模板法制备层状锰酸锂材料及其掺杂改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰酸锂材料由于具有资源丰富、价格低廉、对环境友好、耐过充放电、耐大电流放电和安全性能好等优点,被认为是最有前途的正极材料之一,尤其适合用作未来电动车动力电池的正极材料。在锰氧化物中可用作正极材料的有尖晶石型LiMn_2O_4和层状LiMnO2。但是尖晶石型LiMn_2O_4初始容量较低、循环性能差,而层状LiMn0_2理论容量高达285mAh/g,几乎是LiMn2O4的两倍,循环性能较好,引起来人们极大的兴趣,逐渐成为近年来的研究热点,是一种具有广阔发展前景的正极材料。
     本文首先以商业级大孔径硅胶为模板,利用硅胶的多孔结构制备了具有纳米尺寸的LiMnO2正极材料,TEM透射电镜显示模板法制备的材料的颗粒尺寸在30—50nm之间,与硅胶孔径尺寸基本吻合。然后采用普通法制备了微米级LiMnO2材料。用循环充放电测试考察了产物的电化学性能,结果显示模板法制备的纳米尺寸LiMnO_2与微米级材料相比显示了更好的充放电性能和循环稳定性,但是两者放电比容量都较低。
     为了更好提高材料的放电比容量和循环性能,在模板法的基础上分别掺杂不同的稀土元素Ce和La。XRD物相结果表明所制备的掺杂材料结晶度较好,纯度较高。颗粒尺寸也都在硅胶孔径范围内。充放电测试显示掺杂La或者Ce后,无论是材料的放电比容量和循环性能都有了较大幅度的提高。其中2%Ce掺杂的锰酸锂材料初次容量为108.6mAh/g,在30次循环后容量是98.8 mAh/g,容量保持率在90.9%。4%La掺杂的锰酸锂材料初次容量为113.5mAh/g,循环30次后其放电比容量是103mAh/g,容量保持率为90.7%。
     在模板法单元掺杂的基础上尝试二元掺杂,以期能进一步提高材料的电化学性能。我们分别在2%Ce和4%La掺杂的基础上分别掺杂不同比例的Ni,充放电测试表明掺杂后材料的放电比容量都有一个稳步上升的过程,然后趋于稳定,其中LiMn_(0.90)Ni_(0.08)Ce_(0.02)O_2首次放电比容量是87.8mAh/g,循环30次后其放电比容量为132.4 mAh/g,容量保持率为150.7%。LiMn_(0.86)Ni_(0.10)La_(0.04)O_2首次放电比容量是106.1mAh/g,循环30次后其放电比容量为141.3mAh/g,容量保持率为133.2%。这也同时说明了掺杂元素在抑制结构相变,提高循环稳定性上发挥了关键作用。
Lithium manganese oxide material is considered as one of the most promising cathode material because of its abundant resources,low price,friendly environmental,durability to over-discharge and over-charge, discharge at high electric current, and super safety. And it is particularly suitable for future electric vehicle power battery cathode material. In the manganese oxides,spinel LiMn_2O_4 and layered LiMnO_2 can be used as cathode materials. However, the initial capacity of the spinel LiMn_2O_4 is low and the cycle performance is poor, while the layered LiMnO_2 theoretical capacity is up to 285mAh/g,which is almost twice of the LiMn_2O_4, the cycle performance of the LiMnO_2 is also very good ,and which has caused great interests of people. Layered LiMnO_2 has a broad prospects for development in the cathode materials.
     In this paper, commercial-grade silica with large hole was used as template,we used the porous structure of silica prepare nanosized layered LiMnO_2 cathode material. TEM transmission electron microscopy showed that the particle size of the material prepared by template method is about 30-50nm which is consistent with the pore size of silica gel. Then the micron LiMnO_2 material was prepared by general method. Charge-discharge cycle tests investigated the electrochemical properties of the product.Compared with micron-grade materials,template synthesis of nano-size LiMnO_2 showed better electrochemical performance and cycle stability,but both of them had a poor discharge capacity.
