连续单频可调谐钛宝石激光器及其强度噪声特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紧凑稳定高效的全固态连续单频可调谐钛宝石激光器,以其较宽的输出光谱、较高的输出功率、较低的强度噪声等优点,可广泛应用于高灵敏度的干涉仪、高分辨率激光光谱、引力波探测、量子通讯、原子冷却等领域。一方面,我们可以通过对钛宝石晶体本身特性进行分析,设计并优化光学谐振腔,以及在谐振腔内插入激光器必须的光学元件等手段,获得高效稳定的连续单频可调谐钛宝石激光器。另一方面,随着科学技术的发展,人们对激光器的强度噪声更加关注,因为激光器强度噪声的存在对许多实验结果产生不利的影响,进而阻碍了钛宝石激光器在科研领域中的应用。因此,提高全固态连续单频可调谐钛宝石激光器的相关指标和降低钛宝石激光器的强度噪声就成为了发展全固态连续单频可调谐钛宝石激光器的主要内容。为此,我们主要从设计和优化激光器谐振腔,降低激光器强度噪声等方面对全固态连续单频可调谐钛宝石激光器进行了研究,其主要工作如下:
     1.通过对具有宽带吸收光谱和宽带发射光谱的增益介质钛宝石晶体的分析,设计了消除像散的四镜环行谐振腔。利用传输矩阵,分析了四镜环行谐振腔的稳区和腰斑的变化特性,合理选择谐振腔参数,使激光器工作在最佳状态。在谐振腔内插入了由外加磁场的TGG晶体和消色差半波片组成的宽带该光学单向器后,激光器在可调谐的波长范围内均实现了单向运转。
     2.理论上分析了最大输出功率与腔内损耗以及输出耦合镜透射率之间的关系,得到了不同泵浦功率下的输出耦合镜最佳透射率。实验上利用腔内插入薄熔融石英片和更换输出耦合镜透射率的方法,测量了腔内损耗,在此基础上得到不同泵浦功率下的输出耦合镜最佳透射率,进而优化了激光器。最后,将激光器锁定在高稳定度的光学参考腔上,提高了激光器的输出稳定性。
     3.分析了双折射滤波片和标准具以及压电陶瓷在钛宝石激光器中的调谐特性。在钛宝石激光器中,钛宝石晶体的发射谱决定了最大调谐范围;双折射滤波片在激光器中起粗调作用,其最薄一片决定其最大调谐的范围,而最厚一片决定其调谐的精度;标准具是一种选模调谐,尽管其调谐精度很高,但其仍是非连续的调谐;而要想获得真正的连续调谐,还需要改变谐振腔上的压电陶瓷的电压,通过改变压电陶瓷的电压,进而改变谐振腔腔长,最后达到连续调谐的目的。
     4.在获得高稳定性的全固态连续单频可调谐钛宝石激光器后,我们研究了钛宝石激光器的强度噪声特性。首先,我们研究了泵浦源的纵模结构对钛宝石激光器的影响,发现以单频绿光激光器取代单横模绿光激光器作为钛宝石激光器的泵浦源时,钛宝石激光器的强度噪声明显降低。在此基础上,我们还研究了泵浦源的泵浦速率等因素对钛宝石激光器的影响。随着泵浦速率的增大,激光器的弛豫振荡频率向高频方向移动,而弛豫振荡的幅度减小。最后,我们用一种理论模型拟合了钛宝石激光器的强度噪声,该模型适用于泵浦源有一定分布特点的激光器。
     5.尽管采用单频绿光激光器作为钛宝石激光器的泵浦源,钛宝石激光器的强度噪声在2.5MHz处已达到量子噪声极限,然而在低频段,钛宝石激光器的强度噪声仍然高于量子噪声极限。为了获得低噪声的钛宝石激光器,我们采用光电负反馈来抑制钛宝石激光器的强度噪声。通过选取合适的反馈增益,位相延时及带通滤波,在频率为1.125MHz处,钛宝石激光器由原先的8.7dB降到了抑制后的1.4dB,抑制程度达7.3dB。而且通过选择不同的位相延时和带通滤波可以获得不同频率点的强度噪声抑制。创新性的工作:
     A.设计并获得了结构紧凑,稳定性好的钛宝石激光器,其相关指标基本上达到目前国外产品的水平。
     B.利用腔内插入熔融石英片的方法测量了腔内损耗,研究了激光器在不同泵浦功率下的最佳透射率,优化了谐振腔。
     C.通过对调谐元件的设计,在达到调谐宽度的基础上,提高了调谐精度。
     D.研究了泵浦源的纵模结构以及泵浦速率等因素对钛宝石激光器强度噪声的影响,提出了一种适合泵浦源强度噪声有一定分布特点的理论拟合方法。
     E.利用光电负反馈抑制了钛宝石激光器的强度噪声。
All-solid-state continuous-wave single-frequency tunable Ti:sapphire lasers with compact configuration, high stabilization and high efficiency have been extensively applied to high-precision interferometry, high-sensitive laser spectroscopy, gravity-wave detection, quantum communications, atom cooling and so on owing to their broad tunable wavelength range from 700 nm to 1000 nm, high output power and low intensity noise. It has been demonstrated that the Ti:sapphire laser with high-efficiency and high-stabilization can be achieved by analyzing the characteristic of the Ti:sapphire crystal, designing and optimizing the resonant cavity and inserting the necessary optical devices into the laser cavity. However, when Ti:sapphire lasers are used in the experimental researches for laser cooling of atoms, quantum optics and quantum information, more and more attentions have to be paid in reducing intensity noises of their output light since the extra noises of laser sources will severely influence the experimental results. During the period of my Ph. D study, we designed and constructed a CW Ti:sapphire laser firstly. Then, we experimentally analyzed the noise characteristics of the Ti:sapphire laser. The accomplished main works are as following:
