复合孔结构整体材料的制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,复合孔结构的沸石整体材料引起了人们的广泛关注。由于复合孔整体材料是在介孔/大孔的孔壁中引入一定数目的沸石晶粒,因此这种材料除了具有一体成型的形貌外,还具有介孔或大孔材料开阔的孔道结构,以及沸石微孔材料强酸性和高活性的性能,这使它有可能成为集组成、结构和性能一体化的多功能催化剂,因此具有潜在的应用价值,可望在催化、环保以及新材料等领域得到广泛的应用。本论文采用溶胶-凝胶和相分离结合的方法制备了同时具有贯通大孔和有序介孔的硅铝氧化物整体材料、钛硅氧化物整体材料以及硅磷铝氧化物整体材料,并通过干凝胶转化的方法成功制备出相应的沸石化整体材料,同时,对合成材料的催化性能进行了考察,具体研究方法和结果如下:
     1.采用相分离和模板支撑相结合的方法制备了具有贯通大孔和有序介孔的无定形硅铝氧化物整体材料。通过改变相分离剂和三嵌段共聚物的加入量可以对材料的大孔和介孔孔径分布实现有效调控。该材料在1,3,5-三异丙基苯的催化裂解反应中表现出较高的转化率和稳定性。
     2.采用干凝胶转化的方法成功制备出具有贯通大孔的Beta分子筛整体材料。无定形硅铝氧化物的大孔孔壁在维持双连续大孔结构的同时,部分转晶生成了Beta纳米晶粒。与传统的Beta分子筛相比,复合孔结构的Beta分子筛整体材料在多异丙苯的烷基转移反应中表现出较高的活性和稳定性。
     3.采用溶胶凝胶法和气相接枝法制备了具有贯通大孔和有序介孔的无定形钛硅氧化物整体材料。该材料经过硅烷化处理后,表面疏水性增强,酸性下降,在环己烯环氧化反应中表现出比非硅烷化复合孔结构钛硅氧化物以及硅烷化的SBA-15分子筛更高的转化率和选择性。
     4.采用干凝胶转化的方法成功制备出具有贯通大孔的钛硅沸石分子筛整体材料。沸石化后,材料的大孔孔壁由钛硅沸石纳米晶粒组成,材料中的钛原子仍以四配位状态存在。氯丙烯环氧化反应结果表明,贯通大孔的钛硅沸石分子筛整体材料具有较高的转化率和选择性。
     5.采用相分离的方法制备了具有双连续大孔结构的硅磷铝氧化物整体材料。在材料的制备过程中,通过调变相分离剂PEO、凝胶剂PO和陈化温度可以实现对大孔形貌和孔径分布的有效调控。
     6.采用干凝胶转化的方法制备了不同形貌的复合孔结构的SAPO-34分子筛整体材料。分析结果表明,P/Al和晶化方法的改变对分子筛的形貌有较大的影响;Si/Al的调变主要对材料的酸性起着决定性的作用;晶化时间和晶化温度对晶核的形成和生长有着重要的影响;而模板剂的种类制约着分子筛的类型。
     7.甲醇转化制低碳烯烃反应结果表明,相对于传统SAPO-34分子筛,复合孔结构SAPO-34分子筛,无论是在甲醇和二甲醚的转化率上,还是在乙烯和丙烯的收率上,都表现出较高的反应活性和稳定性。其中球状SAPO-34分子筛在反应中表现出相对较高的活性,而层状结构的SAPO-34则表现出较好的稳定性。
Zeolite monoliths with hierarchical porosity have attracted much attention due to their potential applications in the industrial fields. These materials have been proven to be the promising catalysts because the incorporation of interconnected macropores in microporous materials not only greatly increases mass transfer but also makes reactant easier access to the active sites, which favors the improvement of the catalytic performance. In this dissertation, we first prepared meso/macroporous aluminosilica monoliths, titania-silica monoliths and silicoaluminophosphate monolith by phase separation in sol-gel process, and then by the dry gel conversion technology, we got zeolite monoliths with hierarchical porosity. Finally, we investigated the catalytic performance of these zeolite monoliths with hierarchical porosity respectively. The main results in this dissertation are shown as follows:
     1. Aluminosilica monoliths with bicontinuous macropores and ordered mesopores were successfully prepared by phase separation combined with template technique. The bimodal meso-macroporous structure can be respectively controlled through adjusting PEG amount, surfactant amount and surfactant kinds. The aluminosilica monolith with bicontinuous macropores and ordered mesopores showed best performance on the cracking 1,3,5-Triisopropylbenzene reaction compared with other aluminosilica monolith.
