空气中飞秒激光成丝过程中的激光脉冲诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞秒激光在空气中的成丝现象是当前科研领域的热门话题,其复杂的物理机制以及巨大的应用潜力引起了人们的广泛关注。一方面,飞秒激光成丝过程中存在复杂的非线性过程,例如自聚焦、光致电离、自相位调制、自陡峭等,这导致飞秒激光在光丝内传输时脉冲形状发生复杂的时空演变;另一方面,脉冲性质的演化过程携带了成丝现象中非线性光学过程的重要信息。如果测量出飞秒激光脉冲在成丝中的演化过程,可以更加深入地了解光丝内部所发生的各种复杂的物理过程。因此,成丝过程中激光脉冲的诊断技术研究具有重要的理论和实用价值。本文针对空气飞秒激光成丝过程中激光脉冲的诊断问题进行了理论以及实验研究,在对现有测量技术进行系统介绍和理论分析的基础上,提出了三种新颖的测量技术并对它们的测量原理进行了详细的阐述,给出了相应的理论推导过程,并通过实验测量验证了三种测量技术的可行性。
     本文提出的第一种测量技术是基于双光子荧光测量原理的空气飞秒激光成丝过程中激光脉冲时空特性测量法,它通过对飞秒激光脉冲在色散介质中激发产生双光子荧光信号空间分布的测量来反演激光光束的直径、激光脉冲的宽度和啁啾率。本文首先从理论上推导了样品池中荧光信号强度的空间分布模型,然后实验测量空气成丝过程中飞秒激光脉冲的时空特性,获得了激光光束直径、脉冲宽度和啁啾率等重要参数的演变过程。
     本文提出的第二种测量技术是基于双色场频率分辨光快门技术的空气飞秒激光成丝过程中激光脉冲时域特性测量法,它通过测量基频飞秒脉冲和倍频飞秒脉冲所合成的双色场在空气中聚焦后产生的三次谐波的频谱分布随两脉冲之间时间延迟变化的演变规律,并结合相应的反演算法来实现激光脉冲强度和相位的测量。本文首先对空气中双色场飞秒激光泵浦产生三次谐波的物理机制进行了理论研究,总结了时间延迟、激光脉冲的啁啾率和自相位调制效应给三次谐波频谱分布带来的影响。然后根据所建立的三次谐波频谱分布模型设计了相应的反演算法,并利用该算法对聚焦区域中激光脉冲的强度和相位分布进行了反演计算,给出了反演结果与理论数据的误差分析。
     本文提出的第三种测量技术是基于氮气荧光测量原理的空气飞秒激光成丝过程中激光脉冲宽度测量法,它通过测量两束飞秒激光在交叉区域所产生的氮气荧光随两脉冲之间时间延迟变化的分布来实现激光脉冲宽度的反演。本文首先从理论上推导了氮气荧光信号的强度随泵浦脉冲和探测脉冲之间的时间延迟变化的分布模型,然后对两束飞秒激光交叉位置处泵浦脉冲的脉宽进行了实验测量。
     最后,本文对所做工作进行了总结,讨论了下一步工作需要改善的地方:一、基于双光子荧光测量原理的空气飞秒激光成丝过程中激光脉冲时空特性的测量技术,在光束截面可分辨的前提下实现对飞秒脉冲的三维检测。二、基于双色场频率分辨光快门技术的空气飞秒激光成丝过程中激光脉冲时域特性的演化过程的实验测量。三、利用基于氮气荧光测量原理的空气飞秒激光成丝过程中激光脉冲宽度测量方法,对光丝内部激光脉冲宽度的演化过程进行远程实验测量。
Femtosecond pulse filamentation in air has attracted considerable interest because of its complex physical mechanisms and wide range of applications. The femtosecond pulse undergoes strong transformation during filamentation, which also carries key information of the nonlinear optical processes. Therefore, the pulse characterization during femtosecond laser filamentation in air is crucial for both theoretical and experimental investigations, providing a deeper and more thorough understanding of the complex underlying physical processes inside the filament. This dissertation is devoted to study the femtosecond pulse characterization technique during the filamentation in air. Three measurement techniques have been discussed.