     In order to improve the discharge capacity and cycle performance of the material, we doped different proportions of rare earth elements Ce and La based on the template method. XRD results showed that the phase of the dopped materials all had a good degree of crystalbility and high purity. Particle size is between silica pore size range. Charge-discharge tests showed that the discharge capacity and cycling performance all have a greatly improved when the materials dopped La and Ce. The initial capacity of 2% Ce-doped LiMnO_2 material is 108.6mAh/g, after 30 cycles the storage capacity is 98.8 mAh/g,the rate of the capacity retention is 90.9%. The initial capacity of 4% La-doped LiMnO_2 materials is 113.5mAh/g, after 30 cycles the discharge capacity is 103mAh / g, the rate of the capacity retention is 90.7%.
     Based on the mono-doped of the template method,we tried the dual-doped method in order to further improve the electrochemical properties of the material.Based on 2%Ce and 4% La-doped respectively,we doped different proportions of Ni.Charge-discharge tests showed that the discharge capacity of the material had a steady increase in the process,and then stabilized.The initial capacity of LiMn_(0.90)Ni_(0.08)Ce_(0.02)O_2 is 87.8mAh/g,30 cycles later the discharge capacity is 132.4 mAh/g, the rate of the capacity retention is 150.7%. The initial capacity of LiMn_(0.86)Ni_(0.10)La_(0.04)O_2 is 106.1mAh/g, 30 cycles later the discharge capacity is 141.3mAh/g, the rate of the capacity retention is 133.2%. It illustrated that doped elements played a key role in the suppression phase transition and cycle stability.
引文
[1]余国华,赵玉琴.当前化学电源工业发展热点与模式[J].电池,1997,27(5):229-232.
    [2]詹峰,蒋利军.电动汽车用动力型MH-Ni电池开发动向[J].电源技术,1997,21(1):35-38.
    [3] Yang Hanxi, Ai Xinping. Modeling and Prediction for Discharge Lifetime of BaterySystems using Hybrid Evolutionary Algorithms[J]. Computers&Chemistry, 2002,25(3):251-259.
    [4] Nagaura T.,Ozawa K.T. Lithium-ion Rechargeable Battery[J]. Prog.Battery Sol.Cell,1990,9:209~217.
    [5] Gozdz A.S.,Schmutz C.N.,Tarascon J.M., et al. Method of Making an Electrolyte Activatable Lithium-Ion Rechargeable Battery Battery Cell[J].U.S.patent,5456000,1995.
    [6] Gozdz A.S.,Tarascon J.M., Warren P.C.. Electrolyte Activatable Lithium-Ion Rechargeable Battery Cell[J].U.S.patent,5460904,1995.
    [7] Janina Molenda, Mariusz Ziemnicki, Jacek Marze, et al. Electrochemical and high temperature physicochemical properties of orthorhombic LiMnO2[J]. Journal of Power Sources,2007(173 ):707–711.
    [8] T.Ohzuku, A.Ueda and M.Nagayama. Electrochemistry and Structural Chemistry of LiNiO2 (Rm)for 4 Volt Secondary Lithium Cells[J]. Electrochem.Soc,1993,140(7),1862-1870.
    [9] W.Li, J.N.Reimers and J.R.Dahn. In situ X-ray diffraction and electrochemical studies of Li1-xNiO2. Solid State Ionics,1993,67(1-2):123-130.
    [10] Atsuo Yamada,Masahiro Tanaka,Koichi Tanaka,Kji Sekai. Jahn-Teller instability in spinel Li-Mn-O[J]. Power Sources,1999(81-82),73-78.
    [11] YiLiu, T.Fujiwara, H.Yukawa, M.Morinaga. Electronicstructures of lithium manganese oxides for rechargeable lithium battery electrodes[J]. Solid State Ionics,1999,126(3-4),209-218.
    [12] Youhei Shiraishi, Izumi Nakai,Toshio Tsubata, et al. In situTransmission X-Ray Absorption Fine Structure Analysis of the Charge-Discharge Process in LiMn2O4,a Rechargeable Lithium Battery Material[J]. Journal of Solid State Chemistry,1997,133(2),587-590.
    [13] Hideyuki Oka,Senshi Kasahara,Tadashi Okada, et al. Structural analysis of lithium-excess lithium manganate cathode materials by 7Li magic-angle spinning nuclear magnetic resonance spectroscopy[J]. Solid State Ionics,2001,144(1-2),19-29.
