用户名: 密码: 验证码:
综合利用钛铁矿制备锂离子电池正极材料LiFePO_4和负极材料Li_4Ti_5O_(12)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源和资源的日益短缺,开发新能源和综合利用矿物资源成为当今世界的两大热点。本文将冶金、能源、材料等领域联系起来,提出了综合利用钛铁矿(或废料)制备新能源材料—磷酸铁锂和钛酸锂的新思想,并对钛铁矿冶金和材料制备的物理、化学过程及原理进行了详细的研究。
     采用机械活化—盐酸常压浸出法对钛铁矿进行了选择性浸出。结果表明,机械活化可以细化钛铁矿的粒径,增加颗粒表面的粗糙度,从而增大其比表面积;机械活化可以破坏钛铁矿晶粒的完整性,并产生大量晶格缺陷,使晶格膨胀。上述行为均能强化钛铁矿浸出。最优条件下Ti的浸出率仅为1.07%,Si几乎不被浸出,而Mg、Al、Mn和Ca的浸出率均在95.5%以上,最终Ti和Si富集在渣中,其它元素进入浸出液。将上述富钛渣直接煅烧得到了品位高于90wt.%的人造金红石。
     首次以H_2O2为配位剂将Ti从富钛渣中浸出,最优条件下Ti的浸出率达98.9%。将配位浸出液直接加热制备了颗粒粗大(2~5μm)且含少量Si的过氧钛化合物。同样以配位浸出液为反应物,在加热前添加适量的NaOH模板剂,不仅防止了颗粒团聚,得到纳米级针球状的过氧钛化合物,而且还成功地将Si除去;将该过氧钛化合物在400~800℃下煅烧制备了线状(长100~200nm)和棒状(长200-500nm,宽约20~40nm)的TiO2,其纯度高达99.3%。将模板剂改为LiOH,制备了纳米级片状(长宽约100~200nm)的过氧钛化合物,同时也成功地将Si除去。
     首次以过氧钛化合物为前驱体制备了锂离子电池负极材料Li_4Ti_5O_(12)。结果表明,以针球状和片状的过氧钛化合物为前驱体制备的Li_4Ti_5O_(12)均为单一的尖晶石结构,其电化学性能优良,二者在0.1C倍率下的首次充电比容量分别达到158.5和161.6 mAh·g-1,且均具有优异的倍率性能和循环性能。
     用溶度积原理计算了钛铁矿浸出液中各元素在磷酸盐体系下的初始沉淀pH值。结果表明,当Fe的总浓度为0.25 mol·L-1时,Fe、A1和Ti产生沉淀的初始pH值分别为0.318、0.728和0.784,而Mg、Mn和Ca形成沉淀的初始pH值均在3.4以上。在pH=2.0和P/Fe=1.1的条件下,首次从钛铁矿浸出液制备了FePO_4-2H_2O。结果表明仅有少量的Ti和Al进入沉淀,而其它元素均保留在溶液中。以上述FePO_4·2H_2O为前驱体制备了单一橄榄石结构的Ti-Al共掺杂LiFePO_4,其粒径为50~500 nm,该样品在1C、2C和5C倍率下的首次放电比容量分别为151.3、140.1和122.9 mAh·g-1,循环100次后的容量保持率为99.2%、99.8%和95.9%。
     首次研究了Ti-Al共掺杂对LiFePO_4结构及性能的影响,对Ti、Al及Ti-Al掺杂的机理作了较深入的研究。XRD及Rietveld精修结果表明,适量的Ti、Al及Ti-Al掺杂不会破坏LiFePO_4的晶体结构,当掺杂量较低时,Ti优先占据Li位,Al优先占据Fe位;当掺杂量较高时,Ti、Al均同时占据Li位和Fe位,且可能产生杂相。SEM表明少量的Ti、Al掺杂能有效抑制LiFePO_4颗粒团聚,而Al掺杂量过高反而促使LiFePO_4颗粒团聚;对于双掺杂样品,在总掺杂量一定(2mol%)时,LiFePO_4的形貌受Al/Ti比的影响不大。HRTEM表明Ti、Al和Ti-Al掺杂LiFePO_4的晶粒表面都均匀地包覆着一层几纳米厚的无定形碳膜,且晶粒之间有纳米碳网相连。各样品的晶格清晰,但晶格中均存在缺陷,这些缺陷是由于离子掺杂引起。通过研究电极动力学,发现Tu Al单掺杂时,LiFePO_4的Li+扩散系数和交换电流密度均随着掺杂量的升高而先增大后减小;但对于双掺杂样品,当总掺杂量一定而Ti/Al比变化时,其动力学参数并无明显差异。电化学测试结果表明,适量的Ti、Al及Ti-Al掺杂均能极大地改善LiFePO_4的电化学性能。对于双掺杂样品,在总掺杂量一定(2mol%)时,LiFePO_4的电化学性能受Al/Ti比的影响较小。
     首次以钛白副产物硫酸亚铁为原料,用选择性沉淀的方法制备了含少量Tu Al和Ca的FePO_4-2H_2O,并以它为前驱体制备了多元金属(Ti、Al、Ca)掺杂的LiFePO_4。XRD及Rietveld精修结果表明LiFePO_4为单一的橄榄石相,多元金属掺杂导致其晶格中产生Li空位。该样品在0.1C、1C和5C倍率下的放电比容量分别为161、145和112 rnAh·g-1,其循环性能优异。本方法为硫酸法钛白企业产生的大量硫酸亚铁废渣提供了一条新的处理途径。
With the growing shortage of global energy and resources, the development of new energy and comprehensive utilization of mineral resources have become the focus of worldwide attention. In this paper, we propose a new idea to synthesize lithium-ion battery cathode material LiFePO_4 and anode material Li_4Ti_5O_(12) from natural ilmenite (or waste). Meanwhile, the physical and chemical processes and theories of the ilmenite metallurgy and materials preparation are studied in detail.
     The elements of ilmenite are selectively leached by mechanical activation and hydrochloric acid leaching at atmospheric pressure. The results show that mechanical activation can refine the grain size and increase the surface roughness of ilmenite particles, which result in the increase of the specific surface area. The mechanical activation can also disrupt the integrity of ilmenite crystal grains, and induce the formation of a large number of lattice defects, which lead to the lattice expansion. All the above actions could strengthen the leaching of ilmenite. Under the optimal conditions, the leaching ratio of Ti is only 1.07%, and Si is almost not leached, while the leaching ratios of Fe, Mg, Al, Mn and Ca are all more than 95.5%. As a result, Ti and Si are still in the slag, and the other elements are enriched in the lixivium. In addition, the synthetic rutile with the grade of over 90 wt.% is obtained by calcinating the above titanium-slag directly.
     For the first time, titanium is leached from the titanium-slag by using H_2O2 as coordination agent. Under the optimal conditions, the leaching ratio of Ti reaches 98.9%. A peroxo-titania compound is prepared by heating the coordination lixivium, but the compound contains a small amount of Si and its particle size is as large as 2~5μm. However, by adding the template agent NaOH before heating, the particle agglomeration is prevented and a nano-sized needlelike-spherical peroxo-titania compound is obtained, which does not contain Si. Subsequently, the linear (100~200 nm long) and rod-shaped (200~500 nm long,20~40 nm wide) TiO2 are obtained by calcinating the compound at 400~800℃, and the purity of TiO2 reaches 99.3%. Furthermore, when the template agent NaOH is substitued by LiOH, a nano-sized platelike peroxo-titania compound is obtained, and the Si is also removed.
