光学参量啁啾脉冲放大技术的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先综述了超短超强脉冲激光技术的发展状况,指出九十年代以来由于啁啾脉冲放大(CPA)技术的诞生使得超超短强脉冲激光技术朝超短超强方向取得了跨越式发展,这给强场物理的发展带来了许多前所未有的新机遇,但目前CPA技术已达到其应用的极限,光学参量啁啾脉冲放大(OPCPA)技术将是完全替代CPA技术而产生脉宽更短、峰值功率更高脉冲激光的最新技术,其思想和理论尚待进一步发展和完善。
     建立了适合于OPCPA的光学参量放大的基本理论。从电磁波的麦克斯伟方程出发,首先推导出适合OPCPA的三波混频稳态耦合波方程,然后给出了OPCPA过程中信号光强度及其相位的近似解;对影响光学参量放大过程的各种因数和效应进行了分析讨论,指出在OPCPA过程中群速度失配问题将完全可以忽略不计,可以通过增加非线性晶体长度来获得高的参量增益;对参量放大过程的参量转换效率进行了分析讨论,结果认为在OPCPA过程中获得高的参量转换效率是完全可能的;对参量放大过程进行了的数值模拟解和近似计算解,给出了小信号近似解的适用范围,指出在OPCPA过程中数值模拟解将比小信号近似解更有实际指导意义;以BBO晶体为例分析讨论了OPCPA过程中信号光的增益谱和相位谱对输出脉宽的影响,结果表明增益谱和相位谱都对输出脉宽有影响,但增益谱对输出脉宽的影响较大,指出如何获得较宽的增益谱将是OPCPA中更关键的问题。
     为了实现信号光的超宽带高增益,必须要从根本上解决参量放大过程中的增益及带宽问题。本文在具有普遍意义的三波非共线互作用的基础上,对三波混频光参量放大过程中的带宽产生机制进行了详细而系统的研究,首次建立了具有普遍意义的三波混频参量放大过程的参量带宽和增益带宽的理论模型,这些模型引入了非线性晶体长度、非共线角、群速、群速色散、抽运光强、增益系数等变量对带宽的影响,并依据这些模型对影响参量放大器中带宽的各种因素进行了模拟计算、分析和比较,结果表明:信号光和闲置光之间的群速失配是影响参量放大过程中带宽的主要因素,当信号光和闲置光之间实现群速匹配时,可以获得最宽的带宽,因此指出对于任何三波混频光参量放大器中的参量过程,都可以通过选择合适的非线性晶体、非共线角、非线性晶体长度、抽运光强度来获得最宽的带
    
     论文护要
    宽,使参量放大过程完全不受带宽的限制,从而实现信号光的超宽带高增益。
     对非共线相位匹配技术进行了系统而详细的研究,把传统的共线相位匹配方
    案推广到了具有普遍意义的非共线相位匹配方案,并推导出了在单轴和双轴晶体
    的主平面内三波非共线互作用的所有可能的相位匹配类型、条件及匹配角的数值
    计算表达式,从而为任意参量放大过程中选择最佳相位匹配角提供了依据;并以
    KTP晶体、BBO晶体和m 晶体为例进行了数值计算和分析,指出对于任意非共
    线参量过程,在选择合适的非线性晶体后,都可依据本文中的相位匹配角表达式
    很快地确定最佳相位匹配方向及晶体的最佳晶轴取向。
     以非共线相位匹配m 光学参量调脉脉冲放大器为例,对光学参量调嗽脉冲
    放大过程进行了理论分析和研究,分析了时间走高效应和空间走高效应对OPCPA
    过程的影响,建立了三波非共线作用的耦合波方程,分析了非共线角、晶体长度、
    抽运光强、信号光波长等参数与增益和带宽之间的关系,结果发现信号光的宽频
    带特性将会导致较小的光谱窄化效应和红移效应,这将会导致输出信号光脉宽变
    宽和光谱形状畸变,通过对OPCPA过程的数值模拟得出了实现最佳参量增益的条
    件。研究结果还表明非共线相位匹配m 光学参量调嗽脉冲放大器不仅可以实现
    较高的参量增益和获得极宽的增益带宽,还具有较大的参量允许角、较小的走离
    角和小的群速色散,因此这种参量放大器对于以纳秒级高功率激光作为抽运光,
    利用OPCPA新技术高效率参量放大飞秒脉冲产生TW甚至PW级的超强超短激光脉
    冲具有十分重要的意义。
     针对光参量放大实验中存在的参量转换效率低、输出光脉冲的时间形状畸变
    和输出稳定性差等问题进行了详细而系统的研究,对注入信号光强、抽运光耗尽、
    增益饱和、和频过程等因数对参量放大过程的影响进行了分析研究,结果表明通
    过优化选择合适的注入信号光强、抽运光强和晶体长度等参数,使参量放大运行
    在深度增益饱和状态的稳定区,完全可以获得高质量高效率高稳定性的参量放大
    光输出。
     用数值方法给出了两种可行的适合以纳秒级的高功率钛玻璃激光系统和以
    纳秒级的大能量调Q倍频Nd:YAG激光系统为抽运光源的OPCPA系统的最优化设
    计,这两种系统都由两级非共线相位匹配的出 光学参量调嗽脉冲放大器组成。
    对这两种系统的数值模拟结果表明,这两种系统都能够把纳焦级能量的飞秒脉冲
     二
    
     论文摘要
     放大到毫焦级以上,从而产生大瓦(TW)级以上的峰值功率输出,这两种系统是目
     前利用OPCPA
This paper summarizes the development and level of ultrashort and ultrahigh intensity pulse laser technique. A rapidly evolving and exciting field in the current development of lasers is the generation of ultrashort pulses and ultrahigh peak powers fostered by the technique of chirped pulse amplification (CPA). The future development of these systems to higher powers would require the generation of shorter pulses. However CPA has already reached its practical limit in pulse duration, as determined by the gain narrowing effect within the amplifier medium. These limitations are largely removed using a novel technique called optical parametric chirped pulse amplification (OPCPA). The basic idea and development of the OPCPA technique has been summarized. A general theory of OPCPA has not been established, therefore its idea and theory would be further developed and perfected.