    [14]佚名.锂离子电池的安全与材料性能息息相[J].[2009-12-25]. http://www.elecfans.com
    [15]徐季光.锂电池与锂离子电池[J],信息时代导刊,2003(H):42-44.
    [16] Mizushima K.,JonesP.C,Wiseman P.J,et al.LixCOO2(0    [17]杨遇春,郑有国.锂离子电池材料新进展[J].电池,1998(4):181-183.
    [18] Demlasc,Peres J.P,et al. On the behavior of the LixNiO2 system:an electrochemical and structural overview[J]. J.Power Sources,1997,68:120-128.
    [19] WLi,JCCurie[J]. J.Electrochem.Soc,1997,144:2773-2780.
    [20] ERossen, C D W.Jones, et al. Structure and electrochemistry of LixMnyNi1-yO2[J]. SolidState Ionics,1992,57:311-319.
    [21] Amriou T,Sayede A,Khelifa B, et al. Effect of Al-doping on lithium nickel oxides[J]. J.Power Sources,2004,130:213-220.
    [22] MyoungYoupsong RyongLee, et al. Synthesis by sol–gel method and electrochemical properties of LiNi1-yAlyO2 cathode materials for lithium secondary battery[J]. Solid State Ionics,2003,156:319-328.
    [23] HJKweon, SSKim,et al. Syntheses of LiMn2O4,LiCoO2 and LiNi0.8Co0.2O2 by the PVA-precursor method and their use as a cathode in the lithium-ion rechargeable battery[J]. J.Mater.Sci Lett,1998,17:1697-1702.
    [24]郭景坤.高性能陶瓷论文集[M].北京:人民交通出版社,1998,5.
    [25] Capitaine F,GravereauP, DelmasC. A new variety of LiMnO2 with a layered structure.[J]. Solid State Ionics,1996,89:197-203.
    [26] Davidsonl.J,McMillanR.S, MurrayJ.J,et al. Lithium-ion cell based on orthorhombic LiMnO2[J]. J.Power Sources,1995,54:232-238.
    [27] CroguenecL, DeniardPRbrec, et al. Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder[J]. Solid State Ionics,1996,89:127-134.
    [28] Young-ⅡJang,BiyingHuang,Yet-Ming Chiang, et al[J]. Electrochem.Solid-State Lett, 1998,1(1):13-20.
    [29] Ravet N,Chouinard Y,Magnan J F, et al. Electroactivity of natural and synthetic triphylite[J]. J.Power Sources,2001,97-98:503-507.
    [30] Yamada A,ChungS C,Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. J.Electrochem Soc,2001,148(3):A224-A229.
    [31] Zhanhui C,Dahn JR. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy,volumetric energy,and tap density[J]. J.Electrochem.Soc,2002,149(9):84-89.
    [32] Kokabang R,Barker J,Shi H, et al. Cathode materials for 1ithium rocking chair batteries[J]. Solid State Ionics,1996,84:1-21.
    [33] Obrovac MN,Mao O,Dahn JR. Structure and electrochemical characterization of LiMO2 (M=Ti,Mn,Fe,Co,Ni)prepared by mechanochemical synthesis[J]. Solid State Ionics, 1998,112:9-19.
    [34] Manev V,Momchilov A,Nassalevska A, et al.New approach to the improvement of Li1+XV3O8 performance in rechargeable lithium bateries[J]. J.Power Sources,1995,54(2):501-507.
    [35] Kawakita J,Majlma M S,Takashi M,et al. Preparation and lithium insertion behavior of oxygen-deficient Li1+XV3O8[J]. J.Power Sources,1997,66:l35-139.
    [36] YamasaA,ChungSC. Crystal chemistry of the olivlne-Type Li(MnyFe1-y)O4 and(MnyFe1-y)PO4 as possible 4 Vcathode materials for lithium batteries[J]. J.Electrochem Soc,2001, 148(8):A960-A967.
    [37] Amine K,Yasuda K,YamachiM[J]. Electmchem Solid-State Lett,2000,3(4):178-179.
    [38]森北孝志,山本隆一.聚合物二次电池用导电性高分子的合成与改性[J].工业材料,1999,47(2):35-39.