     For the first time, peroxo-titanic compound is used as the precursor of Li_4Ti_5O_(12) anode material. The results reveal that the Li_4Ti_5O_(12) samples prepared from the needlelike-spherical and platelike peroxo-titania compounds exhibit excellent performance with the initial charge capacities of 158.5 and 161.6 mAh·g-1 at 0.1 C rate, and excellent rate performance and cycling performance.
     The initial precipitation pH values of the elements in ilmenite lixivium are separately calculated according to the solubility product principle. It is found that the initial precipitation pH values of Fe, Al and Ti are 0.318,0.728 and 0.784, while those of Mg, Mn and Ca are all greater than 3.4. It is the first time that FePO_4·2H_2O is prepared from the ilmenite lixivium. The results indicate that only small amounts of Al and Ti precipitate into FePO_4·2H_2O particles under the conditions of pH=2.0 and P/Fe=1.1, while the other elements, Mg, Mn and Ca still remain in the solution. Then, Ti-Al doped LiFePO_4 is prepared from the FePO_4·2H_2O precursor. The LiFePO_4 sample shows a well crystallized, single olivine-type phase, and its particle size is 50~500 nm. Electrochemical test results show that the sample exhibits the first discharge capacity of 151.3,140.1 and 122.9 mAh·g-1 at 1 C,2 C and 5 C rate, respectively, and a capacity retention of 99.2%,99.8%and 95.9% after 100 cycles.
     For the first time, the influences of Ti-Al co-doping on the structure and properties of LiFePO_4 are investigated, and the mechanism of Ti, Al and Ti-Al doping are specifically studied. XRD and Rietveld-refine results indicate that appropriate amounts of Ti, Al and Ti-Al doping do not obviously change the structure of LiFePO_4. When the doping level is low, Ti atoms tend to occupy Li sites and Al atoms prefer to occupy Fe sites, but at higher doping levels, Ti and Al atoms will occupy both Li and Fe sites, and impurity phases might be appear. SEM shows that small amounts of Ti or Al doping could limit the agglomeration of LiFePO_4 particles, but the excessive increase in the doping amount of Al will promote the particles aggregation. The Al/Ti ratio has little influence on the morphology of Ti-Al doped LiFePO_4 when the total doping content is constant (2 mol%). HRTEM shows that all the LiFePO_4 samples are wrapped with amorphous nano-carbon films, and the particles are connected with nano-carbon nets. All the LiFePO_4 crystal lattices are clear but contain lattice defects which are caused by the cation doping. For the Al, Ti single doped LiFePO_4, electrode kinetics tests show that the lithium-ion diffusion coefficient and exchange current density first increase as the doping quantity rises, and then decrease. However, the kinetic parameters of Ti-Al doped LiFePO_4 samples vary little as the Al/Ti ratio changes when the total doping content is constant. Electrochemical tests indicate that appropriate amounts of Ti, Al and Ti-Al doping can significantly improve the electrochemical performance of LiFePO_4. For the Ti-Al dual doped samples, the electrochemical properties show little change with the variation of Al/Ti ratio (2 mol% total doping content).
     For the first time, the FePO_4·2H_2O which contains small amounts of Ti, Al and Ca is prepared from the byproduct of titanium dioxide (FeSO_4·7H_2O waste slag). Then the multi-metal doped LiFePO_4 is prepared with the as-obtained FePO_4-2H_2O as raw material. XRD and Rietveld-refine results indicate that the LiFePO_4 sample is well crystallized, single olivine-type phase, and multi-metal doping results in the formation of Li vacancies in crystal lattices. The sample exhibits a first discharge capacity of 161,145 and 112 mAh·g-1 at 0.1 C,1 C and 5 C rate, respectively, and shows excellent cycling performance. This method provides a new approach for hydrate-sulfuric titanium dioxide enterprises, which can deal with the large amount of FeSO_4-7H_2O residue.
引文
[1]Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells [J]. J Electrochem Soc,1995,142(5):1431-1435.
    [2]Zaghib K, Simoneau M, Armand M, et al. Electrochemical study of Li4Ti5012 as negative electrode for Li-ion polymer rechargeable batteries [J]. J Power Sources. 1999,81~82:300~305.
    [3]Prosini P P, Mancini R, Petrucci L, et al. Li4Ti5012 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications [J]. Solid State Ionics. 2001,144(1-2):185~192.
    [4]Nakahara K, Nakajima R, Matsushima T, et al. Preparation of particulate Li4Ti55O12 having excellent characteristics as an electrode active material for power storage cells [J]. J Power Sources.2003,117(1~2):131~136.
    [5]Hu X, Deng Z, Suo J, et al. A high rate, high capacity and long life (LiMn2O4+ AC)/Li4Ti5O12 hybrid battery-supercapacitor [J]. J Power Sources.2009,187(2): 635~639.
    [6]Padhi A K, Nanjundaswamy K S, Goodenough G B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc,1997,144(4):1188~1194.
    [7]Prosini P P, Carewska M, Scaccia S, et al. Long-term cyclability of nano-structured LiFePO4 [J]. Electrochim Acta,2003,48(28):4205~4211.
    [8]Caballero A, Cruz-Yusta M, Morales J, et al. A new and fast synthesis of nanosized LiFePO4 electrode materials [J]. Eur J Inorg Chem,2006, (9): 1758-1764.
    [9]Zhu B Q, Li X H, Wang Z X, et al. Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction [J]. Mater Chem Phys,2006,98(2~3): 373-376.
    [10]Wang Y, Wang Y, Hosono E, et al. The design of a LiFePO4-carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method [J]. Angew Chem Int Edit,2008,47(39): 7461-7465.
    [11]Konarova M, Taniguchi I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries [J]. J Power Sources, 2010,195(11):3661~3667.
    [12]Wang G X, Bradhurst D H, Dou S X, et al. Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries [J]. J Power Sources,1999,83(1-2):156~161.
    [13]Allen J L, Jow T R, Wolfenstine J. Low temperature performance of nanophase Li4Ti5O12 [J]. J Power Sources,2006,159(2):1340~1345.
    [14]Wolfenstine J, Lee U, Allen J L. Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere [J]. J Power Sources.2006, 154(1):287~289.
    [15]Wang G J, Gao J, Fu L J, et al. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material [J]. J Power Sources,2007,174(2):1109-1112.
    [16]Gao J, Jiang C, Ying J, et al. Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries [J]. J Power Sources,2006,155(2):364~367.
    [17]Yan G, Fang H, Zhao H, et al. Ball milling-assisted sol-gel route to Li4TisO12 and its electrochemical properties [J]. J Alloy Compd.2009,470(1~2):544~547.
    [18]Sorensen E M, Barry S J, Jung H K, et al. Three-dimensionally ordered macroporous Li4Ti5O12:effect of wall structure on electrochemical properties [J]. Chem Mater,2006,18:482~489.
    [19]Yuan T, Yu X, Cai R, et al. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance [J]. J Power Sources,2010, 195(15):4997~5004.
