay composites have been doped by lithium fluoride (LiF) and strontium (Sr) via sol-gel method. X-ray diffraction (XRD) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize composites.
     Part 5: The photocatalytic characteristics of composites were evaluated by measuring decomposition of methylene blue in aqueous solution under UV irradiation.
     Part 6: Conclusion and prospect.
引文
[1] A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
    [2] M. Anpo, H. Yamashita. Surface Photochemistry [M]. London: Wiley, 1996
    [3] M. Anpo, H. Yamashita. Heterogeneous Catalysis [M]. London: Wiley, 1997
    [4] Do-Jin Lee, Scott A. Senseman, Audie S. Sciumbato. The effect of titanium dioxide alumina beads on the photocatalytic degradation of picloram in water [J]. J. Agnic. Food Chem., 2003, 51(9): 2659-2664.
    [5]吴越.催化化学[M].北京:科学出版社,2000
    [6]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002
    [7] Ulrike Diebold. The surface science of titanium dioxide [R]. Surface science reports,2003,48: 53-229.
    [8]张金龙,陈峰,何斌.光催化[M].上海:华东理工大学出版社,2004
    [9]马荣骏. TiO2的光催化作用及其研究进展[J].稀有金属与硬质合金,2006,34(2): 40-43.
    [10] Fadri Gottschalk, Tobias Sonderer, Roland W. Scholz, Bernd Nowach. Modeled environmental concentrations of engineered nanomaterials for different regions [J]. Environ. Sci. Technol., 2009, 43(24): 9216-9222.
    [11] Changsheng Guo, Ming Ge, Lu Liu, Guandao Gao, Yinchang Feng, Yuqiu Wang. Directed synthesis of mesoporous TiO2 microspheres: Catalysts and their photocatalysis for bisphenol A degradation [J]. Environ. Sci. Technol., 2010, 44(1): 419-425.
    [12] Daibin Kuang, Jeremie Brillet, Peter Chen. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells [J]. ACS Nano., 2008, 2(6): 1113-1116.
    [13] Congjun Wang, Robert L.Thompson, John Baltrus, Christopher Matranga. Visible light photoreduction of CO2 using CdSe / Pt / TiO2 heterostructured catalysts [J]. J. Phys. Chem. Lett., 2010, 1(1): 48-53.
    [14] Rajesh J. Tayade, Thillai Sivakumar Natarajan, Hari C. Bajaj. Photocatalytic degradation ofmethylene blue dye using ultraviolet light emitting diodes [J]. Ind. Eng. Chem. Res.,2009,48(23): 10262–10267.
    [15] Wojciech Baran, Andrzej Makowski, W1adys1aw Wardas. The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2 [J]. Dyes and Pigments, 2008, 76(1): 226-230.
    [16] Maria Kositzi, Ioannis Poulios, Konstantini Samara, Euthimia Tsatsaroni, Efthymios Darakas. Photocatalytic oxidation of Cibacron Yellow LS-R [J]. Journal of Hazardous Materials, 2007, 146(3): 680-685.
    [17] Pantelis A. Pekakis,Nikolaos P. Xekoukoulotakis,Dionissios Mantzavinos. Treatment of textile dyehouse wastewater by TiO2 photocatalysis [J]. Water Research, 2006, 40(6): 1276-1286.
    [18] Qinjin Geng, Qingjie Guo, Changqing Cao. Investigation into nano TiO2/ACSPCR for decomposition of aqueous hydroquinone [J]. Ind. Eng. Chem. Res., 2008, 47(8): 2561-2568.
    [19] Fernando Fresno, Chantal Guillard, Juan M. Coronado, Jean-Marc Chovelon, David Tudel, Javier Soriaa, Jean-Marie Herrmann. Photocatalytic degradation of a sulfonylurea herbicide over pure and tin-doped TiO2 photocatalysts [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2005, 173(1): 13–20.
    [20] Hsin-Hung Ou, Ching-Hui Liao, Ya-Hsuan Lion. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes [J]. Environ. Sci. Technol., 2008, 42(12): 4507-4512.
    [21] E. Evgenidou, K. Fytianos, I. Poulios. Photocatalytic oxidation of dimethoate in aqueous solutions [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005,175(1): 29-38.