    [39] PaneroS,SpliaE,SpliaB, et al. A new type of a rocking-chair battery familily based on a graphite and a polymer cathode[J]. J.Electrochem.Soc,1996,143:29–30.
    [40]Scrosati B,Lithium rocking chair batteries:all old concept[J]. Electrochem Soc,1992,139(10):2776-2781.
    [41] Frackowiak E,Gautier S,Gaucher H, et a1. Electrochemical storage of lithium in multiwalled carbon nanotubes[J].Carbon,1999,37(1):61—69.
    [42] IdotaY,KubomT,MatsufujiA,eta1. Tin-base amorphous oxide:a high-capacity lithium-ion-storage materia1. Science,1997,276:1395—1397.
    [43] LiuW,HuangX,WangZ,et a1. Studiesof stannic oxide as an anode Material for lithium-ionbatteries[J]. Electrochem Soc,1998,145:59-62.
    [44]杨晓燕,华寿南,张树永.锂钛复合氧化物锂离子电池负极材料的研究[J].电化学,2000,6(3):350-356.
    [45]禹筱元,刘业翔,胡国荣.锂离子电池用有机电解液和聚合物电解质的研究进展[J].材料导报,2003,17(5):58-61.
    [46] Arai H., Okada S.,Sakurai Y.,Yamaki J.Reversibility of LiNiO2 cathode[J]. Solid State Ionics,1997,95(3-4):275-282.
    [47]唐致远,李建刚,薛建军.锂离子电池正极材料LiMn2O4的改性与循环寿命[J].化学通报,2000,8:10-14.
    [48] Armstrong A R, Bruce P G.Synthesis of layered LiMnO2 as an electrode for recharge lithiumbatteries[J].Nature,1996,381:499—500.
    [49] Guilmard M, Croguennec L, Denux D, et a1. Thermal stability of lithium nickel oxide derivatives. Part I: LixNi1.02O2 and LixNi0.89Al0.16O2 (x = 0.50 and 0.30)[J].Chem Mater,2003,15(23):4476—4484.
    [50] Armstrong A R, Robertson A D, Bruce P G. Structural transformation on cycling layered Li(Mnl-yCoy )O2cathode materials[J].Electrochimica Acta.1999,45(1-2):285-294.
    [51] G Vitins,K West. Lithium intercalation into layered LiMnO2[J].J Electrochem Soc,1997,14 :2587 -2592.
    [52] Chitrakar R, Sakane K, Umeno A, et al. Synthesis of orthorhombic LiMnO2 by solid-phase reaction under steam atmosphere and a study of its heat and acid-treated phases[J]. Journal of Solid State Chemistry,2002,169(1),66-74.
    [53] CederG,MishraS K. Electrochem and Solid-state Lett.,1999,2(11):550-552.
    [54]钱逸泰编著,结晶化学导论(第二版),中国科技大学出版社,1999.合肥.P329.
    [55] Young-II Jang and Yet-Ming Chiang. Stability of the monoclinic and orthorhombic phases of LiMnO2 with temperature,oxygen partial pressure,and Al doping. Solid State Ionic,2000(130):53-59.
    [56] Myung S T,Komaba S,Kumagai N.Synthetic optimization of orthorhombic LiMnO2 by emulsion-drying method and cycling behavior as cathode material for Li-ion battery[J].Solid State Ionics,2002,150(3-4),199-205.
    [57] Storey C,Kargina I,Grincourt Y,et al. Electrochemical characterization of a new high capacitycathode[J].Journal of Power Sources,2001,97-98:541-544.
    [58]J.Reed,G.Ceder,A.Van Der Ven. Layered-to-spinel phase transition in LixMnO2. Electrochemical and Solid-State Letters,2001,4(6):78-81.
    [59] Eric J.Wu,Patrick D.Tepesch,Gerbrand Ceder. Size and Charge effect on structural stability of LiMnO2(M=transition metal)compounds. Philosophical Magazine B,1998,77:1039-1047.