    [20]Yin S Y, Song L, Wang X Y, et al. Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction [J]. Electrochim Acta.2009,54(24): 5629~5633.
    [21]Jiang C, Zhou Y, Honma I, et al. Preparation and rate capability of Li5O12 hollow-sphere anode material [J]. J Power Sources,2007,166(2):514~518.
    [22]Raja M W, Mahanty S, Kundu M, et al. Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique [J]. J Alloy Compd.2009,468(1-2):258-262.
    [23]Ju S H, Kang Y C. Characteristics of spherical-shaped Li4Ti5O12 anode powders prepared by spray pyrolysis [J]. J Phys Chem Solids,2009,70(1):40-44.
    [24]Nishimura S I, Kobayashi G, Ohoyama K, et al. Experimental visualization of lithium diffusion in LixFePO4 [J]. Nat Mater,2008,7:707-711.
    [25]Shin H C, Park S B, Jang H, et al. Rate performance and structural change of Cr-doped LiFePO4/C during cycling [J]. Electrochim Acta,2008,53(27):7946~ 7951.
    [26]Meethong N, Kao Y H, Speakman S A, et al. Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties. Adv Funct Mater [J].2009,19(7):1060~1070.
    [27]Chung S Y, Bloking JT, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat Mater,2002,1(2):123~128.
    [28]Hu Y, Doeff M M, Kostecki R, et al. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries [J]. J Electrochem Soc,2004,151: A1279-A1285.
    [29]Wang Y, Wang J, Yang J, et al. High-rate LiFePO4 electrode material synthesized by a novel route from FePO4-4H2O [J]. Adv Funct Mater,2006,16:2135~2140.
    [30]Liu H P, Wang Z X, Li X H, et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method [J]. J Power Sources,2008,184(2):469~472.
    [31]Zhong M E, Zhou Z T. Preparation of high tap-density LiFePO4/C composite cathode materials by carbothermal reduction method using two kinds of Fe3+ precursors [J]. Mater Chem Phys,2010,119(3):428~431.
    [32]Zheng J C, Li X H, Wang Z X, et al. LiFePO4 with enhanced performance synthesized by a novel synthetic route [J]. J Power Sources,2008,184:574~577.
    [33]Jugovic D, Mitric M, Cvjeticanin N, et al. Synthesis and characterization of LiFePO4/C composite obtained by sonochemical method [J]. Solid State Ionics, 2008,179(11~12):415~419.
    [34]Wang Z, Su S, Yu C, et al. Synthesises, characterizations and electrochemical properties of spherical-like LiFePO4 by hydrothermal method [J]. J Power Sources,2008,184(2):633~636.
    [35]Kuwahara A, Suzuki S, Miyayama M. High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries [J]. Ceram Int,2008, 34(4):863~866.
    [36]Yang R, Song X, Zhao M, et al. Characteristics of Lio.98Cu0.01FeP04 prepared from improved co-precipitation [J]. J Alloy compd,2009,468:365~369.
    [37]王志兴,伍凌,李新海,等.LiFePO4的前驱体制备与性能[J].功能材料,2008,39(4):614-617.
    [38]Konarova M, Taniguchi I. Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties [J]. Powder Technol,2009,191: 111~116.
    [39]Yang H, Wu X L, Gao M H, et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries [J]. J Phys Chem C, 2009,113:3345~3351.
    [40]Liu Z, Zhang X, Hong L. Preparation and electrochemical properties of spherical LiFePO4 and LiFe0.9Mg0.1PO4 cathode materials for lithium rechargeable batteries [J]. J Appl Electrochem,2009,39:2433-2438.
    [41]Liu H, Xie J, Wang K. Synthesis and characterization of LiFePO4/(C+Fe2P) composite cathodes [J]. Solid State Ionics,2008,179(27-32):1768-1771.
    [42]Chang Z R, Lv H J, Tang H W, et al. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries [J]. Electrochim Acta,2009,54(20):4595~4599.
    [43]Wang B, Qiu Y, Yang L. Structural and electrochemical characterization of LiFePO4 synthesized by an HEDP-based soft-chemistry route [J]. Electrochem Commun,2006,8(11):1801~1805.
    [44]Ying J, Lei M, Jiang C, et al. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries [J]. J Power Sources,2006,158:543-549.
    [45]倪江锋,周恒辉,陈继涛,等.铬离子掺杂对LiFePO4电化学性能的影响[J].物理化学学报,2004,20(6):582-586.
    [46]庄大高,赵新兵,谢健,等.Nb掺杂LiFePO4/C的一步固相合成及电化学性能[J].物理化学学报,2006,22(7):840-844.
    [47]Huang S, Wen Z, Gu Z, et al. Preparation and cycling performance of Al3+ and F-co-substituted compounds Li4AlxTi5-xFyO12-y [J]. Electrochim Acta,2005,50(20): 4057~4062.
    [48]Reale P, Panero S, Ronci F, et al. Iron-substituted lithium titanium spinels: structural and electrochemical characterization [J]. Chem Mater,2003,15:3437-3442.
    [49]远藤大辅,稻益德雄,温田敏之,等.由含有Mg的钛酸锂构成的锂离子电池用活性物质和锂离子电池[P].中国专利,200680009969.9,2006-3-22.
    [50]Yi T F, Shu J, Zhu Y R, et al. High-performance Li4Ti5-xVxO12 (0≤x≤0.3) as an anode material for secondary lithium-ion battery [J]. Electrochim Acta,2009, 54(28):7464~7470.
    [51]莫畏,邓国珠,罗方承.钛冶金(第2版)[M].北京:冶金工业出版社,1998:118-125.
    [52]杨佳,李奎,汤爱涛,等.钛铁矿资源综合利用现状与发展[J].材料导报,2003,17(8):44-46.
    [53]Li C, Liang B, Guo L H, et al. Effect of mechanical activation on the dissolution of Panzhihua ilmenite [J]. Miner Eng,2006,19(14):1430~1438.
    [54]Sasikumar C, Rao D S, Srikanth S, et al. Effect of mechanical activation on the kinetics of sulfuric acid leaching of beach sand ilmenite from Orissa, India [J]. Hydrometallurgy,2004,75(1-4):189~204.
    [55]孙康.钛提取冶金物理化学[M].北京:冶金工业出版社,2001:7-12.
    [56]中国科学院过程工程研究所,攀枝花市科学技术局.攀西地区钛资源综合利用技术现状分析与前景展望[J].攀枝花科技与信息,2006,31(2):8-10.
    [57]邓捷,吴立峰,乔辉,等.钛白粉应用手册[M].北京:化学工业出版社,2003.
    [58]马慧娟.钛冶金学[M].北京:冶金工业出版社,1982.
    [59]Jablonski M. Kinetic model for the reaction of ilmenite with sulphuric acid [J]. J Therm Anal Calorim,2000,65(2):583.
    [60]张强,张伟,刘良杰.浅谈立足我国钛矿资源生产钛白粉的工艺[J].铁合金,1998,(3):45.
    [61]Natziger R H, Elger G W. Preparation of titanium feedstock from Minnesota ilmenite by smelting and sulfation leaching [D]. US Bureau of Mines,1987, Report Invest No.9065.
    [62]Balderson G F, MacDonald C A. Method for the production of synthetic rutile [P]. US Patent,5885324,1999.