    [22] Jianqiu Chen, Duo Wang, Mao-Xu Zhu, Cong-Jie Gao. Photocatalytic degradation of dimethoate using nanosized TiO2 powder [J]. Desalination,2007, 207(1): 87-94.
    [23] Ling Zan,Songlin Wang,Wenjun Fa,Yanhe Hu,Lihong Tian,Kejian Deng. Solid-phase photocatalytic degradation of polystyrene with modified nano-TiO2 catalyst [J]. Polymer, 2006, 47(24): 8155-8162.
    [24] Danzhen Li, Zhixin Chen, Yilin Chen. A new route for degradation of volatile organic compounds under visible light: using the bifunctional photocatalyst Pt/TiO2-xNx in H2-O2 atmosphere [J]. Environ. Sci. Technol., 2008, 42(6): 2130–2135.
    [25] Anders Hagfeldtt, Michael Gratzel. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev., 1995, 95(1): 49-68.
    [26] A. A. Ismail, I. A. Ibrahim, M. S. Ahmed, R. M. Mohamed, H. El-Shall. Sol–gel synthesis of titania–silica photocatalyst for cyanide photodegradation [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 163(3): 445-451.
    [27] A. Bozzi, I. Guasaquillo, J.Kiwi. Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts [J]. Applied Catalysis B: Environmental, 2004, 51(3): 203-211.
    [28] Xiang-Rong Xu, Hua-Bin Li, Ji-Dong Gu. Simultaneous decontamination of hexavalent chromium and methyl tert-butyl ether by UV/TiO2 process [J]. Chemosphere, 2006, 63(2): 254-260.
    [29] Blake, Daniel M. NREL/ TP-430-6048. National Renewal Energy Laboratory, Golden, Co, 1994
    [30]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:国防工业出版社,1999
    [31]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2005
    [32]施周,张文辉.环境纳米技术[M].北京:化学工业出版社社,2003
    [33] Qingyun Yang, Richard M. Osgood Jr. Energy-resolved studies of photochemistry on semiconductor surfaces [J]. J. Phys. Chem., 1993, 97(35): 8855-8863.
    [34] Xiaoxing Fan, Tao Yu, Lizhi Zhang, Xinyi Chen, Zhigang Zou. Photocatalytic degradation of acetaldehyde on mesoporous TiO2: effects of surface area and crystallinity on the photocatalytic activity [J]. Chinese Journal of Chemical Physics, 2007, 20(6): 733-738.
    [35] W. K. Choy, W. Chu. Destruction of o-Chloroaniline in UV/TiO2 reaction with photosensitizing additives [J]. Ind. Eng. Chem. Res., 2005, 44(22): 8184-8189.
    [36] Adel A. Ismail, Detlef W. Bahnemann, Lars Robben, Viktor Yarovyl, Michael Wark. Palladium doped porous titania photocatalysts [J]. Chem. Mater., 2010, 22(1): 108-116.
    [37] Michal Lahav, Andrei B. Kharitonow, Orit Katz. Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors [J]. Anal. Chem., 2001, 73(3): 720-723.
    [38] Tetsuya Kako, Zhigang Zou, Masahiko Katagiri, Jinhua Ye. Decomposition of organic compounds over NaBiO3 under visible light irradiation [J]. Chem. Mater., 2007, 19(2): 198-202.
    [39] H. Y. Zhu, J. A. Orthman, J. Y. Li, J. C. Zhao, G .J. Churchman, E. F. Vansant. Novel composites of TiO2 and silicate nanopartcles [J]. Chem. Mater., 2002, 14(12): 5037-5044.
    [40] Rakesh R., Yeredla, Huifang Xu. Incorporating strong polarity minerals of tourmaline with semiconductor titania to improve the photo splitting of water [J]. J. Phys. Chem., 2008,112(2): 532-539.
    [41]夏炎.纳米TiO2光电催化降解亚甲基蓝的研究[D].沈阳:东北大学,2006:
    [42] Jimmy C.Yu, Jiaguo Yu, Wingkei Ho, Jincai Zhao. Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2002, 148(1): 331-339.
