注入锁定钛宝石激光器的研制及其在光晶格钟中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中性镱原子光晶格钟是几类主要的中性原子光晶格钟之一,有望成为下一代时间频率标准。通过激光冷却技术囚禁在光晶格中的镱原子可以提供线宽为毫赫兹量级的钟频跃迁,而理论计算表明光钟的不确定度达10-18,使时间频率标准提升到一个前所未有的精度。
     由于光晶格频率大失谐,获得足够的阱深需要很高的光强,所以因禁镱原子的三维光晶格需要高功率、窄线宽、低噪声的激光器作为光源,因此注入锁定钛宝石激光器是理想的选择。钛宝石晶体有良好的机械性质、热性质和光谱性质,容易获得功率高、光束质量好的输出光。但由于钛宝石的自发辐射谱线很宽,要实现单模窄线宽的输出,需要在谐振腔内放置选模器件,这增加了谐振腔内的损耗,使激光器的阈值增大,斜面效率降低,不利于获得高功率输出。注入锁定技术不需要在谐振腔内加入选模元件,避免附加损耗引入,有利于得到高功率输出,并且能使激光的噪声水平降低到量子噪声极限。针对实验,本文提出了一种全面分析影响注入锁定钛宝石激光器输出功率各种因素的理论,详细讨论了谐振腔和钛宝石晶体的主要参数对其输出功率的影响,得出了设计谐振腔结构应靠近稳区边缘,晶体长度和吸收系数存在最佳乘积,存在最佳输出耦合镜透射率等结论,并据此对实验进行优化,在5W泵浦功率下获得了600mW输出的初步结果,这同我们的理论计算相符。
     此外,高功率泵浦使得激光器的热效应显现,目前的实验数据显示在15W的连续泵浦功率下钛宝石激光器依然没有受到热效应影响。对此本文使用数值模拟、有限元分析、传输矩阵方法对连续钛宝石激光器的热透镜效应进行了全面分析,首次量化了晶体内弹光效应和端面膨胀产生的热透镜的大小;使用泵浦光与振荡光的模式匹配效率量化了热透镜效应对激光的影响;计算了激光效率由此产生的下降。结果表明在泵浦功率超过20W以后,钛宝石激光器的输出功率将会受到热透镜的严重影响,并且此时应变造成热透镜也开始显现,而本文所使用的这些方法可用于所有的端泵激光器。
     本文还讨论了Yb原子光晶格钟使用到的冷原子基本理论,包括塞曼减速、磁光阱(MOT)和光晶格的基本原理,讨论了注入锁定和Pound-Drever-Halll技术的数学基础,详细讨论了实验中实现注入锁定需要的电子技术以及初步的试验结果。
A neutral ytterbium optical lattice clock is one species of the optical lattice clock, which may become the next generation of the time and frequency standard. The ytterbium atoms which are trapped in the optical lattice by the laser cooling techniques can provide the clock transition with the linewidth of several miliherz. And the theory predicts that the uncertainty achieves 10-18, which promotes the time and frequency standard to an unprecedented degree of accuracy.
     The sufficient depth of the lattice potential only can be produced by the high power laser due to the far off resonance property of the lattice beams. So there is the need of the high power, narrow linewidth, and low noise laser system served as the light source for the 3D ytterbium optical lattice, which makes the injection-locked Ti:sapphire laser as the best choice. The Ti:sapphire crystal owns the good mechanical, thermal and spectroscopy properties, which makes the output laser beam with the high power and perfect profile easily. But the range of fluorescence spectra of Ti:sapphire is wide, if one wants to realize the narrow single mode output, the mode selection components have to be employed in the laser cavity, which raises the intracavity loss and brings the high threshold and low slope efficiency. The injection-locked technique avoids such defects and makes the level of the laser noise down to the quantum limit. This research propose a comprehensive theory to analyze the output power of the injection-locked Ti:sapphire laser, which gives a detailed discussion about the influence of the key parameters of the laser cavity and crystal on the laser power. And it forms many results such as the cavity structure should be set at the edge of the stability region, there is an optimal product of the crystal length and absorption coefficient and there is an optimal transmission of the output coupler. Also we have employed the experiment optimized by this theory and obtained the result of 600mW output with 5W pump power, which is agreed with the calculations.