    [63]Kahn J A. Non-rutile feedstocks for the production of titanium [J]. J Met,1984, 36:33-38.
    [64]Becher R G, Canning R G, Goodheart B A, et al. A newprocess for upgrading ilmenite minerals sands [J]. Proc Australas Inst Min Metall,1965,21:1261-1283.
    [65]Farrow J B, Ritchie I M. The reaction between reduced ilmenite and oxygen in ammonium chloride solutions [J]. Hydrometallurgy,1987,18:21~38.
    [66]Sinha H N. MURSO process for producing rutile substitute. In:Jaffe R I, Burte H M (Eds.), Titanium Science and Technology [M]. New York-London:Plenum Press,1973,233~244.
    [67]Sinha H N. Fluidized-bed leaching of ilmenite. In:Jones M J (Ed.), Proceedings of the eleventh commonwealth mining and metallurgical congress [D]. Institute of Mining and Metallurgy, London,1979,669~672.
    [68]Walpole E A. The Austpac ERMS and EARS processes. A cost effective route to high grade synthetic rutile and pigment grade TiO2. Heavy Minerals [M]. SAIMM, Johannesburg,1997,169-174.
    [69]Lasheen T A I. Chemical benefication of Rosetta ilmenite by direct reduction leaching [J]. Hydrometallurgy,2005,76(1~2):123~129.
    [70]中南矿冶学院冶金研究室.氯化冶金[M].北京:冶金工业出版社,1978.
    [71]邱冠周,郭宇峰.钛铁矿富集方法评述[J].矿产综合利用,1998,(5):29-33.
    [72]孙康.钛铁矿的富集方法[J].钒钛,1995,(5):12-22.
    [73]马勇.人造金红石生产路线的探讨[J].钛工业进展,2003,(1):20-23.
    [74]邓国珠,王雪飞.用攀枝花钛精矿制取高口位富钛料的途径[J].钢铁钒钛,2002,23(4):14-17.
    [75]Brown I W M, Owers W R. Fabrication, microstructure and properties of Fe-TiC ceramic-metal composites [J]. Curr Aplp Phys,2004,4(2-4):171~174.
    [76]Terry B S, Chinyamakobvu 0. Carbothermic reduction of ilmenite and rutile as means of production of iron based Ti(O, C) metal matrix composites [J]. Mater Sci Technol,1997, (7):842-848
    [77]Welham N J. Mechanochemical reaction between ilmenite (FeTiO3) and aluminium [J]. J Alloy Compd,1998,270:228~231.
    [78]Welham N J, Kerr A, Willis P E. Ambient-temperature mechanochemical formation of titanium nitride-alumina composite from TiO2 and FeTiO3 [J]. J Am Ceram Soc,1999,82:2332~2336.
    [79]Welham N J. A parametric study of the mechanically activated carbothermic reduction of ilmenite [J]. Miner Eng,1996, (9):1189~1200.
    [80]Welham N J, Williams J S. Carbothermic reduction of ilmenite (FeTiO3) and rutile (TiO2) [J]. Metall Mater Trans B,1999,30:1075~1081.
    [81]Welham N J. Mechanically induced reduction of ilmenite (FeTiO3) and rutile (TiO2) by magnesium [J]. J Alloy Compd,1998,274:260~265.
    [82]Ananthapadmanabhan P V, Taylor P R. Titanium carbide-iron composite coatings by reactive plasma spraying of ilmenite [J]. J Alloy Compd,1999,287(1~2): 121-125.
    [83]Ananthapadmanabhan P V, Taylor P R, Zhu W X. Synthesis of titanium nitride in a thermal plasma reactor [J]. J Alloy Compd,1999,287(1~2):126~129.
    [84]潘复生,杨爱涛,李奎.碳氮化钛及其复合材料的反应合成[M].重庆:重庆大学出版社,2005.
    [85]Pan F S, Li K, Tang A, et al. Influence of high energy ball milling on the carbothermic reduction of ilmenite [J]. Mater Sci Forum,2003,437~438: 105~108.
    [86]Zou Z G, Li J L, Wu Y. The study of self-propagating high-temperature synthesis of TiC-Al2O3/Fe from natural ilmenite [J]. Key Eng Mater,2005,280~283: 1103~1106.
    [87]邸云萍,徐利华,王缓,等.整体利用钛精矿制备多相复合型光催化粉体[J].人工晶体学报,2008,37(4):886-889.
    [88]刑献然,陈茜,于然波,等.一种用钛铁矿精矿直接制备磁性材料的方法[P].中国专利,200810225629.0,2008-10-31.
    [89]Wu L, Li X, Wang Z, et al. Preparation of synthetic rutile and metal-doped LiFePO4 from ilmenite [J]. Powder Technol,2010,199(3):293~297.
    [90]Wu L, Li X, Wang Z, et al. A novel process for producing synthetic rutile and LiFePO4 cathode material from ilmenite [J]. J Alloy Compd,2010,506(1): 271~278.
    [91]Wu L, Li X, Wang Z, et al. Novel synthesis of LiFePO4 and Li4Ti5O12 from natural ilmenite [J]. Chem Lett,2010,39:806~807.
    [92]Wang X, Li X, Wang Z, et al. Preparation and characterization of Li4Ti5O12 from ilmenite [J]. Powder Technol,2010,204:198~202.
    [93]Wu F, Li X, Wang Z, et al. Hydrogen peroxide leaching of hydrolyzed titania residue prepared from mechanically activated Panzhihua ilmenite leached by hydrochloric acid [J]. Int J Miner Process,2011,98:106~112.
    [94]Li C, Liang B, Guo L-H. Dissolution of mechanically activated Panzhihua ilmenites in dilute solutions of sulphuric acid [J]. Hydrometallurgy,2007, 89(1~2):1~10.
    [95]葛英勇,秦贵平.利用七水硫酸亚铁生产—水硫酸亚铁及聚合硫酸铁[J].无机盐工业,1999,31(5):29-30.
    [96]蔡绪波.用钛白副产绿矾和废酸生产聚合硫酸铁[J].中国资源综合利用,2002,(8):16-17.
    [97]蔡传琦,曾昭仪,徐启利.钛白废副硫酸亚铁生产氧化铁红颜料的方法[P]. 中国专利,ZL02148428.7,2002-12-4.
    [98]蔡传琦,曾昭仪,徐启利.钛白废副硫酸亚铁生产氧化铁黄颜料的方法[P].中国专利,2002,ZL02148429.5,2002-12-4.
    [99]黄平峰.用钛白废渣绿矾生产氧化铁黑颜料的方法[P].中国专利,200710130428.8-2007-7-18.
    [100]周宏明,刘跃进,熊双喜.钛白副产硫酸亚铁制备氧化铁黑的研究[J].湘潭大学自然科学学报,2001,23(2):65-69.
    [101]黄平峰.用钛白副产硫酸亚铁生产氧化铁系列颜料[J].无机盐工业,2003,35(5):7-9.
    [102]樊耀亭,刘长让.用钛白副产硫酸亚铁制氧化铁黄颜料[J].涂料工业,1992,(6):25-261.
    [103]李实侬,陈启明,陈出新,等.用钛白副产硫酸亚铁生产高纯磁性氧化铁的方法[P].中国专利,ZL00113589.9,2000-8-2.