     1. Based on analyzing the absorption and emission spectra of Ti:sapphire crystal, we design a ring laser resonantor with four mirrors, in which the optical astigmatism is compensated. Using the transmission matrix the stable operation conditions of the laser and the properties of the beam-waist are calculated. By optimized the parameters of the laser resonantor the unidirectional operation of the laser can be realized in the required tunable range.
     2. The dependences of the Ti:sapphire laser output power on the intracavity losses and the transmission of the output coupler are theoretically analyzed and experimentally investigated. According to the experimentally measured intracavity losses and the given transmission of the output coupler, the design of the laser is optimized and the stable laser output with higher power is obtained. In order to improve further the frequency stability of the Ti:sapphire laser, a confocal reference cavity and an electronic servo-system are used for the laser frequency locking on.
     3. The tuning properties of the Ti:sapphire laser are analyzed. The maximum tuning wavelength range is limited by the bandwidth of the Ti:sapphire crystal. A set of BRF inserted in the resonant cavity serves as the tuning element of the laser. The tuning range and the tuning precision are determined by the thinnest and the thickest plate of the BRF, respectively. Besides, an etalon inserted in the resonant cavity can improve further the tuning precision in a noncontinuous tuning fashion. In order to achieve the continuous tuning, we change the voltage of the PZT attached on a cavity mirror to adjust the resonant frequency of the cavity, continuously.
     4. To research the intensity noise of the built Ti:sapphire laser, its intensity-noise dependence on the longitudinal-mode structure of the pumping source is experimentally studied, firstly. We find that the intensity noise is significantly reduced when a single-longitudinal-mode green laser is utilized as pumping source instead of the multi-longitudinal-mode green laser. Then the influences of the pumping rate and the wavelength of the laser on the intensity noise of the Ti:sapphire laser are studied. Increasing the pumping rate, the frequency of the relaxation resonant oscillation (RRO) moves toward higher frequency and the amplitude of RRO peak decreases. Finally, we theoretically analyzed the spectra of the intensity noise of the output laser and the theoretical calculation and the experimental result are in good agreement. The theoretical model can be applied to calculate the intensity noise spectra of the laser pumped by a pumping source with a noise distribution.