     In addition, the thermal lens effect should be considered under the high pump power region, but the reported experimental data shows no such influence appears with 15W pump power for Ti:sapphire laser. We employed another research with numerical analysis, finite element analysis and transmission matrix method to give a comprehensive understanding on the thermal lens effect in the injection-locked Ti:sapphire laser. This research quantified the thermal lens induced by the elasto-optical effect and end face bulging; quantified the influence of the thermal lens on the laser and pump beam; calculated the decrease of the lasing efficiency caused by the thermal lens. The results show that when the pump power exceeds 20W the output power of the Ti:sapphire laser will be seriously influenced by the thermal lens and the thermal lens induced by strain rises. All the methods we used here can be applied on other end pumped lasers.
     This thesis also gives the description of the basic cooled atom theory applied in Yb optical lattice clock, including the basic principle of Zeeman slower, magneto-optical trap (MOT), and optical lattice. There is also the discussion about the mathematic models of the injection locking and Pound-Drever-Hall techniques and the detailed discussion for the electronic techniques to realize the injection locking and some experimental results.
引文
[1]S. Leschiutta, Metrologia,42, S10 (2005).
    [2]http://www.bipm.org/en/CGPM/db/11/9/
    [3]D.Henderson, Metrologia,42, S4 (2005).
    [4]http://www.bipm.org/en/CGPM/db/13/1/
    [5]http://www.bipm.org/en/si/si_brochure/chapter2/2-1/second.html
    [6]http://www.bipm.org/en/CGPM/db/23/9/
    [7]M. A. Lombardi, T. P. Heavner and S. R. Jefferts, The Journal of Measurement Science,2.74 (2007).
    [8]http://tf.nist.gov/cesium/atomichistory.htm
    [9]J. Vanier, and C. Audoin, Metrologia,42, S31 (2005).
    [10]L. S. Cutler. Metrologia.42, S90 (2005).
    [11]N. F. Ramsey, Metrologia,42, S1 (2005).
    [12]D. J. Douglas, A. J. Frank, D. M. Mao, Mass Spectrometry Reviews,24,1 (2005).
    [13]http://en.wikipedia.org/wiki/Laser
    [14]D. J. Wineland, R. E. Drullinger, and F. L. Walls, Phys. Rev. Lett.,40,1639 (1978).
    [15]W. Neuhauser, M. Hohenstatt, P. Toschek and H. Dehmelt, Phys. Rev. Lett.,41, 233(1978).
    [16]T. W. Hansch, and A. L. Schawlow, Opt. Commun,13,68 (1975).
    [17]W. D. Phillips, H. Metcalf. Phys.Rev.Lett.,48,9 (1982).
    [18]S. Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin, Phys. Rev. Lett.,55,48(1985).
    [19]J. Dalibard, and C. Cohen-Tannoudji, J. Opt. Soc. Am. B,6,2023 (1989).
    [20]M. Kasevich, and S. Chu, Phys. Rev. Lett.,69,1741 (1992).
    [21]R. Wynands, and S. Weyers, Metrologia,42, S64 (2005).
    [22]D. Marchi. Metrologia,18,103-116 (1982).
    [23]J. L. Hall, M. Zhu, and P. Buch, J. Opt. Soc. Am. B,6,2194 (1989).
    [24]M. Kasevich, E, Riis, S, Chu and R. G. DeVoe, Phys. Rev. Lett.,63,612 (1989).
    [25]A. Clairon, S. Ghezali, G. Santarelli, P. Laurent, S. N. Lea, M. Bahoura, E. Simon, S. Weyers, andK. Szymaniec,1996 Proc.5th Symp. Frequency Standards and Metrology (Singapore:WorldScientific), pp45.
