飞秒激光与透明介质相互作用的非线性及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞秒激光脉冲提供了一种极强极高的电场能够超过价带电子的束缚力,使分子、原子的电子体系发生巨大变化。在这个过程中,飞秒激光显示出与皮秒、纳秒脉冲不同的特性,如热影响区域小、作用效果能够超过光学衍射极限、优秀的空间选择特性等,这些特性在许多领域有着重要的应用价值,如超精细加工、微光子器件制造、医学精密手术、高密度三维光存储等。本文首先研究了钛宝石增益开关调Q二倍频激光器和钛宝石飞秒激光脉冲再生放大器,并用该放大器研究了飞秒激光脉冲诱导熔融石英折射率改变的机理,以及展开了三维光数据存储、光栅制作、波导制作方面的应用研究。
     在激光器方面,最优化激光参数和非线性晶体参数,补偿了来源于激光晶体、非线性晶体和其他的腔内元件的热效应,最终建立了一台高效率的钛宝石调Q二倍频紫外激光器。另外,设计和建立了一台适用于飞秒激光超精细加工的“无展宽器的钛宝石啁啾脉冲再生放大器”。通过优化放大腔结构参数和采用高光束质量的泵浦激光,依靠放大器腔内各个元件的色散展宽种子脉沖,用钛宝石作为增益介质,采用长焦距的凹面镜并将钛宝石晶体离焦有效的克服了激光损伤问题,获得了高效、结构紧凑、光束质量好的飞秒脉冲激光放大系统。
     在飞秒激光微加工方面,理论分析了飞秒激光折射率改变区域大小和激光参数的关系以及不同材料的损伤机理,建立了一套飞秒激光微加工平台,实验研究了飞秒激光三维光数据存储的串行、并行写入和串行、并行读出的可行性。尝试光波导、光栅的制造,发现飞秒激光制作的光学原件具有双折射特性,以及飞秒激光诱导各向异性介质的重结晶和各向异性微爆现象。
An intense femtosecond laser pulse can provide an electric field strength which exceeds the electric field force of valance electrons that holds the electrons to their ionic cores. Compared with picosecond, nanosecond laser pulse, a femtosecond laser pulse shows excellent advantages such as little or no thermal affected zone, the break of optical diffraction limit and space-selection. Based on those virtues, femtosecond laser pulse can be used many fields, for example, ultra-precision machining, the fabrication of micro- photonic devices, nano-operation in bioengineering and biatrology, and three dimensional optical storage. This thesis ranges over Ti:sapphire laser techniques and frequency conversion, Ti: sapphire regenerative femtosecond amplification and its applications. And the thesis is focused on the mechanism of refractive index changes of fused silica induced by femtosecond laser pulse, and resulting applications such as three dimensional optical storage, the fabrication of grating and waveguide.About Ti:sapphire laser techniques and frequency conversion, the optimum design about the parameters of oscillator and nonlinear crystals was investigated, and the compensation for thermal effect coming from nonlinear crystal and elements in oscillator. Then a Ti:sapphire femtosecond amplifier without stretcher using for micro- machining and optical storage was built. The stretch of seed pulse resulting from the components dispersion in cavity, the off-focusing Ti:sapphire crystal and TEMoo mode pumping laser contribute to a compact, efficient regenerative amplification.In femtosecond laser micro-machining, the dependence of the refractive index changes on the laser parameters was investigated theoretically. A micromachining system has been built. The writing and reading of bits in parallel and bit-by-bit are demonstrated in 3-dimension in transparent materials with fs laser pulse. The writing of an internal diffraction grating and waveguide in optical glass plate is demonstrated using low-density plasma formation excited by a high-intensity femtosecond Ti:sapphire laser, birefringence in those elements, and vaporization and re-crystallization of anisotropy crystal material were observed in the process of micro-explosion due to the expansion of high temperature plasma.
引文
[1]R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, E Bammer, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, K Krausz. "Atomic transient recorder". 2004 Nature, 427, 817 -821
    [2]S L 夏皮罗 超短光脉冲—皮秒技术及应用,科学出版社 P325
    [3]马国宏 郭立俊,飞秒物理、飞秒化学和飞秒生物学,物理.2001,30(6):349-355
    [4]C Zhao, J Qiu, S Qu, Preparation of colloidal Au by a femtosecond laser, 2003 Chem Lett, 32(7):602~604
    [5]S L夏皮罗超短光脉冲—皮秒技术及应用,科学出版社 P372
    [6]Chris Schaffer, André Brodeur, Jose Garcia, Eric Mazur,"Micromachining bulk glass using femtosecond laser pulses with nanojoule energy," 2001 Opt. Lett., 26, 93~95
    [7]Nan Jiang, Jianrong Qiu, and John Silcox. "Precipitation of nanometer scale Zn crystalline particles in ZnO-B_2O_3-SiO_2 glass during electron irradiation". 2000 Appl. Phys. Lett. 77(24) 3956-3958
    [8]P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, Laser-induced breakdown in aqueous media, Prog. Quantum Electro. 21,155(1997).