     5. In order to suppress the intensity noise at the low frequencies of the all-solid-state continuous-wave single-frequency tunable Ti:sapphire laser, the characteristic of the optoelectronic feed-forward is theoretically analyzed. The calculated result shows that the best gain of the feedback circuit depends on the injected noise. Then, the characteristic of the intensity noise suppression at the low frequencies by means of the optoelectronic feed-forward is experimentally investigated. By tuning carefully the gain of the feedback circuit the suppression of the intensity noises can be optimized. The decrease of the amplitude of the intensity noise from 8.7 dB to 1.4 dB is experimentally observed, and the maximum noise suppression of 7.3 dB is obtained at 1.125 MHz. It has been demonstrated that by selecting the best delay time and feed-forward gain, the intensity noise can be suppressed almost to the quantum noise level at any sideband frequency.
     The creative works are as following:
     A. We designed and built an all-solid-state CW single-frequency tunable Ti:sapphire laser.
     B. The Ti:sapphire laser was optimized by inserting a silicon plate to measure the intracavity losses and studying the relationship bwtween the output power and transmission of the output coupler.
     C. The tuning precision was improved by designing and selecting a suitable tuning device.
     D. Influences of the longitudinal-mode structure of the pumping source and a variety of factors on the intensity noise of the Ti:sapphire laser were studied and a method for theoretically calculating the intensity noise spectra was applied.
     E. Intensity noise at the low frequencies of the Ti:sapphire laser was suppressed by optoelectronic feed-forward control.
引文
[1]T. H. Maiman et al., Ruby laser system, US Patent,3353115(1961)
    [2]P. P. Sorokin, J. R. Lankard et al., Laser-pumped stimulated emission from organic dyes:experimental studies and analytical comparisons, IBM J. of Research and Development,11 (2),162(1967)
    [3]P. F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3, J. Opt. Soc. Am. B, 3(1),125-133(1986)
    [4]Qamar S, Xiong H and Zubairy M S, Influence of pump-phase fluctuations on entanglement generation using a correlated spontaneous-emission laser, Phys. Rev. A 75,062305 (2007)
    [5]Dong Wang, Yana Shang, Zhihui Yan, Wenzhe Wang, Xiaojun Jia, Changde Xie and Kunchi Peng, Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from anon-degenerate parametric oscillator, EPL 82(2),24003 (2008)
    [6]Dong Wang, Yana Shang, Xiaojun Jia, Changde Xie and Kunchi Peng, Dependence of quantum correlations of twin beams on the pump finesse of an optical parametric oscillator, J. Phys. B:At Mol. Opt. Phys.41,035502 (2008)
    [7]http://www.coherent.com/Products/index.cfm?846/MBR-Ring-Series