     The first technique studied is based on the two-photon fluorescence measurement. It retrieves the pulse duration, chirp rate and beam radius by measuring the intensity distributions of the two-photon fluorescence induced by the femtosecond pulse. The experimental results show that the pulse duration, chirp rate and beam radius could be simultaneously quantitatively retrieved and this simple technique would be useful in practice to trace the underlying dynamics of filamentation in air.
     The second technique studied is named two-color-field frequency-resolved optical gating method (TC-FROG). It retrieves the pulse intensity and phase by measuring the spectral distributions of the generated third harmonic pumped by two-color laser field. First, the physical mechanisms of the third harmonic generation in air by a two-color laser field are studied. It is found that the third harmonic spectrum varies with the temporal delay, chirp rate and the self-phase modulation of the fundamental and the second harmonic wave. Then, an amplitude-phase reconstruction algorithm is designed with the adaptation of Genetic Algorithm. Finally, the theoretical simulation is performed for the electric field reconstruction of Gassian pulse, and the uncertainty between the fitting data and the measurement data is discussed.
     The third technique studied is based on the nitrogen fluorescence measurement. It retrieves the pulse duration by measuring the intensity of the nitrogen fluorescence in the overlapped zone of the pump pulse and probe pulse, which varies as a function of the temporal delay between the two pulses. First, the distribution model of the nitrogen fluorescence intensity according to the temporal delay is derivated. Then, the pulse duration measurement of the femtosecond laser pulse in the overlapped zone is carried out.
     In the end, the future work of the thesis is discussed: first, by improving the spatial resolution of the laser beam’s cross-section, a 3D measurement of the femtosecond pulse could be realized; second, TC-FROG technique needs further practical confirmation; third, the remote-measurement of the laser pulse duration during the femtosecond laser filamentation in air could be performed by using the technique based on the nitrogen fluorescence measurement.
引文
[1] S. K. Sundaram, E. Mazur. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nat. Mater., 2002, 1(4): 217-224
    [2]彭翰生.超强固体激光器及其在前沿学科中的应用(1) [J].中国激光, 2006, 33(6): 721-729
    [3]董克攻,谷渝秋,朱斌等.超强飞秒激光尾波场加速产生58MeV准单能电子束实验[J].物理学报, 2010, 59(12): 8733-8737
    [4]徐文成,罗智超.飞秒脉冲孤子光纤激光器.激光与光电子学进展[J], 2009, 46(2): 54~55
    [5]王光昶,郑志坚,谷余秋等.超热电子输运背向光辐射的实验研究[J].物理学报, 2008, 57(8): 511715122
    [6] C. Chen, X. Xu. Mechanisms of decomposition of metal during femtosecond laser ablation[J]. Phys. Rev. B, 2005, 72(16): 165415
    [7]岳帅英,林晨,高军毅.飞秒激光空气等离子体通道的吸收和辐射特性[J].光学学报, 2010, 30(1): 241-245
    [8]郑炳松,孙彦乾,陈俞等.利用单飞秒激光脉冲驱动类氖钛X射线激光的研究[J].物理学报, 2010, 59(10): 7020-7026
    [9] Y. J. Li, J. Zhang. Hydrodynamic characteristics of transient Ni-like x-ray lasers[J]. Phys. Rev. E, 63(3): 036410
    [10] T. Cheng, Y. J. Li, L. M. Meng et al. 2D parameter optimization of Ne-like Cr x-ray laser on slab[J]. Chin. Phys. B, 2009, 18(1): 203-208