    [26]S. N. Jefferts, D. M. Meekhof, J. H. Shirley, T. E. Parker and F. Levi,1999 Proc. Joint Meeting 13th European Frequency and Time Forum-IEEE International Frequency Control Symp. (Besancon), pp12.
    [27]S. Weyers, U. Hubner, B. Fischer, R. Schroder, Tamm Chrand Bauch A 2000 Proc.14th European Frequency and Time Forum (Torino), pp53.
    [28]P. Gill, Metrologia,42, S125 (2005).
    [29]S. Seel, R. Storz, G. Ruoso. J. Mlynek, and S. Schiller, Phys. Rev. Lett.,78, 4741 (1997).
    [30]D. J. Jones, S. A. Diddams. J. K. Ranka, A. Stentz. R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science,288,635 (2000).
    [31]S.A.Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. Wineland, Science,293,825(2001).
    [32]M. Takamoto, F. L. Hong, R. Higashi. and H. Katori, Nature,435,321 (2005).
    [33]C. W. Chou. D. B. Hume. J. C J. Koelemeij, D. J. Wineland, and T.Rosenband. Phys. Rev. Lett.,104,070802 (2010).
    [34]S. Bize, S. A. Diddams, U. Tanaka. C. E. Tanner, W. H. Oskay, R. E. Drullinger. T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, and J. C Bergquist, Phys. Rev. Lett..90,150802 (2003).
    [35]W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquis, Phys. Rev. Lett.,97,020801 (2006).
    [36]T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, Science, 319,1808(2008).
    [37]C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, Science,329,1630 (2010).
    [38]H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, P. Gill, Science,306,1355 (2004).
    [39]M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hansel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and P. Laurent, Phys. Rev. Lett.,102,023002 (2009).
    [40]J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. R. Telle, Opt. Lett.,26, 1589(2001).
    [41]P. J. Blythe, S. A. Webster, H. S. Margolis, S. N. Lea, G. Huang, S.-K. Choi, W. R. C. Rowley, P. Gill, and R. S. Windeler, Phys. Rev. A,67,020501 (R) (2003).
    [42]J. Zanthier, T. Becker, M. Eichenseer, A. Y. Nevsky, C. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, T. Udem, and T. W. Hansch, Opt. Lett.,25, 1729(2000).
    [43]M. E. Poitzsch, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Rev. Sci. Instrum.,67,129(1996).
    [44]R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Phys. Rev. Lett.,85,2462 (2000).
    [45]A. D. Ludlow, T. Zelevinsky,G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, JunYe, T. M. Fortier, J. E. Stalnaker. S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, C. W. Oates. Science,319,1085 (2008).
    [46]S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, and J.Ye, X. Baillard. M. Fouche, R. LeTargat, A. Brusch, and P. Lemonde, M. Takamoto, F.-L. Hong, and H. Katori, Phys. Rev. Lett.,100, 140801 (2008).
    [47]N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, Phys. Rev. Lett.,103,063001 (2009).
    [48]T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F. -L. Hong, Appl. Phys. Express,2,072501 (2009).
    [49]L. Yi, S. Mejri, J. J. McFerran, Y. LeCoq, and S. Bize, Phys. Rev. Lett.,106, 073005(2011).
    [50]H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, Phys. Rev. Lett.,100,053001 (2008).
    [51]Z. W. Barber, C. W. Hoyt, C. W. Oates, and L. Hollberg, Phys. Rev. Lett.,96, 083002 (2006).
    [52]H. Schnatz, B. Lipphardt, C. Degenhardt, E. Peik, T. Schneider, U. Sterr, and C Tamm, IEEE. Transactions on Instrumentation and Measurement,54,750 (2005).
    [53]J. Friebe, A. Pape, M. Riedmann, K. Moldenhauer, T. Mehlstaubler, N. Rehbein, C. Lisdat, E. M. Rasel, and W. Ertmer, Phys. Rev. A,78,033830 (2008).
    [54]M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, Phys. Rev. Lett.,98,083002 (2007).
    [55]T. H. Loftus, T. Ido, M. M. Boyd, A. D. Ludlow, andJ. Ye, Phys. Rev. A,70, 063413(2004).