    [104]黄坚,龚竹青.用含铁废料制备软磁用高纯α-Fe2O3工艺的探讨[J].湖南有色金属,2002,18(5):30-32.
    [105]侬健桃,黄瀚,韦世强.用钛白副产硫酸亚铁制备软磁用高纯氧化铁的方法[P].中国专利, ZL200610018642.X,2006-3-24.
    [106]Wu L, Li X, Wang Z, et al. Synthesis and electrochemical properties of metals-doped LiFePO4 prepared from the FeSC4·7H2O waste slag [J]. J Power Sources, 2009,189(1):681-684.
    [107]Wu L, Wang Z, Li X, et al. Cation-substituted LiFePO4 prepared from the FeSO4·7H2O waste slag as a potential Li battery cathode material [J]. J Alloy Compd,2010,497(1-2):278-284.
    [108]李新海,伍凌,王志兴,等.钛白粉副产物硫酸亚铁生产电池级草酸亚铁的方法[P].中国专利,200910304079.6,2009-7-7.
    [109]Flandrois S, Simon B. Carbon materials for lithium-ion rechargeable batteries [J]. Carbon,1999,37(2):165-180.
    [110]Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries [J]. J Power Sources,2003,114(2):228-236.
    [111]Subramanian V, Gnanasekar K I, Rambabu B. Nanocrystalline SnO2 and In-doped SnO2 as anode materials for lithium batteries [J]. Solid State Ionics,2004, 175:181-184.
    [112]Li H, Shi L H, Lu W, et al. Studies on capacity loss and capacity fading of nano-sized SnSb alloy anode for Li-ion batteries [J]. J Electrochem Soc,2001, 148(8):A915-A922.
    [113]Mao O, Dunlap R A, Dahn J R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries I. The Sn2Fe-C System [J]. J Electrochem Soc,1999,146(2):405~413.
    [114]Lee K T, Jung Y S, OH S M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries [J]. J Am Chem Soc, 2003,125:5652~5653.
    [115]Pasquier A D, Laforgue A, Simon P. Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device [J]. J Power Sources,2004,125(1): 95-102.
    [116]Erin M S, Scott J B, Jung H K, et al. Three dimensionally ordered macroporous Li4Ti5O12:effect of wall structure on electrochemical properties [J]. Chem Mater, 2006,146(2):482~489.
    [117]Schamer S, Weppner W, Shmid-beumann P. Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel [J]. J Electrochem Soc,1999, 146(3):857~861.
    [118]Masatoshi M, Satoshi U, Eriko Y, et al. Development of long life lithium ion battery for power storage [J]. J Power Sources,2001,101:53~59.
    [119]Jansen A N, Kahaian A J, Kepler K D, et al. Development of a high-power lithium-ion battery [J]. J Power Sources,1999,81~82:902~-905.
    [120]Ouyang C, Zhong Z, Lei M. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel [J]. Electrochem Commun,2007,9(5):1107~1112.
    [121]Wen Z, Yang X, Huang S. Composite anode materials for Li-ion batteries [J]. J Power Sources,2007,174(2):1041~1045.
    [122]Kataokaa K, Takahashia Y, Kijimaa N, et al. Single crystal growth and structure refinement of Li4Ti5O12 [J]. J Phys Chem Solids,2008,69(5~6):1454~1456.
    [123]Hao Y, Lai Q, Xu Z, et al. Synthesis by TEA sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery [J]. Solid State Ionics,2005,176(13~14):1201~1206.
    [124]Hao Y, Lai Q, Lu J, et al. Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol-gel method [J]. J Power Sources,2006, 158(2):1358~1364.
    [125]Hao Y, Lai Q, Liu D, et al. Synthesis by citric acid sol-gel method and electrochemical properties of L14Ti5O12 anode material for lithium-ion battery [J]. Mate Chem Phys,2005,94(2~3):382~387.
    [126]Bach S, Pereira-Ramos J P, Baffler N. Electrochemical properties of sol-gel Li4/3Ti5/3O4 [J]. J Power Sources,1999,81~82:273~276.
    [127]Yi T F, Shu J, Yue C B, et al. Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery [J]. Mater Res Bull,2010, 45(4):456~459.
    [128]Li J R, Tang Z Z, Zhang Z T. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 [J]. Electrochem Commun,2005,7(9):894~899.
    [129]Li J, Jin Y L, Zhang X G, et al. Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries [J]. Solid State Ionics,2007,178(29~30):1590~1594.
    [130]Hsiao K C, Liao S C, Chen J M. Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries [J]. Electrochim Acta,2008,53(24):7242~7247。
    [131]Rahman M M, Wang J Z, Hassan M F, et al. Basic molten salt process-A new route for synthesis of nanocrystalline Li4Ti5O12-TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3-LiOH-Li2O2 [J]. J Power Sources,2010, 195(13):4297~4303.
    [132]Bai Y, Wang F, Wu F, et al. Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12 [J]. Electrochim Acta,2008,10(6):1016~1021.
    [133]Guerfi A, Sevigny S, Lagace M, et al. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators [J]. J Power Sources,2003,119~121: 88~94.
    [134]Guerfi A, Charest P. Nano electronically conductive titanium-spinel as lithium ion storage native electrode [J]. J Power Sources,2004,126:163~168.
    [135]Dominko R, Gaberscek M, Bele A, et al. Carbon nanocoatings on active materials for Li-ion batteries [J]. J Eur Ceram Soc,2007,27(2~3):909~913.
    [136]Huang S, Wen Z, Zhu X, et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12 [J]. Electrochem Commun,2004,6(11):1093~1097.
    [137]Huang S, Wen Z, Lin B, et al. The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries [J]. J Alloy Compd.2008, 457(1-2):400~403.
    [138]Kubiak P, Garcia A, Womes M, et al. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion:Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe. J Power Sources,2003,119~121:626~630.
    [139]Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries [J]. J Power Sources,1999,81~82:352~357.
    [140]Zhao H, Li Y, Zhu Z, et al. Structural and electrochemical characteristics of Li4.xAlxTi5O12 as anode material for lithium-ion batteries [J]. Electrochim Acta, 2008,53(24):7079~7083.
    [141]Huang S, Wen Z, Gu Z, et al. Preparation and cycling performance of Al3+ and F- co-substituted compounds Li4AlxTi5-xFyO12-y [J]. Electrochim Acta,2005, 50(20):4057~4062.
    [142]Shen C M, Zhang X G, Zhou Y K, et al. Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method [J]. Mater Chem Phys,2002,78(2): 437~441
    [143]Kavan L, Gratzel M. Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion [J]. Electrochem Solid-State Lett,2002,5(2): A39-A42
    [144]刘强,唐致远.钛酸锂在锂离子电池中的应用[C].第十三次全国电化学会议,广州,2005.
    [145]唐致远,武鹏,杨景雁,等.电极材料Li4Ti5O12的研究进展[J].电池,2007,37(1):73-75.
    [146]Cheng L, Liu H J, Xia Y Y, et al. Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors [J]. J Electrochem Soc,2006,153(8):1472~1477.
    [147]Antonino S A, Peter B, Bruno S, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nat Mater,2005,4(5):366-377.
    [148]Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates [J]. J Electrochem Soc,1997,144(5): 1609~1613.
    [149]Anderson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4 [J]. J Power Sources,2001, (97~98):498~502.