    [43]王侃,陈英旭,叶芬霞. SiO2负载的TiO2光催化剂可见光催化降解染料污染物[J].催化学报, 2004, 25(12): 931-936.
    [44]姜艳丽,刘惠玲,姜兆华,崔瑞海. TiO2 / Ti光电催化体系中羟自由基的测定[J].材料科学与工艺, 2006, 14(2): 162-165.
    [45] Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationship between surface morphology and chemical behavior [J]. Applied Catalysis A, 2000, 200(2): 275-283.
    [46] Wenjie Zhang, Shenglong Zhu, Ying Li, Fuhui Wang. Photocatalytic Zn-doped TiO2 films prepared by DC reactive magnetron sputtering [J]. Vacuum,2007,82(3): 328-335.
    [47]华南平,甘玉琴,徐娇珍,邹翠娥,杨平,徐景坤,杜玉扣.铂颗粒粒径效应:负载铂纳米颗粒的TiO2薄膜性质研究[J].光谱学与光谱分析,2005,25(11): 1861-1864.
    [48]顾虹,许波连,周静,李远志,范以宁.负载型Pd/TiO2和Pd-Ag/TiO2催化剂的乙炔选择性加氢催化性能[J].物理化学学报, 2006, 22(6): 712-715.
    [49]侯兴刚,吴小玲,刘安东. Ag/TiO2薄膜光催化性能的研究[J].北京师范大学学报(自然科学版), 2005, 41(6): 604-607.
    [50] Antonino Sclafani, Jean-Marie Herrmann. Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media [J]. Journal of Photochemistry and Photobiology:A Chemistry. 1998, 113(2): 181-188.
    [51]田宝柱,童天中,陈峰,张金龙.水洗处理对Au/TiO2催化剂光催化活性的影响[J].物理化学学报, 2007, 23(7): 978-982.
    [52] Deliang Wang, Guanlong Wang, Jianhua Zhao, Bo Chen. Photo-induced degradation of Ru (II) complex absorbed on anatase TiO2 thin film electrode [J]. Chinese Science Bulletin, 2007, 52(14): 2012-2014.
    [53] Tracy L. Thompson, John T. Yates. Surface science studies of the photoactivation of TiO2 new photochemical processes [J]. Chem. Rev., 2006, 106(10): 4428-4453.
    [54] Zhaoyang Liu, Darren Delai Sun, Peng Guo, James O. Leckie. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dualspinneret method [J]. Nano Letters, 2007, 7(4): 1081-1085.
    [55] Jing Shang, Wenqing Yao, Yongfa Zhua, Nianzu Wu. Structure and photocatalytic performances of glass/SnO_2/TiO_2 interface composite film [J]. Applied Catalysis A: General, 2004, 257(1): 25–32.
    [56] Qingju Liu, Xinghui Wu, Baoling Wang, Qiang Liu. Preparation and super-hydrophilic properties of TiO_2/SnO_2 composite thin films [J]. Materials Research Bulletin, 2002, 37(14): 2255-2262.
    [57] Bahnemann, Detlef W. Current challenges in photocatalysis: improved photocatalysts and appropriate photoreactor engineering [J]. Res. Chem. Intermed, 2000, 26(2): 207-220.
    [58] Dhananjeyan M R, Kandavelu V, Renganathan R. An investigation of the effects of Cu2+ and heat treatment on TiO_2 photooxidation of certain pyrimidines [J]. J Mol Catal A: Chem., 2000, 158(2): 577-582.
    [59] Vorontsov, Alexander V, Evgueni NSavinov, Jin Zhensheng. Influence of the form of photodeposited platinum on Titania upon its photocatalytic activity in CO and acetone oxidation [J]. J Photochem. Photobiol. A, 1999, 125(3): 113-117.
    [60] Takeuchi. Preparation of visible-light-responsive titanium oxide photocatalysts by plasma treatment [J]. Chem. Lett., 2000, 12(29): 1354-1366.
    [61] Assabane. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania-identification of intermediates and reaction pathway of the photo-mineralization of trimellitic acid [J]. Appl. Catal.: B, 2000, 24(2): 71-87.