    [11] Z. H. Loh, M. Khalil, R. E. Correa et al. Quantum State-Resolved Probing of Strong-Field-Ionized Xenon Atoms Using Femtosecond High-Order Harmonic Transient Absorption Spectroscopy[J]. Phys. Rev. Lett., 2007, 98(14): 143601
    [12] B. Wang, B. Liu, Y. Wang et al. Field modulation of Rydberg-state populations of NO studied by femtosecond time-resolved photoelectron imaging[J]. Phys. Rev. A, 2010, 81(4): 043421
    [13] J.-Y. Zhu, B.-X. Wang, W. Guo et al. Simplified Model for Analysing Ion/Phtoelcetron Images[J]. Chin. Phys. Lett., 2007, 24(7): 1922-1925
    [14]陈振宇,梁瑞生,黄曙亮等.半导体纳米颗粒电子的超快弛豫过程[J].光子学报, 2010, 39(10): 1738-1741
    [15] L. V. Dao, X. Wen, M. T. T. Do et al. Time-resolved and time-integrated photoluminescence analysis of state filling and quantum confinement of silicon quantum dots[J]. J. Appl. Phys., 2005, 97(1): 013501
    [16] F. Wu, J. H. Yu, J. Jin. Ultrafast electronic dynamics of monodisperse PbS and CdSnanoparticles/nanorods: Effects of size on nonlinear relaxation[J]. Opt. Mater., 2007, 29(7): 858-866
    [17]胡浩丰,王晓雷,李智磊等.飞秒激光烧蚀铝靶产生喷射物的超快脉冲数字全息诊断[J].物理学报, 2009, 58(11): 7662-7667
    [18] C. Yuan, H. Zhai, H. Liu. Angular multiplexing in pulsed digital holography for aperture synthesis[J]. Opt. Lett., 2008, 33(20): 2356-2358
    [19] X. Wang, H. Zhai, G. Mu. Pulsed digital holography system recording ultrafast process of the femtosecond order[J]. Opt. Lett., 2006, 31(11): 1636-1638
    [20] C. V. Shank, E. P. Ippen. Supicosecond kilowatt pulses from a mode-locked cw dye laser[J]. Appl. Phys. Lett., 1974, 24(8): 373-375
    [21] R. L. Fork, B. I. Greene, C. V. Shank. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J]. Appl. Phys. Lett., 1981, 38(9): 671-672
    [22] J. A. Valdmanis, R. L. Fork, J. P. Gorden. Generation of optical pulse as short as 27 femtosecond intracavity directly from a laser and balancing self-phase modulation, group-velocity dispersion, saturable absorption and saturable gain[J]. Opt. Lett., 1985, 10(3): 131-133
    [23] R. L. Fork, C. H. B. Cruz, P. C. Becker et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation[J]. Opt. Lett., 1987, 12(7): 483-485
    [24] D. E. Spence, P. N. Kean, W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser[J]. Opt. Lett., 1991, 16(1): 42-44
    [25]侯洵.超短脉冲激光以及其应用.空军工程大学学报(自然科学版) [J], 2000, 1 (1): 1-5
    [26] I. D. Jung, F. X. Krtner, N. Matuschek et al. Self-starting 6.5-fs pulses from a Tisapphire laser[J]. Opt. Lett., 1997, 22(13): 1009-1011
    [27] R. Ell, U. Morgner, F. X. K??rtner et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser[J]. Opt. Lett., 2001, 26(6): 373-375
    [28] K. Yamane, T. Kito, M. Yamashita et al. 2.8-fs transform-limited optical-pulse generation in the monocycle region[C]. Conf. Lasers and Electro-Optics (Optical Society of Amarica, Washington, D. C., 2004): postdeadline paper PDC2
    [29] D.Strickl, G. Mourou. Compression of amplified chirped optical pulses[J]. Opt. Comm., 1985, 56(3): 219-221
    [30] P. Maine, D. Strickland, P. Bado et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE J. Quantum Electron., 1988, 24: 398-403
    [31] A. Sullivan, H. Hamster, H. C. Kapteyn et al. Multiterawatt, 100-fs laser[J]. Opt. Lett., 1991, 16(18): 1406-1408