    [150]Anderson A S, Kalska B, Haggstrom L, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauser spectroscopy study [J]. Solid State Ionics,2002,5(5):A95-A98.
    [151]Ouyang C, Shi S, Wang Z, et al. First-principles study of Li ion diffusion in LiFePO4 [J]. Phys Rev B,2004,69,104303.
    [152]Lin C, Ritter J A. Effect of synthesis ph on the structure of carbon xerogel [J]. Carbon,1997,35(9):1271~1278.
    [153]Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes [J]. J Electrochem Soc,2001,148(3):A224-A229.
    [154]Barker J. Saidi M Y, Swoyer J L. Lithium iron (Ⅱ) phosphor-olivenes prepared by a novel carbothermal reduction method [J]. Electrochem Solid-State Lett, 2003,6(3):A53-A55.
    [155]Prosini P P, Lisi M, Scaccia S, et al. Synthesis and characterization of amophous hydrated FePO4 and its electrode performance in lithium batteries [J]. J Electrochem Soc,2002,149(3):A297-A301.
    [156]Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. J Power Sources,2003,119~121:247~251.
    [157]Prosini P P, Carewska M, Scaccia S, et al. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance [J]. J Electrochem Soc, 2002,149(7):A886-890.
    [158]邱亚丽,王保峰,杨立.LiFePO4纳米粉体的还原插锂合成及其电化学性能研究[J].无机材料学报,2007,22(1):79-83.
    [159]Huang H, Yin S C, Naza L F r. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochem Solid-State Lett,2001,4(10): A170-A172.
    [160]Doeff M M, Finones R, Yaoqin H. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium battery [C].11th International Meeting on Lithium Battery (IMLB), Monterey, CA, USA,2002.
    [161]Piana M, Cushing B L, Goodenough J B, et al. A new promising sol-gel synthesis of phospho-olivines as environmentally friendly cathode materials for Li-ion cells [J]. Solid Sate Ionics,2004,175:233~237.
    [162]Higuchi M, Katayama K, Azuma Y, et al. Synthesis of LiFePO4 cathode material by microwave processing [J]. J Power Sources,2003,119~121: 258~261.
    [163]ParkK S, Son J T, Chung H T, et al. Synthesis of LiFePO4 by copreicpitationand microwave heating [J]. Electrochem Commun,2003,5:829~842.
    [164]Myung S T, Komaba S, Hirosaki N, et al. Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalationmaterial [J]. Electrochim Acta,2004,49:4213~4222.
    [165]Cho T H, Chung H T. Synthesis of olivine-type LiFePO4 by emulsion-drying method [J]. J Power Sources,2004,133(2):272~276.
    [166]Yu F, Zhang J, Yang Y, et al. Preparation and characterization of mesoporous LiFePO/C microsphere by spray drying assisted template method [J]. J Power Sources,2009,189(1):794~797.
    [167]Gao F, Tang Z, Xue J. Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method [J]. Electrochim Acta,2007,53(4):1939~1944.
    [168]Yang M R, Teng T H, Wu S H. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis [J]. J Power Sources,2006,159(1):307~311.
    [169]Yang S, Zavalij P Y, Whittingham M S. Hydrothemal synthesis of Lithium ion phosphate cathodes [J]. Electrochem Commun,2001,3:505~508.
    [170]Yang S, Zavalij P Y, Whittingham M S. Reactivity, Stability and Electro-chemical behavior of lithium iron phosphates [J]. Electrochem Commun,2002,4: 239~244.
    [171]Tucker M C, Doeff M M, Richardson T J, et al.7Li and 31P magic angle spinning nuclear magnetic resonance of LiFePO4 type materials [J]. Electrochem Solid-State Lett,2002,5(5):A95-98.
    [172]Takeuchi T, Tabuchi M, Nakashima A, et al. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process [J]. J Power Sources,2005,146(1-2):575~579.
    [173]Lu Z G, Cheng H, Lo M F, et al. Pulsed laser deposition and electrochemical characterization of LiFePO4-Ag composite thin film [J]. Adv Funct Mater,2007, 17(18):3885~3896.
    [174]Yada C, Iriyama Y, Jeong S K, et al. Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition [J]. J Power Sources,2005,146(1~2): 559~564.
    [175]Li P, He W, Zhao H, et al. Biomimetic synthesis and characterization of the positive electrode material LiFePO4 [J]. J Alloy Compd,2009,471:536~538.
    [176]Andersson A S, Kalska B, Haggstrom, et al. Lithium extraction/insertion in LiFeP04:an X-ray diffraction and Mossbauer spectroscopy study [J]. Solid State Ionics,2000,130:41~52.
    [177]Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics,2002,148:45~51.
    [178]Rho Y H, Kanamura K. Li+-ion diffusion in LiCoO2 thin film prepared by the poly(vinylpyrrolidone) sol-gel method [J]. J Electrochem Soc,2004,151(9): A1406-A1411.
    [179]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite [J]. J Power Sources,2001,97:503~507.
    [180]Shimakawas Y, Numata T, Tabuchi J. Verwey-type transition and magnetic properties of the LiMn2O4 spinels [J]. J Solid-State Chem,1997,131:138~143.
    [181]Kawaia H, Nagatab M, Kageyamac H, et al.5 V lithium cathodes based on spinel solid solutions Li2Co1+xMn3-xO8:-1≤x≤1 [J]. Electrochim Acta,1999,45: 315~327.
    [182]Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of a LiFePO4-based composite cathode [J]. Electrochim Acta,2001,46:3517~3523.
    [183]Ravet N, Goodenough J B, Besner S, et al. Abstracts 127. The Electrochemical Society and the Electrochemical Society of Japan Meeting Abstracts, Vol.99-2. Honolulu, HI, Oct 17~22,1999.
    [184]Chen Z H, Dahn J R. Reducing carbon in LiFePO/C composite electrodes to maximize specific energy, Volumetic energy and tap density [J]. J Electrochem Soc,2002,149(9):A1184-A1189.
    [185]Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 liuthium battery cathode [J]. Electrochem Solid-State Lett, 2002,5(3):A47-A50.
    [186]Mi C H, Cao Y X, Zhang X G, et al. Synthesis and characterization of LiFePo4/ (Ag+C) composite cathodes with nano-carbon webs [J]. Powder Technol,2008, 181(3):301~306.
    [187]Huang Y H, Goodenough G B. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemicaly active polymers [J]. Chem Mater,2008,20(23): 7237~7241.
    [188]Yang Y, Liao X Z, Ma Z F, et al. Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55℃ [J]. Electrochem Commun,2009,11:1277-1280.
    [189]Kang B, Ceder G. Battery materials for ultrafast charging and discharging [J]. Nature,2009,458:190~193.
    [190]Zaghib K, Goodenough J B, Mauger A, et al. Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries [J]. J Power Sources,2009,194: 1021-1023.
    [191]Lampe-Onnerud C, Dalton S, Onnerud P et al. Assessment of olivines as the cathode for lithium-ion batteries [C].203rd Meeting of the Electrochemical Society,2003,1-29.
    [192]Wang D Y, Li H, Shi S Q, et al. Improving the rate performance of LiFePO4by Fe-site doping [J].2005,50(14):2955~2958.