    [8]Product catalog of the Spectra-physics
    [9]http://www.tekhnoscan.com/english/TIS-SF-777.htm
    [10]http://www.m2lasers.com/products-services/laser-systems/solstis.aspx
    [11]吴路生,韦丽,周东方,赵梅荣,邬承就,双向泵浦的高功率高效率钛宝石激光器,中国激光,22(3),168-170(1995)
    [12]王长青,连续、准连续及自锁模运转的掺钛蓝宝石激光器的研究,博士毕业论文,天津大学精密仪器系(1993)
    [13]王兴龙,王长青,王殿奎等,连续运转的掺钛蓝宝石激光器,量子电子学,10(1),9-11(1993)
    [14]Peter A. Schulz, Single-frequency Ti:Al2O3 ring laser. IEEE J. Quantum Electron., 24(6),1039-1044(1988)
    [15]James Harrison, Andrew Finch, Peter F. Moulton et al., Low-threshold, CW, all-solid-state Ti:Al2O3 laser, Opt. Lett.,16(8),581-583 (1991)
    [16]Masaki Tsunekane and Noboru Taguchi, High-power, efficient, low-noise, continuous-wave all-solid-state Ti:sapphire laser. Opt. Lett.,21(23),1912-1914 (1996)
    [17]Elizabeth A. Cummings. Malcolm S. Hicken and Scott D. Bergeson, Demonstration of a 1-W injection-locked continuous-wave titanium:sapphire laser, Appl. Opt.,41(36), 7583-7587(2002)
    [18]Yong Ho Cha, Yong Woo Lee, et al., Development of a 756nm,3W injection-locked CW Ti:sapphire laser, Appl. Opt.,44(36),7810-7813 (2005)
    [19]梁晓燕,可调谐连续钛宝石稳频激光器,硕士毕业论文,山西大学光电研究所(1993)
    [20]孙燕,全固态连续单频钛宝石激光器,硕士毕业论文,山西大学光电研究所(2008)
    [21]张国威,可调谐激光技术(第一版),国防工业出版社
    [22]姚建铨,非线性光学频率变换及激光调谐技术,科学出版社
    [23]R. L. Aggarwal, A. Sanchez, R. E. Fahey and A. J. Strauss, Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications:concentrateion and absorption cross section of Ti3+ions, Appl. Phys. Lett.,48(20),1345 (1986)
    [24]李凤琴,于琳,彭堃墀等,输出功率12.9 W的全固态连续TEMoo模绿光激光器,中国激光,36(6),1332-1336(2009)
    [25]Yaohui Zheng, Huadong Lu, Kunchi Peng et al., Four watt long-term stable intracavity frequency-doubling Nd:YVO4 laser of single-frequency operation pumped by a fiber-coupled laser diode, Appl. Opt.,46(22),5336-5339 (2007)
    [26]Yaohui Zheng, Fengqin Li, Kunchi Peng, High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter, Opt. Commun.,283(2),309-312 (2010)
    [27]郑耀辉,卢华东,李凤琴,张宽收,王尚廉,王文哲,彭塑墀,一种用于控制光学晶体温度的高温温度控制仪,中国发明专利,专利号200610012830.1(2006)
    [28]吕百达,激光光学,高等教育出版社
    [29]卢华东,苏静,李凤琴,王文哲,陈友贵,彭堃墀,紧凑稳定的可调谐钛宝石激光器,中国激光,37(5),1166(2010)
    [30]赵凯华,钟锡华,光学,北京大学出版社
    [31]N. W. Rimington, S. L. Schieffer, W. Andreas Schroeder, Thermal lens shaping in Brewster gain media:A high-power, diode-pumped Nd:GdVO4 laser, Optics Express, 12(7),1426-1436(2004)
    [32]H. W. Schoder, et al., Appl. Phys.,14,377 (1977)
    [33]孙晓泉,谢建平,张运生等,钛宝石环行激光器的实验研究,中国激光,A22(1),13-16(1995)
    [34]A. R. Clobes, M. J. Brienza, Single-frequency traveling-wave Nd:YAG laser, Appl. Phys. Lett.,21(6),265-267 (1972)
    [35]K. C. Peng, Ling-An Wu, H. J. Kimble, Frequency-stabilized Nd:YAG laser with high output power, Appl. Opt.,24(7),938-940 (1985)
    [36]R. Roy, P. A. Schulz, A. Walther, Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser, Opt. Lett.,12(9),672-674(1987)