    [32] C. P. J. Barty, T. Guo, C. Le Blanc et al. Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification[J]. Opt. Lett., 1996, 21(9): 668-670
    [33] B. C. Stuart, M. D. Perry, J. Miller et al. 125-TW Ti:sapphire/Nd:glass laser system[J]. Opt. Lett., 1997, 22(4): 242-244
    [34] K. Ymakawa, M. Aoyama, S. Matsuoka et al. 100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate[J]. Opt. Lett., 1998, 23(18): 1468-1470
    [35] M. D. Perry, D. Pennington, B. C. Stuart et al. Petawatt laser pulses[J]. Opt. Lett., 1999, 24(3): 160-162
    [36] M. Aoyama, K. Ymakawa, Y. Akahane et al. 0.85-PW, 33-fs Ti:sapphire laser[J]. Opt. Lett., 2003, 28(17): 1594-1596
    [37] S.-W. Bahk, P. Rousseau, T. A. Planchon et al. Generation and characterization of highest laser intensities (1022W/cm2) [J]. Opt. Lett., 2004, 29(24): 2837-2839
    [38]徐军,司继良,李红军等.大尺寸钛宝石晶体CPA超短超强激光输出突破100太瓦[J].人工晶体学报, 2004, 33(5): 875-876
    [39] H. S. Peng, W. Y. Zhang, X. M. Zhang et al. Progress in ICF programs at CAEP[J]. Laser Part. Beams, 2005, 23(1): 205-209
    [40] H. S. Peng, X. J. Huang, Q. H. Zhu et al. SILEX-I: 300-TW Ti:sapphire laser[J]. Laser Phys., 2006, 16(2): 244-247
    [41]刘文军,王卫京,戴恩文等.频率分辨光学开关法测量飞秒脉冲[J].激光与光电子学进展, 2007, 44(3): 1-6
    [42] D. J. Kane, R. Trebino. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating[J]. IEEE J. Quantum Electron., 1993, 29(2): 571-579
    [43] C. Iaconis, A. Walmsley. Spectral Phase Interferometryfor Direct Electric-field Reconstruction of Ultrashort Optical Pulses[J]. Opt. Lett., 1998, 23(10): 792-794
    [44] C. Dorrer. Implementation of spectral phase interferometry for direct electric-field reconstruction with a simultaneously recorded reference interferogram[J]. Opt. Lett., 1999, 24(21): 1532-1534
    [45] C. Dorrer, B. deBeauvoir, C. Le Blanc et al. Characterization of chirped-pulse amplification systems with spectral phase interferometry for direct electric-field reconstruction[J]. Appl. Phys. B, 2000, 70(7): 77-84
    [46] S.L. Chin, W. Liu, O.G. Kosareva et al. The physics of intense femtosecond laser filamentation in Self-focusing: Past and Present[J], (Eds.) R. W. Boyd, S. G. Lukishova, Y. R. Shen. Springer, 2008, 335-356
    [47] H. Yang, J. Zhang, Y. Li et al. Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air[J]. Phys. Rev. E, 2002, 66(1): 016406
    [48]林晨,张立文,覃晓等.空气中飞秒激光自聚焦等离子体通道的电导特性[J].强激光与粒子束, 2007, 19(5): 733-736
    [49]沈元壤.非线性光学原理[M].北京:科学出版社, 1987 : 337-344
    [50] J. H. Marburger. Self-focusing: Theory[J]. Prog. Quantum Electron., 1975, 4(1): 35-110
    [51] A. Braun, G. Korn, X. Liu et al. Self-channeling of high-peak-power Femtosecond laser pulses in air[J]. Opt. Lett., 1995, 20(1): 73-75
    [52] J. Kasparian, M. Rodriguez, G. Méjean et al. White-Light Filaments for Atmospheric Analysis[J]. Science, 2003, 301(5629): 61-64
    [53] G. Méjean, J. Kasparian, J. Yu et al. Remote detection and identification of biological aerosols using a Femtosecond terawatt lidar system[J]. Appl. Phys. B, 2004, 78(5): 535-537
    [54] N. Ak?zbek, A. Iwasaki, A. Becker et al. Third-Harmonic Generation and Self-Channeling in Air Using High-Power Femtosecond Laser Pulses[J]. Phys. Rev. Lett., 2002, 89(14): 143901