    [193]Shi S Q, Liu L J, Ouyang C Y, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations [J]. Phys Rev B,2003,68(19):195108.
    [194]Amin R, Lin C T, Peng J B, et al. Silicon-doped LiFePO4 single crystals:growth, conductivity behavior, and diffusivity [J]. Adv Funct Mater,2009,19:1697-1704.
    [195]Prosini P P. LiFePO4 for lithium battery cathodes [J]. J Electrochem Sci,2001, 145(3):A120-A121.
    [196]Kim D H, Kim J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties [J]. Electrochem Solid-State Lett,2006,9(9): A439~A442.
    [197]蒋志君.锂离子电池正极材料磷酸铁锂:进展与挑战[J].功能材料,41(3):365-368.
    [198]李小芳.磷酸铁锂锂离子蓄电池的发展和应用[J].新能源汽车,2010,2(1):15-17.
    [199]新闻.http://finance.sina.com.cn/roll/20101129/01159021855.shtml.
    [200]新闻.http://auto.ifeng.com/focus/information/20101015/441650.shtml.
    [201]Sasikumar C, Rao D S, Srikanth S, et al. Dissolution studies of mechanically activated Manavalakurichi ilmenite with HC1 and H2SO4 [J]. Hydrometallurgy, 2007,88(1-4):154~169.
    [202]Chen Y, Hwang T, Williams J S. Ball milling induced low-temperature carbothermic reduction of ilmenite [J]. Mater Lett,1996,28(1-3):55~58.
    [203]Chen Y. Low-temperature oxidation of ilmenite (FeTiO3) induced by high energy ball milling at room temperature [J]. J Alloy Compd,1997,257(1-2): 156~160.
    [204]Chen Y, Williams J S, Ninham B. Mechanochemical reactions of ilmenite with different additives [J]. Colloid Surface A,1997,129~130:61~66.
    [205]Welham N J, Llewellyn D J. Mechanical enhancement of the dissolution of ilmenite [J]. Miner Eng,1998,11(9):827~841.
    [206]Li C, Liang B, Chen S P. Combined milling-dissolution of Panzhihua ilmenite in sulfuric acid [J]. Hydrometallurgy,2006,82(1-2):93~99.
    [207]王曾洁,张利华,王海北,等.盐酸常压直接浸出攀西地区钛铁矿制备人造金红石[J].有色金属,2007,59(4):108-111.
    [208]Li C, Liang B, Wang H. Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite [J]. Hydrometallurgy, 2008,91(1-4):121~129.
    [209]邓珍灵.现代分析化学实验[M].长沙:中南大学出版社,2002.
    [210]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出版社,2000.
    [211]李洪桂.冶金原理[M].北京:科学出版社,2010.
    [212]Kelsall G I, Robbins D J. Thermodynamics of Ti-H2O-F(-Fe) systems at 298 K [J]. J Electroanal Chem,1990,283:135~157.
    [213]Parsons R, Jordan J (Eds.). Standard Potentials in Aqueous Sofution [M]. New York:Marcel Dekker,1985,391~547.
    [214]Barin I, Knacke O, Kubaschewski O. Thermodynamical properties of inorganic substances [M]. Springer-Verlag, Berlin/Verlag Stahleisen, Dusseldorf,1973, and Supplement,1977.
    [215]张索林,魏雨,刘晓地.化学热力学平衡中的几个问题[M].河北:河北教育出版社,1992.
    [216]Dean J A主编,尚久方等译.兰氏化学手册[M].北京:科学出版社,1991.
    [217]林树昌.溶液平衡[M].北京:北京师范大学出版社,1993.
    [218]Gutman E M. Mechanochemistry of material [M]. Cambridge, U K:Cambridge International Science,1998.
    [219]Barton A F, McCornnel S R. Rotating disc dissolution rates of ionic solids Part 3:Nature and synthetic ilmenites [J]. Trans Faraday Soc,1979,75:971~983.
    [220]Duncan J F, Metson J B. Acid attack on New Zealand ilmenite 1:The mechanism of dissolution [J]. New Zeal J Sci,1982,25:103~109.
    [221]李春,梁斌.钛铁矿的机械活化及其浸出的研究进展[J].中国稀土学报, 2008,26(Spec. Isuue):1000~1007.
    [222]黄国知,方启学,崔吉让,等.铝土矿脱硅方法及其研究的进展[J].轻金属,1999(5)16-20.
    [223]张清岑,刘建平,肖奇.微晶石墨除杂脱硅研究[J].非金属矿,2004,27(4):1-3.
    [224]Zaghib K, Song X, Guerfi A, et al. Purification process of natural graphite as anode for Li-ion batteries:chemical versus thermal [J]. J Power Sources,2003, 119~121:8-15.
    [225]Dunnington F P. On metatitanic acid and the estimation of titanium by hydrogen peroxide [J]. J Am Chem Soc,1891,13(7):210-211.
    [226]Nordschow C D, Tammes A R. Automatic measurements of hydrogen peroxide utilizing a xylenol orange-titanium system [J]. Anal Chem,1968,40(2):465-466.
    [227]Rotziinger F P, Gratzel M. Characterization of the perhydroxytitanyl(2+) ion in acidic aqueous solution [J]. Inorg Chem,1987,26(22):3704-3708.
    [228]Shozui T, Tsuru K, Hayakawa S, et al. In vitro apatite-forming ability of titania films depends on their substrates [J]. Key Eng Mat,2007,330-332:633-636.
    [229]Xiao F, Tsuru K, Hayakawa S, et al. Anatase/rutile dual layer deposition due to hydrolysis of titanium oxysulfate with hydrogen peroxide solution at low temperature [J]. J Mater Sci,2007,42(15):6339-6346.
    [230]Kakihana M, Tomita K, Petrykin V, et al. Chelating of titanium by lactic acid in the water-soluble diammonium tris(2-hydroxypropionato) titanate(IV) [J]. Inorg Chem,2004,43(15):4546-4548.
    [231]Gao Y, Masuda Y, Peng Zi, et al. Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution [J]. J Mater Chem,2003,13:608-613.
    [232]Shankar M V, Kako T, Wang D, et al. One-pot synthesis of peroxo-titania nanopowder and dual photochemical oxidation in aqueous methanol solution [J]. J Colloid Interf Sci,2009,331:132-137.
    [233]吴良专,只金芳.水相一步合成锐钛矿型二氧化钛空心球[J].物理化学学报,2007,23(8):1173-1177.
    [234]Tomita K, Petrykin V, Kobayashi M, et al. A water soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method [J]. Angew Chem Int Ed,2006,45,2378-2381.
    [235]Ge L, Xu M X, Sun M. [J]. Mater Lett,2006,60:287-290.
    [236]Ohno T, Masaki Y, Hirayama S, et al. TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light [J]. J Catal,2001,204:163-168.
    [237]Takahara Y K, Hanada Y, Ohno T, et al. Photooxidation of organic compounds in a solution containing hydrogen peroxide and TiO2 particles under visible light [J]. J Appl Electrochem,2005,35:793-797.
    [238]Li X, Chen C, Zhao J. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation [J]. Langmuir,2001,17:4118-4122.
    [239]Peng Z, Chen Y. Preparation of BaTiO3 nanoparticles in aqueous solutions [J]. Microelectron Eng,2003,66:102-106.