    [62] Fadri Gottschalk, Tobias Sconderer, Roland W Scholz, Bernd Nowack. Modeled environmental concentrations of engineered nanomaterials for different regions [J]. Environ. Sci. Technol., 2009, 43(24): 9216-9222.
    [63] Xiaojing Li, Jerry W. Cubbage, William S. Jenks. Photocatalytic degradation of 4-chlorophenol.2. the 4-chlorocatechol pathway [J]. J. Org. Chem., 1999, 64(23): 8525-8536.
    [64] An-wu Xu, Yuan Gao, Hanqin Liu. The Preparation, characterization, and their photocatalytic activities of Rare-Earth-Doped TiO_2 Nanoparticles [J]. Journal of Catalysis, 2002, 207(2): 151-157.
    [65] Chen Wen, Hua Deng, Junying Tian, Jimei Zhang. Photocatalytic activity enhancing for TiO_2 photocatalyst by doping with La [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(B02): 728-731.
    [66] Mathieu De Koninck, Pierre Manseau, Beno?t Marsan. Preparation and characterization of Nb-doped TiO_2 nanoparticles used as a conductive support for bifunctional CuCo2O4 electrocatalys [J]. Journal of Electroanalytical Chemistry, 2007, 611(1): 67-79.
    [67]梁娟.催化新材料[M].北京:化学工业出版社社,1990
    [68] Johan Sterte. Synthesis and properties of titanium oxide cross-linked montmorillonite [J]. Clays and Clay Minerals, 1996, 34(6): 658-664.
    [69] Hiroshi Yaneyama, Shigeo Haga, Sholi Yamanaka. Photocatalytic activities of microcrystalline TiO_2 incorporated in sheet silicate of clay [J]. J. Phys. Chem., 1999, 93(12): 4833-4837.
    [70] S. Mathur, V. Sivakov, H. Shen, S. Barth, C. Cavelius, A. Nilsson, P. Kuhn. Nanostructured films of iron, tin and titanium oxides by chemical vapor deposition [J]. Thin Solid Films, 2006, 502(1): 88– 93.
    [71] Chung-Hsin Lu, Ming-Chang Wen. Synthesis of nanosized TiO_2 powders via a hydrothermal microemulsion process [J]. Journal of Alloys and Compounds, 2008, 448(1): 153–158.
    [72] A. Dittmar, H. Kosslick, J.–P. Müller, M.–M. Pohl. Characterization of cobalt oxide supported on titania prepared by microwave plasma enhanced chemical vapor deposition [J]. Surface and Coatings Technology, 2004, 182(1): 35-42.
    [73] Shigehito Deki, Sachihiko Iizuka, Minoru Mizuhata, Akihiko Kajinami. Fabrication of nano-structured materials from aqueous solution by liquid phase deposition [J]. Journal of Electroanalytical Chemistry, 2005, 584(1): 38-43.
    [74] Shanxin Xiong, Si Lei Phua, Bruce S. Dunn. Covalently bonded polyanilline-TiO_2 hybrids: a facile approach to highly stable anodic electrochromic materials with low oxidation potentials [J]. Chem. Mater., 2010, 22(1): 255–260.
    [75] H. P. Deshmukh, P. S. Shinde, P. S. Patil. Structural, optical and electrical characterization of spray-deposited TiO_2 thin films [J]. Materials Science and Engineering B, 2006, 130(1): 220–227.
    [76]叶青,杨瑞霞.稀有而神奇的杭锦2#土[J].草原税务,2003, 10: 45.
    [1]中国地质科学院矿产资源研究所,等.内蒙古杭锦2#土研究开发利用资料汇编[G]. 2005:
    [2]刘艳林. SO42-/杭锦2#土的制备、表征及其光催化性能研究[D].呼和浩特:内蒙古师范大学,2008:
    [3]杨宏伟,乌地,郭博书.敌敌畏在土壤中吸附特性的研究[J].环境科学研究, 2006, 19(2): 35-38.
    [4]杨宏伟,郭博书,嘎日迪.除草剂甘草膦才土壤中吸附行为[J].环境科学, 2004, 25(5): 158-162.
    [5]杨宏伟,乌云其木格.快速测定水、土壤中有机磷农药含量的研究[J].内蒙古师范大学学报, 2003, 34(4): 485-488.