    [55] F. Théberge, N. Ak?zbek, W. Liu et al. Tunable Ultrashort Laser Pulses Generated through Filamentation in Gases[J]. Phys. Rev. Lett., 2006, 97(2): 023904
    [56] A. Houard, Y. Liu, B. Prade et al. Polarization analysis of terahertz radiation generated by four-wave mixing in air[J]. Opt. Lett., 2008, 33(11): 1195-1197
    [57] P. Rohwetter, J. Kasparian, K. Stelmaszczyk et al. Laser-induced water condensation in air[J]. Nat. Photonics, 2010, 115(4): 451-456
    [58] C. P. Hauri, W. Kornelis, F.W. Helbing et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation[J]. Appl. Phys. B, 2004, 79(6): 673-677
    [59] X. Chen, Y. Leng, J. Liu et al. Pulse self-compression in normally dispersive bulk media[J]. Opt. Commun., 2006, 259(1): 331-335
    [60] G. Stibenz, N. Zhavoronkov, G. Steinmeyer. Self-compression of millijoule pulses to 7.8fs duration in a white-light filament[J]. Opt. Lett., 2006, 31(2): 274-276
    [61] A. Couairon, M. Franco, A. Mysyrowicz et al. Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient[J]. Opt. Lett., 2005, 30(19): 2657-2659
    [62] E. Schulz, T. Binhammer, D. S. Steingrube et al. Intense few-cycle laser pulses from self-compression in a self-guiding filament[J]. Appl. Phys. B, 2009, 95(2): 269-272
    [63] O. Varela, B. Alonso, I. J. Sola et al. Self-compression controlled by the chirp of the input pulse[J]. Opt. Lett., 2010, 35(21): 3659-3651
    [64] D. Uryupina, M. Kurilova, A. Mazhorova et al. Few-cycle ptical pulse production from collimated femtosecond laser beam filamentation[J]. JOSA B, 2010, 27(4): 667-674
    [65] S. Skupin, G. Stibenz, L. Bergéet al. Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations[J]. Phys. Rev. E, 2006, 74(5): 056604
    [66] S. Bohman, A. Suda, M. Kaku et al. Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz[J]. Opt. Express, 2008, 16(14): 10684-10689
    [67] A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media[J]. Phys. Rep., 2007, 441(2): 47-189
    [68] J. Kasparian, J.-P. Wolf. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Opt. Express, 2008, 16(1): 466-493
    [69] S. L. Chin, S. A. Hosseini, W. Liu et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges[J]. Can. J. Phys., 2005, 83(9): 863-905
    [70] L. Bergé, S. Skupin, R. Nuter et al. Ultrashort filaments of light in weakly ionized, opticallytransparent media[J]. Rep. Prog. Phys., 2007, 70(10): 1633-1713
    [71] L. M. Ball. The Laser Lightning Rod System: Thunderstrom Demestication[J]. Appl. Opt., 1974, 13(10): 2292-2295
    [72]杨辉,张杰.超短脉冲激光在引导闪电中的应用[J]. 2001, 30(1): 18-21
    [73] S. A. Hosseini, J. Yu, Q. Luo et al. Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study[J]. Appl. Phys. B, 2004, 79(4): 519-523
    [74] G. Méchain, A. Couairon, Y.-B. Andréet al. Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization[J]. Appl. Phys. B, 2004, 79(3): 379-382
    [75] C. Rulliére. Femtosecond Laser Pulses[M]. New York: Springer Science+Business Media, Inc., 2005, 202-218
    [76] H. Dachraoui, C. Oberer, M. Michelswirth et al. Direct time-domain observation of laser pulse filaments in transparent media[J]. Phys. Rev. A, 2010, 82(4): 043820