    [37]S. M. Jarrentt, J. F. Young, High-efficiency single-frequency cw ring dye laser, Opt. Lett.,4(6),176-178(1979)
    [38]Thomas F. Johnston, William Proffitt, Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser, IEEE J. of Quantum Electronics, QE-16(4),483-488 (1980)
    [39]T. F. Johnston, William Proffitt, Broadband optical diode for a ring laser, US patent, 4272158(1981)
    [40]Wang Junmin, Liang Xiaoyan, Li Ruining, A broadband optical diode used in a tunable Ti:Al2O3 ring laser, Laser & Infrared,21(1),31-33 (1993)
    [41]http://www.as.northropgrumman.com/products/synoptics_tgg/index.html
    [42]侯杰,杨坤涛,吴励等,红外复合宽带波片的研制,中国激光,31(3),281-283(2004)
    [43]廖延彪,偏振光学,科学出版社
    [44]Shujing Liu, Feng Song, Hong Cai, et al., Investigation of the roundtrip cavity loss in LD pumped Er:Yb-phosphate glass microchip lasers, J. of Appl. Phys.,102 (10),1-4 (2007)
    [45]D. Findlay and R. A. Clay, The measurement of internal losses in 4-level lasers, Phys. Lett.,20,277-278(1966)
    [46]P. S. Patel, Power coupling from a CO2 laser by a rotatable reflector, Appl. Opt.,12(5), 943-945(1973)
    [47]刘志国,刘玉照,Ar+激光器损耗增益及饱和参数的测量,激光,9(10),673-675 (1982)
    [48]王军民,李瑞宁,谢常德,彭堃墀,连续钛宝石激光器最佳输出透射率的测量,光学学报,15(11),1572-1575(1995)
    [49]Zhao Fagang, Pan Qing, Peng kunchi, Improving frequency stability of laser by means of teperaturo-controlled Fabry-Perot cavity, Chinese Opt. Lett.,12(6),334-336 (2004)
    [50]K. C. Peng, L. A. Wu, and H. J. Kimble, Frequency-stabilized Nd:YAG laser with high output power, Appl. Opt.,24(7),938-940 (1985)
    [51]常冬霞,刘侠,彭堃墀等,连续波Nd:YV04/LBO稳频倍频红光全固态激光器,中国激光,35(3),323-327(2008)
    [52]刘国宏,李永民,王垚廷,李渊骥,张宽收,全固态高功率连续单频稳频1053-nmNd:YLF激光器,中国激光,36(7),1732-1743(2009)
    [53]王垚廷,周倩倩,李渊骥,刘建丽,张宽收,输出770 mW的全固态连续单频蓝光激光器,中国激光,36(7),1714-1718,(2009)
    [54]郑耀辉,李凤琴,张宽收,彭堃墀,全固态单频激光器研究进展,中国激光,36(7),1635-1642(2009)
    [55]Walter R. Leeb, Tunability characteristics of waveguide CO2 laser with internal etalons, Appl. Opt.,14 (7),1706-1709 (1975)
    [56]J. Harrison, A. Finch, J. H. Flint et al., Broad-band rapid tuning of a single-frequency diode-pumped neodymium laser, IEEE J. Quantum Electron.,28(4),1123-1130 (1992)
    [57]张靖,马红亮,彭堃墀等,全固化环形单频Nd:YVO4可调谐激光器,中国激光,29(7),577-579(2002)
    [58]Xinglong Wang, Jianquan Yao, Transmitted and tuning characteristics of birefringent filters, Appl. Opt.,31(22),4505-4508 (1992)
    [59]D. R. Preuss, J. L. Gole, Three-stage birefringent filter tuning smoothly over the visible region:theoretical treatment and experimental design, Appl. Opt.,19(5), 702-710(1980)
    [60]周炳琨等,激光原理,国防部工业出版社
    [61]Ralph T C, Harb C C and Bachor H A, Intensity noise of injection locked lasers: Quantum theory using a linearized input/output method, Phys. Rev. (A),54(5), 4359-4369 (1996).