    [9]K. Yeom, H. Jiang, and J. Singh, High power laser semiconductor interactions: A Monte Carlo study for silicon, J. Appl. Phys. 81,1807(1997).
    [10]M D Crisp. "laser-induced surface damage of transparent dialectic". 1974 IEEE Quantum Electronics. QE- 10 (1):57~64
    [11]E.N.Glezer, M.Millsavljevic, L.Huang, R.J.Finlay, T.-H.Her, J.P.Callan, and E.Mazur, 1996 Opt. Lett. 21(15), 2023~2025
    [12]E. P. Ippen, C. V. Shank, and A. Dienes, " Passive mode locking of the cw dye laserr , Appl. Phys. Lett., Vol.21, p348, 1972
    
    [13]L. S. Ruddock, D. J. Bradley, " Bandwidth-limited subpicosecond pulse generation in modelocked cw dye laser." , Appl. Phys. Lett., Vol.29, p296, 1976
    [14]R. L. Fork, et al., " Generation of optical pulses shorter than O.lps by colliding pulse modelocking" , Appl. Phys. Lett., Vol.38, p671, 1982
    [15]J. A. Valdmanis, R. L. Fork, " Design considerations for a femtosecond pulse laser balancing self-phase modulation, group velocity dispersion, saturable absorption and saturable gain." , IEEE Journal Quantum Electronics, Vol.22, pi 12, 1986
    [16]G. Chen, et al., " Generation and measurement of 19 Femtosecond light pulses" , 18thICHSPP, SPIE, Vol.1032,p432, 1988
    [17]P. M.W. French, G. F. Chen, et al., " Tunable group velocity dispersion interferometer for intracavity and extracavity applications.'" , Opt. Comm., Vol.57, No.4,p263, 1986
    [18]A. Finch, G. Chen, et al., " Pulse asymmetry in the colliding-pulse mode-locked dye laser" , Joural of Modern Optics, Vol.35, No.2, p345, 1988
    [19]P.F.Moulton, " Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc.Am. B, Vol.3, 1986
    [20]J. Goodberlet, et al., " femtosecond passively mode-locked Ti.AI2O3 laser with a nonlinear external cavity" , Opt. Lett., Vol.14, pll25, 1989
    [21]Y. Ishida, et al., " Generation of 50-fs pulses from a pulse-compressed, cw, passively mode-locked Ti.sapphire laser." , Opt. Lett., Vol.16, pl53, 1991
    [22]D.E.Spence et al., " 60-fs pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett., Vol. 16, 1991
    [23]A.Stingl, M.Lenzner, Ch.Spielmann, et al., " Sub-10-fs mirror dispersion controlled Ti.sapphire laser, " Optics Lett., Vol.20, N0.6, 1995
    [24]A.Kasper, and K.J.Witte, " 10-fs pulse generation from a unidirectional Kerr-lens mode-locked Ti.sapphire ring laser," Optics Lett., Vol.21, No.5, 1996
    [25]Xu Lin, Christian Spielmann, and Ferenc Krausz " Ultrabroadband ring oscillator for sub-1 Ofs pulse generation." Opt. Lett, Vol.21, No. 16, 1996
    
    [26]I.D.Jung, F.X.Kartner, N.Matuschek, et al., " Self-starting 6.5-fs pulses from a Ti:sapphire laser," Optics Lett., Vol.22, No. 13, 1997
    [27]U.Morgner, F.X.Kartner, S.H.Cho, et al., " Sub-two-cycle pulses from a Kerr-lens mode-locked Tv.sapphire laser," Optics Lett., Vol.24, No.6, 1999
    [28]J. G. Fujimoto, et al., Appl. Phys. Lett., Vol.1032, p432, 1988
    [29]R. L. Fork, C. H. Brito Cruz, P. C. Becker, et al., " Compression of optical pulses to six femtosecond by using cubic phase compsation.", Vol.12, No.7, p483, 1987
    [30]Andrius Balruska, Wei Zhiyi, Maxim S.Pshenichnikov, et al., " Optical pulse compression to 5fs at a 1-MHz repetition rate" , Opt. Lett,, Vol.22, No.2, plO2,1997
    [31]Sartania S., Cheng Z., Lenzner M., et al., " Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate" , Opt. Lett,, Vol.22, No.20, pl562, 1997
    [32] K. Yamakawa, M. Aoyama, S. Matsuoka, et al., " 100-TWsub-20fs Tv.sapphire laser system operating at a 10-Hz repetition rate." , Opt.Lett, Vol.23, No. 18, pl468, 1998
    [33]K. Yamakawa, M. Aoyama, S. Matsuoka, et al., " Generation of 16-fs 10-TW pulses at a 10-Hz repetition rate with efficient Tv.sapphire amplifiers." ,Op.. Lett., Vol.23, No.7, p525, 1998
    [34]L.Xu, GTempea, Ch.Spielmann, et al., "Continuous-wave mode-locked Tv.sapphire laser focusable to 5xl0133W/cm\" Optics Lett., Vol.23, No.10, 1998