    [56]R. Maruyama, R. H. Wynar, M. V. Romalis. A. Andalkar, M. D. Swallows, C. E. Pearson, and E. N. Fortson, Phys. Rev. A,68,011403 (2003).
    [57]http://en.wikipedia.org/wiki/Ytterbium
    [58]http://en.wikipedia.org/wiki/Strontium
    [59]E. L. Raab. M. Premiss, A. Cable, S. Chu, D. E. Pritchard. Phys. Rev. Lett.,59, 2631 (1987).
    [60]H. J. Metcalf, and P. van der Straten, Laser Cooling and Trapping, Springer, 1999.
    [61]D. Budlker, D. F. Kimball, D. P. Demille, Oxford University Press,2004.
    [62]T. E. Barrett, S. W. D. Schwartz, M. D. Ray. and G. P. Lafyatis, Phys. Rev. Lett., 67,3483 (1992).
    [63]K. J. Gunter, Design and implementation of a Zeeman slower for 87Rb, Ecole Normale Superieur, Paris,2004,17-20.
    [64]T. H. Loftus, Laser cooling and trapping of atomic ytterbium, Ph.D. thesis, University of Oregon,2001.
    [65]R. W. Shivitz, Technuques in laser cooling and trapping of atomic ytterbium, Ph.D. thesis, University of Oregon,2003.
    [66]Z. Barber, Ytterbium optical lattice clock, Ph.D. thesis, University of Colorado, 2007.
    [67]R. H. Dicke, Phys. Rev.,89,472,1953.
    [68]P. S. Jessen, and I. H. Deutsch, Advances in Atomic, Molecular and Optical Physics,37,95(1996).
    [69]G. Morigi, J. Eschner, J. I. Cirac, and P. Zoller, Phys. Rev. A,59,3797 (1999).
    [70]P. S. Jessen, C. Gerz, P. D. Lett. W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw. and C. I. Westbrook, Phys. Rev. Lett.,69,49 (1992).
    [71]S. G. Porsev, A. Derevianko, E. N. Fortson, Phys. Rev. A,69,021403 (2004).
    [72]P. F. Moulton, J. Opt. Soc. Am. B,3,125 (1986).
    [73]A. Stingl, M. Lenzner,C. Spielmann, F. Krausz, and R. Szipocs, Opt. Lett.,20, 602(1995).
    [74]V. I. Donin, V. A. Ivanov, V. I. Kovalevskii, D, V. Yakovin, Opt. Commun.,122, 40(1995).
    [75]D. M. Kane, Appl. Opt.,33,3849 (1994).
    [76]J. Harrison. A. Finch, D. M. Rines, G. A. Rines, and P. F. Moulton, Opt. Lett., 16,581 (1991).
    [77]P. A. Schulz, IEEE J. Quantum Electron.,4,1039 (1988).
    [78]E. A. Cummings, M.S. Hicken and S. D. Bergeson, Appl. Opt.,41,7583 (2002).
    [79]Y. H. Cha, Y. W. Lee, K. H. Ko, E. C. Jung, G. Lim, J. Kim, T. S. Kim and D. Y. Jeong. Appl. Opt.,44,7810 (2005).
    [80]T. Amthor, M. Sinther, and T. Walther, An injection-locked, single-mode, continuous wave Ti:Sapphire laser, Laser Phys. Lett.,3,75 (2006).
    [81]Y. H. Cha. K. H. Ko. G. Lim, J. M. Han, H. M. Park, T. S. Kim and D. Y. Jeong, Opt. Express, 16,4866 (2008).
    [82]W. Koechner, Solid-State Laser Engineering, Springer, New York,2006
    [83]M. E. Innocenzi, H. T. Yura. C. L. Fincher. and R. A. Fields, Appl. Phys. Lett., 56,1831 (1990).
    [84]J. Frauchiger, Peter Albers, and Heinz P. Weber, IEEE J. Quantum Electron.,28, 1046(1992).