     2. Bicontinuous beta zeolite monolith was prepared by the dry gel conversion technology. The results showed that the amorphous skeletons of the original silicoalumin monolith are partly converted into zeolite structure with maintenance of the bicontinuous structure. Moreover, catalytic performance of the hierarchical beta zeolite prepared via dry gel conversion method has higher activity and better stability for the transalkylation reaction in the liquid catalytic circumstance.
     3. Titania-silica monoliths with bicontinuous macropores and interconnected mesopores were successfully prepared by sol-gel method and vapor-phase grafting method. The hydrophobicity of the titania-silica monolith was improved after silylation. The results showed the titania-silica monolith with hierarchical porosity modified by silylation showed enhanced catalytic activity in the epoxidation of cyclohexene compared with SBA-15 silylanized.
     4. TS-1 zeolite monoliths with bicontinuous macropores were prepared by the dry gel conversion technology. TS-1 zeolite crystals were formed and the bicontinuous macroporous structure was not destroyed during the crystallization process, and the Ti species were incorporated into the skeletons of TS-1 zeolite monolith with tetrahedral coordination. Moreover, catalytic performance of the hierarchical TS-1 zeolite monolith prepared via dry gel conversion method has higher activity and selectivity due to the existence of bicontinuous macropores and interconnected mesopores, which make zeolite crystals fully exposed and make materials possess better mass transfer.
     5. Silicoaluminophosphate monoliths were prepared by phase separation in sol-gel process. The results showed that the macropore morphology and macropore size distributions could be controlled by adjusting PEO amount, PO amount and aging temperature.
     6. Hierarchical SAPO zeolite monoliths with different morphology were prepared by the dry gel conversion technology. The results showed that P/Al molar ratios and crystallization methods have an important effect on zeolite morphology; Si/Al molar ratios influence the acidity of zeolite; crystallization time and crystallization temperature determined the formation and growth of crystalline nucleus; template kinds work on zeolite type.
     7. The catalytic activity of hierarchical SAPO-34 zeolite monoliths with different morphology was investigated for methanol conversion to light olefins (MTO) reaction. The results showed that hierarchical SAPO-34 zeolite monoliths have higher catalytic activity and better stability compared with the conventional SAPO-34 zeolite. Moreover, it is also found by comparison that the hierarchical SAPO-34 with sphere-shaped morphology exhibits higher catalytic activity and the hierarchical SAPO-34 with layer-shaped morphology possess better stability.
引文
[1]McCusker L. B., Liebau F., Engelhardt G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts [J]. IUPAC Pure Appl. Chem.,2001,73(2):381-394.
    [2]Christensen C H, Johannsen K, Schmidt I, et al. Catalytic Benzene Alkylation over Mesoporous Zeolite Single Crystals:Improving Activity and Selectivity with a New Family of Porous Materials [J]. J. Am. Chem. Soc.2003,125(44):13370-13371.
    [3]Srivastava R, Choi M, Ryoo R. Mesoporous materials with zeolite framework:remarkable effect of the hierarchical structure for retardation of catalyst deactivation [J]. Chem. Commun.,2006, (43):4489-4491.