    A detailed theoretical study of optical parametric amplification for OPCPA technique was presented. The theoretical derivations reviewed and extended the coupled wave equation analysis for OPCPA. The theoretical treatment includes the transition from parametric amplification solutions without pump depletion to solutions valid where pump depletion is important for OPCPA. A parametric amplifier general solution program with and without time dependence is discussed. The connection between the solutions including pump depletion and derivations assuming nondepleted pump waves was established. Some effects on OPCPA are analysed and discussed, the results show: the group-velocity mismatch can be neglected for OPCPA; higher parametric transformation efficiency can be obtained in OPCPA; the gain spectra and phase spectra have some effects on the output pulse duration.
    The bandwidth of three-wave mixing optical parametric amplifiers has been investigated. The general mathematical models for evaluating parametric bandwidth and gain bandwidth of three -wave mixing parametric amplifiers are developed via three-wave noncollinear interactions, the models takes into account crystal-length, noncollinear-angle, group-velocity, group-velocity-dispersion and gain-coefficient effects, and detailed numerical simulations, analysis and comparison carried out. The
    
    
    ABSTRACT
    results show that the bandwidths are mostly limited by the group-velocity mismatch between the signal and idler, the widest bandwidth can be obtained when the GV between the signal and idler through noncollinear phase-matched technique. Therefore, for any a three-wave mixing parametric amplifier, the widest bandwidth can be obtained by choosing noncollinear angle, crystal-length and pump intensity, the super-broad-bandwidth gain can be realized. These results are important for producing and amplifying very short femoto-second laser pulses to build ultrashort and ultrahigh pulse laser system by OPCPA at present.
    Phase matching technique for noncollinear optical parametric generation is first investigated. All the possible phase matching configurations and existence conditions for general noncollinear three-wave mixing interactions are derived for propagation within the crystal principal planes. Numerical calculation expressions for the critical phase matching angles are presented wherever possible. Finally, as an application of these expressions, several numerical calculations of the phase matching angles for general noncollinear phase-matched optical parametric amplification in the nonlinear-optical crystals such as p-BaB2O4 (BBO), LiB3O5 (LBO) and KTiOP04 (KTP) are completed, and the results are graphically presented.