    [85]U. O. Farrukh, A. M. Buoncristiani, and C. E. Byvik, IEEE J. Quantum Electron.,24,2253 (1988).
    [86]R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley and H. Ward, Appl. Phys. B,31,97 (1983).
    [87]T. W. Hansch and B. Couillaud, Opt. Commun.35,441 (1980).
    [88]M. Born, and E. Wolf, Principles of Optics, Cambridge University Press,1999.
    [89]D. C. Hanna, IEEE J. Quantum Electron.,5,483 (1969).
    [90]D. M. Kane, Opt. Commun.,71,113 (1989).
    [91]H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, IEEE J. Quantum Electron.,8,373 (1972).
    [92]X. L. Wang, G. J. Hu, Y. Li, and J. Q. Yao, J. Opt. Soc. Am. A,11,2265 (1994).
    [93]http://www.rp-photonics.com/mode_matching.html
    [94]P. Laporta, and M. Brussard, IEEE J. Quantum Electron.,27,2319 (1991).
    [95]Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang and S. C. Wang, IEEE J. Quantum Electron.,33,1424 (1997).
    [96]A. J. Alfrey, IEEE J. Quantum Electron.,25,760 (1989).
    [97]D.G. Hall,Appl. Opt.,20,1579(1981).
    [98]A. Sanchez, Member, I.A.J. Strauss. R.L. Aggarwal and R. E. Fahey, IEEE J. Quantum Electron.,24.995 (1988).
    [99]R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron.,34,1046 (1998).
    [100]S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges, Prog. Quantum Electron.,30,89 (2006).
    [101]http://en. wikipedia.org/wiki/Finite_element_method
    [102]M. Bass. Handbook of Optics, McGRAW-HILL,1995.
    [103]D. R. Lide, HandBook of Chemistry and Physics, CRC Press,2003.
    [104]G. Wagner, M. Shiler and V. Wulfmeyer, Opt. Express,13,8045 (2005).
    [105]A. E. Siegman, Lasers, University Science Books, Mill Valley, California, 1986.
    [106]Coupled-Field Analysis Guide, ANSYS Help Release 11.0.
    [107]J. F. Nye, Physical Properties of Crystals, Oxford University Press,1985.
    [108]A. Authier, International Tables for Crystallography, Vol. D, Kluwer Academic Publishers,2003.
    [109]T. Hahn, International Tables for Crystallography, Vol. A, Kluwer Academic Publishers,2003.
    [110]W. Koechner and D. K. Rice, IEEE J. Quantum Electron.,6,557 (1970).
    [111]邱维声,高等代数,高等教育出版社,1996.
    [112]S. Z. Fan, X. Y. Zhang, Q. P. Wang, S. T. Li, S. H. Ding and F. F. Su, Opt. Commun.,266,620 (2006).
    [113]A. Pikovsky, M. Rosenblum, andJ. Kurths, Synchronization, Cambridge University Press,2001.
    [114]R. Adler, Proceedings of the IRE.,34,351 (1946).
    [115]H. L. Stover, and W. H. Steier, Appl. Phys. Lett.,8,91 (1966).
    [116]S. Kobayashi and T. Kimura, Electron. Lett.,16,668 (1980).
    [117]E. D. Black, Am. J. Phys.,69,79 (2001).
    [118]陈扬骎,杨晓华,激光光谱测量技术,华东师范大学出版社,2006.
    [119]http://www.ip-photonics.com/frequency_noise.html
    [120]K. J. Astrom, and T, Hagglund, PID Controllers:Theory, Design, and Tuning, International Society for Measurement and Con.,1995.
    [121]S. Winde, Analog and Digital Filter Design, Newnes,2002.
    [122]http://en.wikipedia.org/wiki/Transmission_line
    [123]Spectroscopy with Diode Lasers, Sacher Technical Documentation.
    [124]LYNX Tunable Littrow External Cavity Diode Laser, Sacher Technical Documentation
    [125]http://www.rp-photonics.com/external_cavity_diode_lasers.html
    [126]http://www.rp-photonics.com/intracavity_frequency_doubling.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700