    [77] D. Faccio, A. Lotti, A. Matijosius et al. Experimental energy-density flux characterization of ultrashort laser pulse filaments[J]. Opt. Express, 2009, 17(10): 8193-8200
    [78] S. Minardi, A. Gopal, A. Couairon et al. Accurate retrieval of pulse-splitting dynamics of a femtosecond filament in water by time-resolved shadowgraphy[J]. Opt. Lett., 2009, 34(19): 3020-3022
    [79] J. H. Odhner, D. A. Romanov, R. J. Levis. Self-Shortening Dynamics Measured along a Femtosecond Laser Filament in Air[J]. Phys. Rev. Lett., 2010, 105(12): 125001
    [80] J.-C. Diels, J. Yeak, D. Mirell et al. Air filaments and vacuum[J]. LASER PHYS., 2010, 20(5): 1101-1106
    [81] J. Alda. Laser and Gaussian beam propagation and transformation in Encyclopedia of Optical Engineering[M]. New York: Marcel Dekker, 2003, 999-1013
    [82] G. P. Agrawal. Nonlinear Fiber Optics[M]. New York: Academic Press, 1995,67-84
    [83] F. Théberge, S.M. Sharifi, S. L. Chin et al. Simple 3-D characterization of ultrashort laser pulses[J]. Opt. Express, 2006, 14(21): 10125-10131
    [84] N. Akozbek, M. Scalora, C. M. Bowden et al. White light continuum generation and filamentation during the propagation of ultra-short laser pulses in air[J]. Opt. Commun., 2001, 191(3): 353-362
    [85] S. Xu, Y. Zhang, W. Liu et al. Experimental confirmation of high-stability of fluorescence in a femtosecond laser filament in air[J]. Opt. Commun., 2009, 282(24): 4800-4804
    [86] B. E. A. Saleh, M. C. Teich. Fundamentals of Photonics[M]. New York: John Wiley & Sons, Inc., 1991, 170-190
    [87] Y. Chen, F. Théberge, O. Kosareva et al. Evolution and termination of a femtosecond laser filament in air[J]. Opt. Lett., 2007, 32(24): 3477-3479
    [88] B. P. Lathi. Singal Processing and Linear Systems[M]. Califonia: Berkeley Cambridge Press. 1998, 657-677
    [89]王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [90]雷英杰,张善文,李续武. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2005
    [91] J. H. Holland. Adaptation in Natural and Artificial Systems[M]. AnnArbor: University of Michigan press, 1975
    [92] L. Davis. Genetic Algorithms and Simulated Annealing[M]. San Francisco: Morgan Kaufmann Publishers. Inc., 1987
    [93]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社, 2002
    [94]周明,孙树栋.遗传算法原理及其应用[M].北京:国防出版社, 1999
    [95] J.-F. Ripoche, G. Gillon, B. Prade et al.. Determination of the time dependence of n2 in air[J]. Opt. Commun., 1997, 135(4): 310~314
    [96] C. G. Durfee III, S. Backus, M. M. Murnane et al. Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves[J]. Opt. Lett., 1997, 22(20): 1565-1567
    [97] T. Fuji, T. Horio, T. Suzuki. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas[J]. Opt. Lett., 2007, 32(17): 2481-2483
    [98] L. Misoguti, S. Backus, C. G. Durfee et al. Generation of Broadband VUV Light Using Third-Order Cascaded Processes[J]. Phys. Rev. Lett., 2001, 87(1): 013601
    [99] P. Tzankov, O. Steinkellner, J. Zheng et al. High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser[J]. Opt. Express, 2008, 15(10): 6389-6395
    [100] Z. Zeng, Y. Cheng, X. Song et al. Generation of an Extreme Ultraviolet Supercontinuum in a Two-color Laser Field. Phys. Rev. Lett., 2007, Vol. 98(20): 203901