    The characteristic properties of type I(e-"o+o) nocollinear phase-matched LBCKLiBsOs) optical parametric chirped pulse amplifier are investigated. A theoretical model of noncollinear phase-matched parametric process in LBO is presented. Using the numerical method, the analytical formulation for the noncollinear angle, phase-matched angle, walkoff angle, acceptance angle, parametric efficiency coefficient, effective gain, parametric bandwidth, gain bandwidth of the amplifier ar
引文
[1] Mourou G. A., Barty C. P., Perry M. D.. Ultrahigh-intensity lasers: Physics of the extreme on a tabletop. Physics Today, 1998, 22.
    [2] Perry M. D.. Crossing the petawatt threshold. Science & Technology Review, 1996, 4.
    [3] Perry M. D.. The amazing power of the Petawatt. Science & Technology Review, 2000, 4.
    [4] Heller A.. JanUSP opens new world of physics research. Science & Technology Review, 2000, 25.
    [5] Kitagawa Y., et al.. GEKKO XII petawatt module project, Annual Progress Report. 1998, 17.
    [6] Danson C. N., et al.. Focused intensities of 10~(20)W/cm~2 with the upgraded Vulcan CPA interaction facility. Proceedings of SPIE, 1998, 3492:82.
    [7] Zhou J. P., et al.. The LULI 100-TW Ti: sapphire/Nd: glass laser: a first step towards a high performance petawatt facility. Proceedings of SPIE, 1998, 3492:94.
    [8] Campbell E. M.. Opportunities for science from the petawatt laser. Science & Technology Review, 1996, 3.
    [9] D. Strickland and G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun. 56, 1985:219.
    [10] Perry M. D., Mourou G.. Terawatt to petawatt subpicosecond lasers. Science, Vol.264, 1994:917.
    [11] A. Piskarskas, D. Podenas, A. Stabinis, et al.. in: Ultrafast phenomena V, eds. G. R. Fleming and A. E. Siegman (Springer, Berlin, 1986): 142.
    [12] A. Dubietis, G Jonusauskas and A. Piskarskas. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Comm., 88(1992): 437.
    [13] I. N. Ross, P. Matousek, M. Towrie, et al.. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt. Commun., 1997,144:125.
    
    
    [14] A. Galvanauskas, A. Hariharan, and D. harter. High-energy femtosecond pulse amplification in a quasi-phase-matched parametric amplifier. Opt. Lett., Vol.23, No.3, 1998:210.
    [15] J. Collier, C. Hermandez-Gomez, I. N. Ross, et al.. Evaluation of an ultrabroadband high-gain amplification technique for chirped pulse amplification facilities. Appl. Opt., Vol.38, No.36,1999:7486.
    [16] I. N. Ross, J. L. Collier, P. Matousek, et al.. Generation of terawatt pulses by use of optical parametric chirped pulse amplification. Appl. Opt., Vol.39, No.15, 2000:2422.
    [17] Igor J., Brian J. C., Christopher A. E., et al.. Optical Parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers. Appl. Opt., Vol.41, No. 15, 2002:2923.
    [18] R. H. Kinston. Parametric amplification and oscillation at optical frequencies. Proc. IRE, Vol.50, 1962:472.
    [19] N. M. Kroll. Parametric amplification in spatially extended media and the application to the design of tunable oscillators at optical frequencies. Phys. Rev., Vol.127, 1962:1207-1211.
    [20] S. A. Akhmanov and R. V. Khokhlov. Concerning one possibility of amplification of light waves. Sov. Phys. JETP, Vol. 16, 1963:252.
    [21] J. A. Armstrong, N. Bloembergen. J. Ducuing, et al.. Interaction between light waves in a nonlinear dielectric. Phys. Rev., Vol. 127, 1962:1918.
    [22] C. C. Wang and G. W. Racette. Measurement of parametric gain accompanying optical difference frequency generation. Appl. Phys. Lett., Vol.6, 1965:169.