    [6]夏荣花.锡钛复合氧化物光催化性能研究[D].济南:山东师范大学,2008:
    [7]照日格图,嘎日迪,张宇.一种透水砖的制备方法[P].中国专利:200610159475.0,2006-09-25:
    [8]宝迪.杭锦2#土处理含高氟水的初探[J].内蒙古石油化工, 2004, 30(4): 1-2.
    [9]斯琴高娃,袁立娟,聂志强.一种新型污水处理剂的制备及其除铅性能研究[J].内蒙古石油化工, 2004, 30(6): 3-5.
    [10]乌云,照日格图,嘎日迪.粘土-SA01吸附和分离洛神葵红色素的研究[J].食品科学, 2004, 25(11): 75-75.
    [11]照日格图,乌云,宝迪巴特尔,刘晓权,嘎日迪.杭锦2#土脱色剂的制备及其对植物油脱色性能的研究[J].中国油脂, 2004, 29(8): 19-21.
    [12]乌云,照日格图,嘎日迪.酸活化杭锦2#土催化合成环几烯研究[C].第五届全国环境催化与环境材料学术会议论文集.山东:烟台大学出版,2007,219-220.
    [13]乌云,赵慧,陈其和,嘎日迪,宝迪,照日格图. ZnCl2/粘土-SA0催化剂上二苯甲烷的合成[J].分子催化, 2004, 18(4): 286-290.
    [14]杨立玲.以伊利石合成4A沸石分子筛的实验研究[D].西安:西安科技大学, 2005:
    [15] A. Steudel, L. F. Batenburg, H. R. Fischer. Alteration of swelling clay minerals by acid activation [J]. Applied Clay Science, 2009, 44(1): 105-115.
    [16] Elise Courvoisier, Sam Dukan. Improvement of Escherichia coil growth by kaolinite [J]. Applied Clay Science, 2009, 44(1): 67-70.
    [17]照日格图,宝迪,乌云,嘎日迪.食用油脱色剂的生产方法[P].中国专利:02152582. X,2004-06-09:
    [18]照日格图,乌云,宝迪,嘎日迪.活性白土的生产方法[P].中国专利:200310120043.5,2005-06-08:
    [19]照日格图,乌云,宝迪,嘎日迪,赵慧.一种环境友好催化剂的制备方法[P].中国专利:200310109821.0,2003-12-23:
    [20]乌云,照日格图,贾美林. ZnCl2/粘土-SA0催化合成二苯甲苯的反应动力学研究[J].高等学校化学学报, 2005, 26(12): 2336-2339.
    [1]黄昭宇. TiO_2/膨润土复合材料的制备及光催化性能研究[D].南宁:广西大学,2007
    [2]刘丽娜. TiO_2/沸石光催化降解有机污染物的研究[D].呼和浩特:内蒙古大学,2006:
    [3] Javier Marugan, Maria-Jose Lopez-Munoz, Rafael van Grieken. Photocatalytic decolorization and mineralization of dyes with nanocrystalline TiO_2/SiO_2 materials [J]. Ind. Eng. Chem. Res., 2007, 46(23): 7605-7610.
    [4] Vittorio Luca, Mark G. Blackford, Kim S. Finnie. Sol-gel tungsten oxide/titanium oxide multllayer nanoheterostructured thin films: structural and photoelectrochemical properties [J]. J. Phys. Chem. C, 2007, 111(50): 18479-18492.
    [5] O. Yoshiro, S. Isao, O. Yoshimitsu. Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors [J]. Wat. Res., 2000, 34(9): 890-895.
    [6] M. Muruganandham, N. Shobana, M. Swaminathan. Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO_2 [J]. J. Mol. Catal. A: Chem., 2006, 246(1): 154-157.
    [7] R.S. Sonawane, S.G. Hegde, M.K. Dongare. Preparation of titanium (iv) oxide thin-film photocatalyst by sol-gel dip coating [J]. Mater. Chem. Phys., 2002, 77(3): 744-749.
    [8] M. Anpo, M. Takeuchi, K. Ikeue, S. Dohshi. Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation [J]. Solid State Mater. Sci., 2002, 6(1): 381-386.