    [101] Q. Li, P. Lu, P. Lan et al. Macroscopic effects on the broadband supercontinuum driven by anωandω/2 bichromatic laser pulse. J. Phys. B: At. Mol[J]. Opt. Phys., 2009, 42(16): 165601
    [102]陈高,陈基根,杨玉军.双色场激光脉冲谐波谱的截止频率分析[J].光学学报, 2009, 29(12): 3255-3259
    [103]杜小杰,周效信,李鹏程.利用中红外激光产生单个阿秒脉冲的理论研究[J].中国激光, 2010, 37(5): 1213-1217
    [104] T. Wang, C. Marceau, Y. Chen et al. Terahertz emission from a dc-biased two-color femtosecond laser-induced filament in air[J]. Appl. Phys. Lett., 2010, 96(21): 211113
    [105] K. Kim, A. J. Taylor, G. Rodriguez. Intense THz Supercontinuum Generation in Femtosecond Laser-Gas Interactions[C]. CLEO/QELS Conference, OSA Technical Digest(CD): CFV3(OSA, 2008)
    [106] I. Babushkin, S. Skupin, J. Herrmann. Generation of terahertz radiation from ionizing two-color laser pulses in Ar filled metallic hollow waveguides[J]. Opt. Express, 2010, 18(9): 9658-9663
    [107] Y. You, K. Kim. Terahertz Generation via Two Color Photoionization in Pre-formedPlasma[C]. International Conference on UP, OSA Technical Digest(CD): ThE3(OSA, 2010)
    [108] Y. Zhang, Y. Chen, S. Xu et al. Portraying polarization state of terahertz pulse generated by a two-color laser field in air[J]. Opt. Lett., 2009, 34(18): 2841-2843
    [109] Z. Zhou, D. Zhang, Z. Zhao. Terahertz emission of atoms driven by ultrashort laser pulses[J]. Phys. Rev. A, 2009, 79(6): 063413
    [110]周平,范滇元.基于光纤的太赫兹产生技术[J].中国激光, 2010, 37(3): 708-712
    [111] S. L. Chin. Some Fundamental Concepts of Femtosecond Laser Filamentation[J]. J. Korean Phys. Soc., 2006, 49(1): 281-285
    [112] A. Brodeur, C. Y. Chien, F. A. Ilkov et al.. Moving focus in the propagation of ultrashort laser pulses in air[J]. Opt. Lett., 1997, 20(5): 304-306
    [113] A. Talebpour, J. Yang, S. L. Chin. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse[J]. Opt. Commun., 1999, 163(1): 29-32
    [114] A. Becker, N. Ak?zber, K. Vijayalakshmi et al. Intensity clamping and re-focusing of intense femtosecond laser pulses[J]. Appl. Phys. B, 2001, 73(2): 287-290
    [115] A. Talebpour, S. Petit, S. L. Chin. Re-focusing during the propagation of a focused femtosecond Ti :sapphire laser pulse in air[J]. Opt. Commun., 1999, 171(4): 285-290
    [116] J. Kasparian, R. Sauerbrey, S. L. Chin. The critical laser intensity of self-gurided light filaments in air[J]. Appl. Phys. B, 2000, 71(6): 877-879
    [117] W. Liu, S. L. Chin. Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air[J]. Opt. Express, 2005, 13(15): 5750-5755
    [118] S. Xu, Y. Zhang, Y. Liu et al. Intensity Clamping during Dual-Beam Interference[J]. LASER PHSY., 2010, 20(11): 1-5
    [119] J. E. Rothenberg. Pulse splitting during self-focusing in normally dispersive media[J]. Opt. Lett., 1992, 17(8): 583-585
    [120] A. L. Gaeta. Catastrophic Collapse of Ultrashort Pulses[J]. Phys. Rev. Lett., 2000, 84(16): 3582-3585
    [121] C. P. Hauri, W. Kornelis, F. W. Helbing et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation[J]. Appl. Phys. B, 2004, 79(6): 673-677
    [122] X. Chen, X. Li, J. Liu et al. Generation of 5fs, 0.7 mJ pulses at 1 kHz through cascade filamentation[J]. Opt. Lett., 2007, 32(16): 2402-2404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700