    [60] Eric J Wu, Patrick D Tepesch, Gerbrand Ceder. Size and charge efforts on the structural stability of LiMO2 (M = transition metal) compounds[J]. Philosophical Magazine B, 1998 , 77(4)1039-1047
    [61] Ceder G,Mishra S K. The stability of orthorhombic and monoclinic-layered LiMnO2[J]. Electrochemical and Solid State Letters,1999,2(11):550-552.
    [62] Wei Y.J , Ehrenberg H, Kim K.B,et al. Characterizations on the structural and electronic properties of thermal lithiated Li0.33MnO2.Journal of Alloys and Compounds,2009,470 (1-2):273–277.
    [63] Lee Y.S, Sun Y K, Adachi K, et al. Synthesis and electrochemical Characterization of orthorhombic LiMnO2 material[J]. Electrochimica Acta,2003,48:103l—l039.
    [64] Hwang S J,Park H S,Choy J H,Campet G. Variation of the chemical bonding nature of LiMn2-xNixO4 spinel oxides upon delithiation and lithiation reactions[J]. Journal of Physical Chemistry B,2001,105(1):335-342.
    [65] Guo Z.P, Konstantinov K, Wang G.X, et al. Preparation of orthorhombic LiMnO2 material via the sol-gel process[J]. J.Power Sources 119-121(2003)221-225.
    [66] Renuka R, Ramnmurthy S. An investigation on layerde birnessite type mangaese oxides for battery applications[J]. J Power Sourcces,2000,91(87):144-152.
    [67] Liu Qun, Li Yangxin, Hua Zheliang,et al. One-step hydrothermal routine for pure-phased orthorhombic LiMnO2 for Li-ion battery application. Electrochimica Acta,2008,53(24): 7298–7302.
    [68] Zhou Fu, Zhao Xuemei, Liu Yunqi,et al. Size-controlled hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 nanorods.Journal of Physics and Chemistry of Solids,2008, 69(8): 2061-2065.
    [69] Molenda Janina, Ziemnicki Mariusz, Marzec Jacek, et al. Electrochemical and high temperature physicochemical properties of orthorhombic LiMnO2. Journal of Power Sources,2007, 173 (2):707–711.
    [70] Lu Z,MacNeil D D,Dahn J R. Layered cathode materials Li[Ni xLi (1/ 3 - 2 x/ 3)Mn (2/ 3 - x/ 3) ]O2 for lithium-ion batteries [J]. Electrochem Solid State Lett,2001,4 (11) :191-194.
    [71] Yang X Q , McBreen J , Yoon W S , et al. Crystal structure changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD[J ]. Electrochemistry Communications, 2002 ,4 (8) :649– 654.
    [72]陈永坤,氧化铝模板法合成氧化纳米结构材料,[硕士学位论文].昆明,昆明理工大学,2006.
    [73] Cabana J , Valdéssolís T , Palacín M R , et al. Enhanced highrate performance of LiMn2O4 spinel nanoparticles synthesized by a hard template route[J ]. J Power Sources,2007,166 (2) : 492-498.
    [74] Wang G X,Yao P,Zhong S,et al. Electrochemical study on orthorhombic LiMnO2 as cathode in rechargeable lithium batteries. Journal of Applied Electrochemistry,1999,29(12),1423-1426.
    [75] Kim J H,Sun Y K. Electrochemical performance of Li[LixNi(1-3x)/2Mn(1+x)/2]O2 cathode materials synthesized by a sol–gel method. Journal of Power Sources,2003,119-121,166-170.
    [76] Whittingham M S,Zavalij P Y. Manganese dioxides as cathodes for lithium rechargeable cells:the stability challenge. Solid State Ionics,2000,131(1),109-115.
    [77]金俊阳,陆春华,许仲梓.纳米材料模板合成技术研究[J].材料导报,2007,21(11):143-1471.
    [78]王秀丽,曾永飞,卜显和.模板法合成纳米结构材料[J].化学通报,2005,68(10):723 -7301.
    [79] Zhou Y K,Huang J , Shen C M , et al. Synthesis of highlyordered LiNiO2 nanowire arrays in AAO templates and their structural properties[J]. Mater Sci Eng,A,2002,335 (1-2):260-2671.
    [80] Cabana J, Valdes-Solis T, Palacin M.R,et al. Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route[J]. Journal of Power Sources, 2007, (166):492–498.