    [35]S. H. Cho, B.E. Bouma, E.P. Ippen, et al., " Low-repetition-rate high-peak-power kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity" , Opt. Lett., Vol.24, No.6, p417, 1999
    [36]K. Miura, J. Qiu, K. Hirao, "Photonwritten optical waveguides in vario us glasses with ultrashort pulse laser", 1997Appl.Phys.Lett.,71:3329-3331
    [37] D Homoelle, S Wielandy, A L Gaeta, N F Borrelli, C Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses". 1999 Opt Lett 24(18):1311~1313
    [38]S Cho, H Kumagai, I Yokota, K Midorikawa, M Obara, "Observation of self-channeling and modification in optical fibers using a high-intensity femtosecond laser". 1998 Proceeding of IEEE 3343:515-510
    
    [39]H Misawa, S Juodkazis, H Sun, S Matsuo, J Nishii, "Formation of photonic crystals by femtosecond laser microfabrication", 2000 Proceeding of IEEE 4088:29-32
    [40]T V Konoenko, S V Garnov, S M Pimenov, V I Konov, F Dausinger, "Processing of diamond and ceramics by picosecond/nanosecond laser". 1998 Proceeding of IEEE 3343: 459-465
    [41] N B Chichkov, C Momma, S Nolte. Femtosecond, picosecond, nanosecond laser ablation of solids. 1996 Appl Phys A, 63:109-115
    [42]Micromashining Handbook, Clark-MXR Inc.U.S.
    [43]Satoshi Kawata, Sun Hong-bo, Tomokazu Tanaka, Finer features for functional microdevices. 2001 Nature 412:697-698
    [44] Tomakazu Tanaka, Sun Hong-bo, Satashi Kawata. 2002 Appl Phys Lett. 80(2):312~314
    [45] Thomas Rothacher, Willy Liithy, Heinz P. Weber, Demining with Nd:YAG laser, 2004 Rev. Sci. Instrum. 75: 1078-1080
    [46] M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, Ultrashort-pulse laser machining of dielectric materials, 1999 J Appl Phys, 85(9):6803~6810
    [47]K Venkatakrishnan, B K A Ngoi, P Stanley. Laser writing techniques for photomask fabrication using a femtosecond laser. 2002 Appl Phys A, 74:493-496
    [48]R S Patel, T F Redmond, C Tessler. Via production benefits from excimer laser tools. 1996 Laer Focus World. 1996(4):211-213
    [49]Phillippe Bada. Micromachining: ultrafast pulses create waveguides and microchannels. 2000 Laser Focus World. 2000:192-196
    [50]Yuki Kondo, Kentaro Nouchi, Tsuneo Mitsuyu, Fabrication of long period fiber grating by focused irradiation of infrared femtosecond laser pulses. 1999Opt Lett, 24(10):646~648
    [51] E Fertein, C Prztgidzjum H Delbarre, Refractive index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810nm. 2001 Appl Opt., 40(21):3506~3508
    
    [52]E Glezer, M Milosavljevic, L Huang, R Finley, H Her, J Callan, E Mazer, 1996 Opt Lett, 21(24):2023~2025
    [53] Guanghua Cheng, Yishan Wang, J. D. White, Qing Liu, Wei Zhao, Guofu Chen, Demonstration of high-density three-dimensional storage in fused silica by femtosecond laser pulses, 2003 J Appl Phys 94(3): 1304-1307
    [54] A V Rode, Subpicosecond laser albation of dental enamel. 2002 J Appl Phys, 92(15):2153~2158
    [55]T Juhasz, G Diotyan, F Loesel. Application of femtosecond lasers in corneal surgery. 2000 Laser Physics, (10): 1-6
    [56] Jan-Hendrik Klein-Wiele, Peter Simon, Fabrication of periodic nanostructures by phase-controlled multiple-beam interference 2003 Appl Phys Lett, 83(23):4707~4709
    [57]K Konig, I Remann, Nanodissection of human chromosomes with near-infrared femtosecond laser pulses, 2001 Opt Lett, 26(11):819~821
    [58]U Tirlapur, K Konig, Targeted transfection by femtosecond laser, 2002 Nature, 48:290-291
    [59]Nan Shen, Deb Datta, Chris Schaffer, Philip LeDuc, Eric Mazur. Nanosurgery in a live cell using femtosecond laser pulses, http://mazur-www.harvard.edu/
    [60] Claudia Wu, Catherine Crouch, Li Zhao and Eric Mazur, Visible luminescence from silicon surfaces microstructured in air, 2002 Appl Phys Lett, 81(7):1999~2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700