    [9] A.M. Martinez, D.R. Acosta, G. Cedillo. Effect of SnO_2 on the photocatalytical properties of TiO_2 films [J]. Thin Solid Films, 2005, 490(2): 118-123.
    [10] J. Shang, W. Yao, Y. Zhu, N. Wu. Structure and photocatalytic performances of glass/SnO_2/TiO_2 interface composite film [J]. Appl. Catal. A: General, 2004, 257(1): 25-32.
    [11]褶奇,梁渠,刘建容.分子沉积(MD)膜驱剂多羟基三季铵盐的合成、吸附与润湿性能[J].油田化学, 2008, 25 (3): 281-283.
    [12] Adel A. Ismail, Detlef W. Bahnemann, Lars Robben. Palladium doped porous titania photocatalysts: impact of mesoporous order and crystallinity [J]. Chem. Mater., 2010, 22(1): 108-116.
    [13]王幸宜.催化剂表征[M].上海:华南理工大学出版社,2008
    [14] Tracy L. Thompson, John T. Yate, Jr. Surface science studies of the photoactivation of TiO_2 new photochemical processes [J]. Chem. Rev., 2006, 106(10): 4428-4453.
    [15] J.Y. Feng, X. Hu, P.L. Yue, H.Y. Zhu, G.Q. Lu. Degradation of azo-dye orange II by a photoassisted fenton reaction using a novel composite of iIron oxide and silicate nanoparticles as a catalyst [J]. Ind. Eng. Chem. Res., 2003, 42(10): 2058-2063.
    [16] Jianfa Li, Man Jiang, Huan Wu, Yimin Li. Addition of modified bentonites in polymer Gel formulation of 2,4-D for its controlled release in water and soil [J]. J. Agric. Food Chem., 2009, 57(7): 2868-2874.
    [17] Yi Xie, Yuanzhi Li, Xiujian Zhao. Low-temperature preparation and visible-light-induced catalytic activity of anatase F-N-codoped TiO_2 [J]. J. Mol. Catal. A: Chem., 2007, 277(1): 119-126.
    [18] Yaling Su, Xinwang Zhang, Song Han. F-B-codoping of anodized TiO_2 nanotubes using chemical vapor deposition [J]. Electrochemistry Communnications, 2007, 9(1): 2291-2298.
    [19] Chung-Hsin Wu, Chung-Liang Chang. Decolorization of reactive red 2 by advanced oxidation processes: comparative studies of homogeneous and heterogeneous systems [J]. Journal of Hazardous Materials B, 2006, 128(2): 265-272.
    [1]余晓鹏,张付宝.铂修饰TiO_2柱撑膨润土光催化还原含Cr(Ⅵ)废水的研究[J].应用化工, 2009, 38(3): 398-401.
    [2] A. Steudel, L.F. Batenburg, H.R. Fischer, P.G. Weidler, K. Emmerich. Alteration of swelling clay minerals by acid activation [J]. Appl. Clay Sci., 2009, 44(1): 105-111.
    [3] Cui Ying, Du Hao, Shiwen Li. Doped-TiO_2 photocatalysts and synthesis methods to prepare TiO_2 films [J]. J. Mater. Sci. Technol., 2008, 24(5): 82-88.
    [4] Q. Xiao, Z.C. Si, Z.M. Yu, G.Z. Qiu. Sol–gel auto-combustion synthesis of samarium-doped TiO_2 nanoparticles and their photocatalytic activity under visible light irradiation [J]. Mater. Sci. Eng. B, 2007, 137(1): 189-195.
    [5] B.H. Yao, L.M. Wang, C. Wang, Y.X. Wang, G.Y. Zhao. Preparation and performances of RuO_2/TiO_2 films photocatalyst supported on float pearls [J]. Chin. J. Chem. Phys., 2007, 20(6): 789-798.
    [6] L. Jing, H. Fu, B. Wang, D. Wang, B. Xin, S. Li, J. Sun. Effects of Sn dopant on the photo induced charge property and photocatalytic activity of TiO_2 nanoparticles [J]. Appl. Catal. B: Environ., 2006, 62(2): 282-291.