    [240]Sanderson R T. Chemical Bond and Bond Engergies [M]. New York:Academic Press,1976.
    [241]Graves J L, Parr R G. Possible universal scaling properties of potential energy curves for diatomic molecules [J].1985, Phys Rev, A31:1-4.
    [242]Livage J. Sol-gel ionics [J]. Solid State Ionics,1992,50(3-4):307-313.
    [243]Ichinose H, Terasaki M, Katsuki H. Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate [J]. J Sol-Gel Sci Technol,2001,22:33-40.
    [244]Sasirekha N, Rajesh B, Chen Y W. Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent [J]. Thin Solid Films, 2009,518:43-48.
    [245]Liu Y J, Aizawa M, Wang Z M, et al. Comparative examination of titania nanocrystals synthesized by peroxo titanic acid approach from different precursors [J]. J Colloid Interf Sci,2008,322:497-504.
    [246]Schwarzenbach G, Muehlebach J, Mueller K. Peroxo complexes of titanium [J]. Inorg Chem,1970,9(11):2381-2390.
    [247]Schwarzenbach G. Structure of a chelated dinuclear peroxytitanium(IV) [J]. Inorg Chem,1970,9(11):2391-2397.
    [248]和超男,郭广生,王志华,等.钛酸和钛酸钠纳米管的制备及形成过程[J].北京化工大学学报,2008,35(1):15-19.
    [249]Chen Q, Zhou W, Du G, et al. Trititanate nanotubes made via a single alkali treatment [J]. Adv Mater,2002,14:1208-1211.
    [250]Bao N, Shen L, Feng X, et al. High quality and yield in potassium titanate whiskers synthesized by calcinations from hydrous titania [J]. J Am Ceram Soc, 2004,87(3):326-330.
    [251]He M, Feng X, Lu X, et al. A controllable approach for the synthesis of titanate derivatives of potassium tetratitanate fiber [J]. J Mater Sci,2004,39:3745-3750.
    [252]陈虹锦.无机与分析化学[M].北京:科学出版社,2008.
    [253]Lide D R. Handbook of chemistry and physics,78th ed. [M]. Boca Raton, New York:CRC Press,1997-1998.
    [254]郑俊超,李新海,王志兴,等.制备过程pH值对FePO4·xH2O及LiFePO4性能的影响[J].中国有色金属学报,2008,18(5):867-872.
    [255]郑俊超.锂离子电池正极材料LiFePO4、Li3V2(PO4)3及LiFePO4·Li3V2(PO4)3的制备与性能研究:[博士学位论文].长沙:中南大学,2010.
    [256]Wu L, Wang Z X, Li X H, et al. Electrochemical performance of Ti4+-doped LiFePO4 synthesized by co-precipitation and post-sintering method [J]. Trans Nonferrous Met Soc China,2010,20:814-818.
    [257]Wang G X, Bewlay S, Needham S A, et al. Synthesis and Characterization of LiFePO4 and LiTio.oiFe0.99PO4 Cathode Materials [J]. J Electrochem Soc,2006, 153(1):A25-A31.
    [258]Dahn J R, Jiang J W, Moshurchak L M. High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-diterbuty 1-1, 4-dimethoxybenzene [J]. J Electrochem Soc,2005,152(6):A1283-A1289.
    [259]Moshurchak L M, Buhrmester C, Dahn J R. Spectroelectrochemical studies of redox shuttle overcharge additive for LiFePO-based Li-ion batteries [J]. J Electrochem Soc,2005,152(6):A1279-A1282.
    [260]Liu H, Li C, Zhang H P, et al. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique [J]. J Power Sources,2006,159:717-720.
    [261]Liu H, Xie J. Synthesis and characterization of LiFeo.9Mg0.1PO4/nano-carbon webs composite cathode [J]. J Mater Process Technol,2009,209:477-481.
    [262]Amin R, Maier J. Effect of annealing on transport properties of LiFePO4: Towards a defect chemical model [J]. Solid State Ionics,2008,178:1831-1836.
    [263]Liu X H, Zhao Z W. Synthesis of LiFePO4/C by solid-liquid reaction milling method [J]. Powder Technol,2010,197:309-313.
    [264]Sun L Q, Cui R H, Jalbout A F, et al. LiFePO4 as an optimum power cell material [J]. J Power Sources,2009,189(1):522-526.
    [265]Wang K, Cai R, Yuan T, et al. Process investigation, electrochemical characterization and optimization of LiFePO/C composite from mechanical activation using sucrose as carbon source [J]. Electrochim Acta,2009,54(10): 2861-2868.
    [266]Liu Z. Preparation and electrochemical properties of spherical LiFePO4 and LiFeo.9Mgo.1PO4 cathode materials for lithium rechargeable batteries [J]. J Appl Electrochem,2009,39:2433-2438.
    [267]Wang G X, Bewlay S, Yao J, et al. Characterization of LiMxFe1-xPO4 (M=Mg, Zr, Ti) cathode materials prepared by the sol-gel method [J]. Electrochem Solid-State Lett,2004,7(12):A503-A506.
    [268]Wu S H, Chen M S, Chien C J, et al. Preparation and characterization of Ti4+-doped LiFePC4 cathode materials for lithium-ion batteries [J]. J Power Sources,2009,189:440-444.
    [269]Amin R, Lin C, Maier J. Aluminium-doped LiFePO4 single crystals. Part I: Growth, characterization and total conductivity [J]. Phys Chem Chem Phys,2008, 10:3519-3523.
    [270]Amin R, Lin C, Maier J. Aluminium-doped LiFePO4 single crystals. Part Ⅱ: Ionic conductivity, diffusivity and defect model [J]. Phys Chem Chem Phys,2008, 10:3524-3529.
    [271]Xu J, Chen G, Teng Y J, et al. Electrochemical properties of LiAlxJe1-3x/2PO4/C prepared by a solution method [J]. Solid State Commun,2008,147(9-10): 414-418.
    [272]刘素琴,龚本利,黄可龙,等.焙烧温度对合成LiFePO4的产物组成和电化学性能的影响[J].物理化学学报,2007,23(7):1117-1122.
    [273]Chang Y C, Sohn H J. Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons [J]. J Electrochem Soc,2000,147(1): 50-58.
    [274]Shenouda A Y, Liu H K. Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode [J]. J Alloy Compd,2009, 477(1-2):498-503.
    [275]Bard A J, Faulkner L R. Electrochemical methods, second ed. [J] New York: John Wiley & Sons,2001,231.
    [276]Ho C, Raistrick I D, Huggins R A. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films [J]. J Electrochem Soc,1980, 127:343-350.
    [277]Nakamura T, Sakumoto K, Okamoto M. Electrochemical study on Mn2+-substitution in LiFePO4 olivine compound [J]. J Power Sources,2007,174: 435-441.
    [278]Nishimur S I, Kobayashi G, Ohoyama K, et al. Experimental visualization of lithium diffusion in LixFePO4 [J]. Nat Mater,2008,7:707~711.
    [279]Yan C J, Fey G T K, Lin Y C. Characterization and electrochemical properties of Ca2+-doped LiFePO4/C cathode materials for lithium-ion batteries [C]. Abs. no. A01135-01967, ICMAT 2009 & IUMRS-ICA 2009 Meeting,2009, Singapore.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700