    [23] J. A. Giordmaine and R. C. Miller. Tunable coherent parametric oscillation in LiNbO_3 at optical frequencies. Phys. Rev. Lett., Vol. 14, 1965:973.
    [24] G. M. Gale, M. Cavallari, T J. Driscoll, et al.. Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator. Opt. Comm., Vol.20, No.14, 1995:531.
    [25] Kent C. B., C. L. Tang, Mark A. A., et al.. Broadly tunable mid-infrared femtosecond optical oscillator using all-solid-state-pumped periodically poled lithum
    
    niobate. Opt. Lett., Vol.22, No. 19, 1997:632.
    [26] D. R. Walker, C. J. Flood, and H. M. van Driel. Kilohertz all-solid-state picosecond lithum triborate optical parametric generator. Opt. Lett., Vol.20, No.2, 1995:145.
    [27] A. Shirakawa and I. Sakane. Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification. Appl. Phys. Lett., Vol.74, No. 16,1999:2268.
    [28] R. Danielius, A. Piskarskas. A. Stabinis, et al., Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses. J. Opt. Soc. Am. B., Vol. 10, No.11,1993:2146.
    [29] Yao J. Q. and Sheng Weidong. Accurate calculation of the optimum phase-matching parameters in three-wave interaction with biaxial nonlinear-optical Crystals. J. Opt. Soc. Am. B, Vol.9, No.6, 1992:891.
    [30] 姚健铨.非线性光学频率变换及激光调谐技术.科学出版社出版(1995).
    [31] J. A. Armstrong, S. S. Jha, and N. S. Shiren. Some effects of group velocity dispersion on parametric interactions. IEEE J.Quantum Electron., Vol.QE-6, 1970:123.
    [32] M. F. Becker, D. J., Kuizemga, et al.. Analytical expressions for ultrashort pulse generation in mode locked optical parametric oscillators. J. Appl. Phys., Vol.45, 1974:3996.
    [33] A. W. Scott, Active and Nonlinear Wave Propagation in Electronics, New York: Wiley-Interscience, 1970:202.
    [34] J. M. manley and H. E. Rowe. Some general properties of nonlinear elements, I: General energy relations, proc. IRI, Vol.44, 1956:904.
    [35] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, New York: Springer, 1971.
    [36] I. A. begishev, A. A. gulamov, E. A. Erofeev, et al.. Sov. J. Quantum Electron. 20(1990): 1100.
    [37] B. F. bareika, I.A. Begishev, Sh. A. Burdulis, et al.. Sov. Tech. Phys. Lett. 12, 1986:78.
    
    
    [38] P. Di. Trapani, A. Andreoni, G. P. Banfi,et al.. Phys. Rew., A51(1995):3164.
    [39] R. Danielius, A. Piskarskas, P. Di. Trapani, et al.. A collinearly phase-matched parametric generators/amplifier of visible femtosecond pulses. IEEE J. Quantum Eletronics, Vol. 34, No.3, 1998:459.
    [40] 王屹山,陈国夫,赵尚弘等.宽带扩展腔产生15飞秒光脉冲实验研究.光学学报,1997,17(9):1185-1188.
    [41] 王屹山,陈国夫,赵尚弘等.宽带自锁模钛宝石飞秒激光脉冲的实验研究.光子学报,2000,29(3):203-208.
    [42] G.P.Agrawal,非线性光学,天津大学出版社,p165.
    [43] R. L. Fork et al., Opt. Lett, Vol.12,1987:483.
    [44] O. E. Martinez., IEEE. J. Quant. Electron., Vol. QE-23, 1987:23.
    [45] J. Piel, M. Beutter, and E. Riedle. 20-50-fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier. Opt. Lett., 2000, 25(3):180-182.
    [46] Stephen J. Brosnan, Robert L. Byer. Optical parametric oscillator threshold and linewidth studies. IEEE J.Quant. Electron., 1979, 15(6):415-431.
    [47] J. Y. Zhang, J. Y. Huang, Y. R. Shen et al.. Optical Parametric generation and amplification in barium borate and lithium triborate crystals. J. Opt. Soc. Am.(B), 1993,10(9): 1758.