    [7] Valentina Belova, Helmuth Mohwald, Dmitry G. Shchukin. Ultrasonic intercalation of gold nanoparticles into a clay matrix in the presence of surface-active materials [J]. J. Phys. Chem. C, 2009, 113(16): 6751-6760.
    [8] Hsun-Tsing Lee, Li-Huei Lin. Waterborne polyurethane/clay nanocomposites: novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties [J]. Macromolecules, 2006, 39(18): 6133-6141.
    [9]李怀祥,夏荣花,姜正伟,等. TiO_2-SnO_2复合粉体光催化降解亚甲基蓝[J].山东师范大学学报(自然科学版), 2007, 22(4): 77-79.
    [10] Yilmaz, B. Civelekoglu. Gypsum: an additive for stabilization of swelling clay soils [J]. Appl. Clay Sci., 2009, 44(1): 166-172.
    [11] H.X. Li, R.H. Xia, Z.W. Jiang, S.S. Chen, D.Z. Chen. Optical absorption property and photo-catalytic activity of tin dioxide-doped titanium dioxides [J]. Chin. J. Chem., 2008, 26(10): 1790-1797.
    [12] X.X. Fan, T. Yu, L.Z. Zhang, X.Y. Chen, Z.G. Zuo. Photocatalytic degradation of acetaldehyde on mesoporous TiO_2: Effects of surface area and crystallinity on the photocatalytic activity [J]. Chin. J. Chem. Phys., 2007, 20(6): 733-738.
    [1]李静谊,斯琴高娃,刘丽娜. TiO_2/膨润土光催化降解有机污染物[J].物理化学学报, 2007, 23(1): 16-19.
    [2]王海东,汤育才,余海钊.钛柱撑膨润土的制备及柱化影响因素[J].中国有色金属学报, 2008, 18(3): 536-539.
    [3] Y. F. Fang, Y. P. Huang, Y. Huang. Photocatalytic degradation of the dye sulforhodamine-B: A comparative study of different light sources [J]. Environ. Sci., 2007, 19(1): 97-102.
    [4] X. X. Fan, T. Yu, L. Z. Zhang. Photocatalytic degradation of acetaldehyde on mesoporous TiO_2 [J]. Chem. Phys., 2007, 20(6): 733-738.
    [5]崔玉民.影响纳米材料TiO_2光催化活性的影响因素[J].稀有金属, 2006, 30(1): 107-114.
    [6]李怀祥,夏荣花,姜正伟. TiO_2-SnO_2复合粉体光催化降解亚甲基蓝[J].山东师范大学学报(自然科学版), 2007, 22(4): 77-79.
    [7]李静谊,马俊华,白图雅.氟离子对TiO_2/膨润土光催化降解酸性桃红的影响[J].物理化学学报, 2007, 23(8): 1213-1218.
    [8]刘艳林. SO42-/杭锦2#土的制备、表征及其光催化性能研究[D].呼和浩特:内蒙古师范大学,2008:
    [9] B. H. Yao, L. M. Wang, C. Wang. Preparation and performances of RuO_2/TiO_2 films photocatalyst supported on float pearls [J]. Chem. Phys., 2007, 20(6): 789-795.
    [10] C. Fernandes, C. Catrinescu, P. Castilho. Catalytic conserversion of limonene over acid activated Serra de Dentro (SD) bentonite [J]. Applied Catalysis A, 2007, 318: 108-120.
    [11]江宏富,周作兴,刘杏芹. LiF掺杂TiO_2的制备及其光催化性能[J].催化学报, 2007, 4(4): 377-382.
    [12] Rodriguez-Talaveraa R., Vargas S., Aarroyo-Murillo R. Modification of the phase transition temperatures in tiania doped with various cations [J]. Mater Res., 1997, 12: 439-446.
    [13] C. S. Guo, M. Ge, L. Liu. Directed synthesis of mesoporous TiO_2 microspheres: catalystsand their photocatalysis for Bisphenol A degradation [J]. Environ. Sci. Technol., 2010, 44(1): 419-425.
    [14] K. H. Ji, D. M. Jang, Y. J. Cho. Comparative photocatalytic ability of nanocrystal-carbon nanotube and TiO_2 nanocrystal hybrid nanostructures [J]. J. Phys. Chem. C, 2009, 113(46): 19966-19972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700