    [62]Charles C. Harb, Timothy C. Ralph, Elanor H. Huntington, David E. McClelland Hans-A, Bachor and Ingo Freitag, Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source, J. Opt. Soc. Am. B,14(11),2936-2945 (1997)
    [63]Zhang Jing, Zhang Kuanshou, Chen Yanli, Zhang Tiancai, Xie Changde and Peng Kunchi, Intensity noise properties of LD pumped single-frequency ring laser, Acta Optica Sinica,20(10),1311-1316 (2000)
    [64]Jing Zhang, Yanli Chen, Tiancai Zhang, Kuanshou Zhang, Changde Xie and Kunchi Peng, Investigation of the characteristics of the intensity noise of singly resonant active second-harmonic generation, J. Opt. Soc. Am. B,17(10),1695-1703 (2000)
    [65]Jacopo Belfi, Jacopo Galli, Giovanni Giusfredi and Francesco Marin, Intensity noise of an injection-locked Ti:sapphire laser:analysis of the phase-noise-to-amplitude-noise conversion, J. Opt. Soc. Am. B,23(7),1276-1286 (2006)
    [66]Horace P. Yuen and Vincent W. S. Chan, Noise in homodyne and heterodyne detection, Opt. Lett.,8(3),177-179 (1982)
    [67]Wang Yimin, Liu Yupu and Zhang Yinghua, Influence of the pump beam mode in a longitudinally pumped CW Ti:sapphire laser, Chinese J. of Lasers A23(2),111-116 (1996)
    [68]Anthony J. Alfrey, Modeling of longitudinally pumped CW Ti:Sapphire laser oscillators, IEEE J. Quantum Electron.,25(4),760-766 (1989)
    [69]C. Becher and K.-J. Boller, Intensity noise properties of Nd:YVO4 microchip lasers pumped with an amplitude squeezed diode laser, Opt. Commun.,147,366-374 (1998)
    [70]Charles C. Harb, Timothy C. Ralph, Elanor H. Huntington, Ingo Freitag, David E. McClelland, Hans-A. Bachor, Intensity-noise properties of injection-locked lasers, Phys. Rew. A,54(5),4370-4382 (1996)
    [71]H. Nagai, M. Kume, I. Otha, H. Shimizu and M. Kazumura, Noise generation in laser diode-pumped solid state lasers due to mode hopping of pumping laser diodes, In Conference on Lasers and Electro-Optics, Vol.12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C.,1992), paper CWG 32
    [72]T Baer, Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers, J. Opt. Soc. Am. B,3(9), 1175-1180(1986)
    [73]Huadong Lu, Jing Su, Changde Xie, Kunchi Peng, Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti:sapphire laser, Optics Express,19(2),1344-1353(2011)
    [74]B. Willke, N. Uehara, E. K. Guastafson et al., Spatial and temporal filtering of a 10 W with a Fabry-Perot ring cavity premode cleaner, Opt. Lett.,23(21),1704-1706 (1998)
    [75]陈艳丽,张靖,李永民等,利用模清洁器降低单频Nd:YVO4激光器的强度噪声,中国激光,A28(3),197-200(2001)
    [76]N. A. Robertson, S. Hoggan, J. B. Mangan, et al.. Intensity stabilization of an Argon laser using an electro-optic modulator-performance and limitations, Appl. Phys. B,39, 149-153(1986)
    [77]M. S. Taubman, Howard Wiseman, D. E. Mcclelland, et al., Intensity feedback effects on quantum-limited noise, J. Opt. Soc. Am. B,12(10),1792-1800 (1995)
    [78]马红亮,张靖,李凤琴等,利用振幅调制器进行光电负反馈抑制激光器强度噪声,光学学报,37(5),1166-1171(2002)
    [79]P. K. Lam, T. C. Ralph, E. H. Huntington, et al., Noiseless signal amplification using positive electro-optic feedforward, Phys. Rev. Lett.,79(8),1471-1473 (1997)
    [80]刘奎,杨荣国,张海龙等,单频光纤激光器的噪声抑制,中国激光,36(7),1852-1856(2009)
    [81]卢华东,苏静,彭堃墀,全固态连续单频可调谐钛宝石激光器腔内损耗及最佳透射率的研究,中国激光,37(9),2328-2333(2010)
    [82]http://www.minicircuits.com/cgi-bin/modelsearch?model=ZFL-500LN&x=23&y=10
    [83]Wiseman H. M., Taubman M S, Bachor H A, Feedback-enhanced squeezing in second-harmonic generation, Phys. Rev. (A),51(4),3227-3233 (1994)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700