    [48] J.Wang, M.H.Dunn, and C.F. Rae. Polychromatic optical parametric generation by simultaneous phase matching over a large spectral bandwidth. Opt. lett., 1997, 22(11):763.
    [49] G.Veitas and R.Danielius. of narrow-bandwidth tunable picosecond pulse by difference-frequency mixing of stretched pulses. J. Opt. Soc. Am. B, 1999,16(9):1561.
    [50] R. Danielius A. Piskarskas, A. Stabiinis et al.. Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses. J. Opt. Soc. Am. B, 1993,10(11): 2222
    [51] F. Rotermund, V.Petrov, F.Noack. Femtosecond noncollinear parametric amplification in the mid-infrared. Optics Comm., 1999,169:183.
    [52] Lawrence A.W. Gloster, Zhi Xing Jiang, Terence A. King. Characterization of an Nd:YAG-pumped -BaB_2 O_4 optical parametric oscillator in collinear and
    
    noncollinear phase-matched configurations. IEEE J.Quantum Electron., 1994, 30(12):2961.
    [53] I.N.Ross, M.Trentelman, C.N.danson. Optimization of a chirped-pulse amplification Nd:glass laser. Appl. Opt., 1997,36(29):9348.
    [54] H. Vanherzeele, C. Chen. Widely tunable parametric generation in beta barium borate. Appl. Opt., 1988, 27(13):2634.
    [55] C. chen, Y. Wu, A. Jiang et al.. New nonlinear-optical crystal:LiB_3O_5, J.O.S.A.(B), 1989,6(4):616.
    [56] Y. Wang, Z.Xu, D.deng et al.. Visible optical parametric oscillation in LiB_3O. Appl. Phy. Lett., 1991, 59(5):531.
    [57] Y. R. Shen, The Principles of Nonlinear Optics (Wiley & Sons, New York, 1984): 25.
    [58] G. C. Bhar, P. K. Datta, A. M. Rudra et al.. Tangentially phase-matched efficient difference freqency generation in beta barium borate crystal. Optics comm., 1994, 105(1/6):95.
    [59] Akira Shirakawa and Takayoshi Kobayashi. Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm~(-1) bandwidth. Appl. Phys. Lett., 1998,72(2): 147.
    [60] F. Rotermund, V. Petrov, F. Noack. Femtosecond noncollinear parametric amplification in the mid-infrared. Optics Comm., 1999, 169(1/6):183.
    [61] I. N. Ross, P. Matousek, M. Towrie et al.. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt. Commun., 1997,144(1/3):125~133.
    [62] J. Piel, M. Beutter, and E. Riedle. 20-50-fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier. Opt. Lett., 2000, 25(3): 180.
    [63] D. Eimerl, S. Velsko, L. Davis et al.. Deuterated L-Arginine Phosphate: a new Efficient Nonlinear Crystal, IEEE J. Quantum Electron., 1989, 25(2):179.
    [64] J. Y. Huang, Y.R. Shen. Noncritically phase-matched second-harmonic generation and optical parametric amplification in a lithium triborate. Appl. Phys. lett, 1991, 58(15):1579.
    [65] Z. Y. Xu, X. Liu, D. Q. Deng et al.. Multiwavelength optical parametric amplification with angle-tuned lithium triborate. J. Opt. Soc. Am.B, 1995,12(11):2222
    
    
    [66] J. Y. Zheng. J. Y. Huang. Y. R. Shen. Picosecond optical parametric amplification in lithium triborate. Appl. Phys. lett., 1991, 58(3):213.
    [67] F. Rotermund, V. petrov, F. Noak. Femtosecond noncollinear parametric amplification in the mid-infrared. Optics Comm., 1999,169:183..
    [68] R. Danielius, A. Piskarskas, A. Stabiinis et al.. Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses. J. Opt. Soc. Am. B, 1993,10(11):2222
    [69] 赵卫,杨斌洲,张小秋等.脉宽大范围易变Nd:YAG调Q激光器及放大系统.光子学报,1997,26(ZI):189.
    [70] CRYSTALS, Fujian Castech Crystals,Inc.
    [71] F. A. Hopf and G. I. Stegeman. Applied Classical Electrodynamics, Vol.2:Nonlinear Optics(Wiley & sons,New York,1986).