    [81] Naoaki Kumagai, Jung-Min Kim, Syo Tsuruta, et al. Structural modification of Li[Li0.27Co0.20Mn0.53]O2 by lithium extraction and its electrochemical property as the positive electrode for Li-ion batteries. Electrochimica Acta,2008,53 (16) 5287–5293.
    [82] Periasamy P, Kalaiselvi N. Electrochemical performance behavior of combustion-synthesized LiNi0.5Mn0.5O2 lithium-intercalation cathodes.Journal of Power Sources,2006, 159 (2) 1360–1364.
    [83] Guo Z P, Wang G X, Liu H K,et al.Structure and electrochemistry of LiCrxMn1-xO2 cathode for lithium-ion batteries.Solid State Ionics,2002,148(3-4),359-366.
    [84] Park S H, Lee Y S, Sun Y K. Synthesis and electrochemical properties of sulfur doped-LixMnO2-ySy materials for lithium secondary batteries. Electrochemistry Communications,2003,5(2),124-128.
    [85] Barker J, Koksbang R, Saidi M Y. Lithium insertion in manganese oxides:A model lithium ion system[J]. Solid State Ion,1995,82(3-4):143-151.
    [86] Armstrong A R, Bruce P G. Synthesis of layered LiMnO2 as electrode for rechargeablelithium batteries[J].Nature,1996,381:499-500.
    [87] Huang J X, Xie Y, Li B, et al. In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres[J]. Advanced Materials, 2000,12(11):808-811.
    [88] Seung-Taek M ,Shinichi K,Naoaki K. Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2[J]. Electrochimica Acta,2002,47: 3287-3295.
    [89] Bao S J, Liang Y Li H L. Synthesis and electrochemical properties of LiMn2O4 by microwave-assisted sol-gel method[J]. Materials Letters,2005,59(28):3761-3765.
    [90] Mohammed Dahbi, J. Magnus Wikberg, Ismael Saadoune, et al. A delithiated LiNi0.65Co0.25Mn0.10O2 electrode material: A structural, magnetic and electrochemical study[J].Electrochimica Acta ,2009,54: 3211–3217.
    [91] JoséJ.Saavedra-Arias, Naba K. Karan, Dillip K. Pradhan,et al. Synthesis and electrochemical properties of Li(Ni0.8Co0.1Mn0.1)O2 cathode material: Ex situ structural analysis by Raman scattering and X-ray diffraction at various stages of charge–discharge process. Journal of Power Sources,2008, 183: 761–765.
    [92] Sathiya M, Prakash A.S, Ramesh K,et al. Rapid synthetic routes to prepare LiNi1/3Mn1/3Co1/3O2 as a high voltage high-capacity Li-ion battery cathode material. Materials Research Bulletin,2009,44(10): 1990-1994 .
    [93] Zhang Bin, Chen Gang, Liang Yilin,et al. Structural and electrochemical properties of LiNi0.5Mn0.5?xAlxO2 (x=0, 0.02, 0.05,0.08, and 0.1) cathode materials for lithium-ion batteries. Solid State Ionics ,2009,180: 398–404.
    [94] Sugiyama J, Noritake T, Hioki T et al.A new variety of LiMnO2:high-pressure synthesis and magnetic properties of tetragonal and cubic phases of LixMn1-xO(x~0.5).J Materials Science and Engineering,2001,B84:224~232.
    [95] Jang Y-II, Huang B.Y,Wang H.F,et al. Electrochemical Cycling-Induced Spinel Formation in High-Charge-Capacity Orthorhombic LiMnO2[J]. Journal of The Electrochemical Society, 1999,146(9):3217-3223.
    [96] Cho J, Jung H S, Park Y C, et a1. Electrochemical properties and thermal stability of LiNi1-xCoxO2 cathode materials [J].J Electrochem Soc,2000,147(1):15-20.
    [97] Shajh K M, Subba Rao G V, Chowdari B V R. Electrochemical kinetic studies of Li-ion in O2-structured Li2/3(Ni1/3Mn2/3)O2 and Li(2/3+x)(Ni1/3Mn2/3)O2 by EIS and GITT[J].J Electrochem Soc,2003,150(1):1-13. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700