    [72] S. X. Dou, D. Josse, And J. Zyss. Comparison of collinear and one-beam noncritical noncollinear phase matching in optical parametric amplification. J. Opt. soc. Amer. B, 1992,9(8):1312-1319.
    [73] I. N. Ross, M.. Trentelman, C. N. Danson. Appl. Opt., 1997, 36:9348-9358.
    [74] Richard A. Baumgartner, Robert L. Byer. IEEE J.Quantum Electron., 1979, 15(6): 432.
    [75] J. Y. Huang,Y. R. Shen. Appl. Phys. lett., 1991,58(15):1579.
    [76] Z. Y. Xu, X. Liu, D. Q. Deng et al.. J. Opt. Soc. Am. B, 1995,12(11):2222
    [77] J. Y. Zheng, J. Y. Huang, Y. R. Shen. Appl. Phys. lett., 1991, 58(3):213.
    [78] J. Y. Zhang, J. Y. Huang, Y. R. Shen et al.. Optical Parametric generation and amplification in barium borate and lithium triborate crystals, J. Opt. Soc. Am. B, 1993,10(9):1758.
    [79] L. Carrion and J. P. Girardeau-Montaut. Development of a simple model for optical parametric generation, J. Opt. Soc. Am. B, 2000,17(1): 78.
    [80] G. I. Stegeman, M. S. Bahae, E. V. Stryland, G. Assanto. Large nonlinear phase shifts in second-order nonlinear-optical processes. Opt. Lett., Vol. 18, No. 1,1993:13.
    [81] A. L. Belostosky, A. S. Leonov, A. V. Meleshko. Nonlinear phase change in type Ⅱ second-harmonic generation under exact phase-matched conditions. Opt. Lett., Vol. 19, No. 12, 1994:856.
    [82] L. Lefort, A. Barthelemy. Intensity-dependent polarization rotation associated
    
    with type Ⅱ phase-matched second-harmonic generation: application to self-induced transparency. Opt. Lett., Vol.20, No. 17, 1995:1749.
    [83] S. Saltiel, Y. Deyanova. Polarization switching as a result of cascading of two simultaneously phase-matched quadratic processes. Opt. Lett., Vol.24, No.18, 1999: 1296.
    [84] V. Kubecek, V. Couderc, B. Bourliaguet et al., 4-W and 23-ps pulses from a lamp-pumped Nd:YAG laser passively mode-locked by polarization switching in a KTP crystal, Appl.Phys. B 69, 1999:99.
    [85] V. Couderc, F. Louradour, A.Barthelemy. 2.8ps pulses from a mode-locked diode pumped Nd:YVO_4 laser using quadratic polarization switching. Opt. Commun., 166(1999): 103.
    [86] S.Saltiel, K.Koynov, I.Buchvarov. Self-induced darkening with a nonlinear frequency-doubling polarization interferometer. Appl. Phys. B, 63(1996):371.
    [87] Gaetano Assanto, Irina Torelli. Cascading effects in type Ⅱ second-harmonic generation: applications to all-optical processing. Opt. Commun., 119(1995): 143-148.
    [88] K.Koynov, S.Saltiel. Nonlinear phase shift via multistep x~(2) cascading. Opt. Commun., 152(1998):96.
    [89] A.Kobyakov, U.Peschel, R.Muschall,G.Assanto, V.P. Torchigin, F.Lederer. Analytical approach to all-optical modulation by cascading. Opt. Lett., Vol.20, No.16(1995):1686.
    [90] A.Kobyakov, U.Peschel, F. Lederer. Vectorial type-Ⅱ interaction in cascaded quadratic nonlinearities-an analytical approach. Opt. Commun., 124(1996): 184.
    [91] S.Saltiel, K. Koynov, I.Buchvarov. Analytical formulae for the optimization of the process of low-power phase modulation in a quadratic nonlinear medium. Appl. Phys.B, 63(1996):39.
    [92] W.H.拜尔,标准数学手册,荣现志,张顺忠编译.化学工业出版社,1988:387.
    [93] 雷日克,格拉的什坦.函数与积分表.高等教育出版社编辑部译,高等教育出版社,1962:137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700