    [4]Guo H, Zhu G, Li H, et al. Hierarchical growth of large-scale ordered zeolite silicalite-1 membranes with high permeability and selectivity for recycling CO2 [J]. Angew. Chem. Int. Ed.,2006,45(42):7053-7056.
    [5]Kortunov P, Vasenkov S, Karger J, et al. The Role of Mesopores in Intracrystalline Transport in USY Zeolite:PFG NMR Diffusion Study on Various Length Scales [J]. J. Am. Chem. Soc.,2005,127(37):13055-13059.
    [6]Kloetstra K R, Zandbergen H W, Jansen J C, et al. Overgrowth of Mesoprous MCM-41 on Faujasite [J]. Microporous Mater,1996, (6):287-293.
    [7]Groen J C, Moulijn J A, Perez-Ramirez J. Desilication:on the controlled generation of mesoporosity in MFI zeolites [J]. J. Mater. Chem.,2006,16:2121-2131.
    [8]Groen J C, Bach T, Ziese U, et al. Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals [J]. J. Am. Chem. Soc.,2005,127(31): 10792-10793.
    [9]Egeblad K., Christensen C. H., Kustova M., et al. templating mesoporous zeolites [J]. Chem. Mater.,2008,20(3):946-960.
    [10]韩宇,肖丰收.由沸石纳米粒子自组装制备具有高催化活性中心和水热稳定的新型介孔分子筛材料[J].催化学报,2003,24(2):149-158.
    [11]Prokesova P, Mintova S, Cejka J, et al. Preparation of nanosized micro/mesopor_ous composites via simultaneous synthesis of Beta/MCM-48 phases [J]. Micropor. Mesopor. Mater.,2003, (1-3):64,165-174.
    [12]Poladi R H P R, Christopher C L. Oxidation of octane and cyclohexane using a new porous substrate, Ti-MMM-1 [J]. Micropor. Mesopor. Mater.,2002,52(1):11-18.
    [13]Karlsson A, Stocker M, Schmidt R. Composites of M icro-and Mesoporous M aterials: Simultaneous Syntheses of MFI/MCM-41 Like Phases by a Mixed Template Approach [J]. Microporous Mesoporous Mater,1999,27:181-192.
    [14]Huang L M, Guo W P, Deng P, et al. Investigation of Synthesizing MCM-41/ZSM-5 Composites [J]. J. Phys. Chem. B,2000,104:2817-2823.
    [15]黄立民,李全芝,陈海鹰.复合中微孔分子筛及其合成方法[P].中国,CN 1208718,1999.
    [16]黄立民,陈海鷹,李全芝.中孔-微孔复合分子筛MCM-41/ZSM-5的合成[J].第九届全国催化学术会议论文集,北京:海潮出版社,1998,500-501.
    [17]Xiao F X, Wang L F, Yin C Y, et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers [J]. Angew. Chem. Int. Ed.,2006,118(19):3162-3165.
    [18]Liu S, Cao X, Li L, et al. Preformed zeolite precursor route for synthesis of mesoporous X zeolite colloids and surfaces:Physicochem [J]. Eng. Aspects,2008,318(1-3): 269-274.
    [19]Wang H, Pinnavaia T J. MFI Zeolite with Small and Uniform Intracrystal Mesopores [J]. Angew. Chem. Int. Ed.,2006,118(45):7765-7768.
    [20]Wang H, Pinnavaia T J. ZSM-5 with intracrystal mesopores for catalytic cracking [J]. Stud. Surf. Sci. Catal.,2007,170:1529-1534.
    [21]Choi M, Cho S H, Srivastava R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity [J]. Nature Mater.,2006,5:718-723.
    [22]Chmelka B F. Large molecules welcome [J]. Nature Mater.2006,5:681-682.
    [23]Choi, M, Rrivastava R, Ryoo R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks [J]. Chem. Commun.,2006:4380-4382.
    [24]Rrivastava R, Choi M, Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation [J]. Chem. Commun.,2006:4489-4491.
    [25]Kloetstra K R, Van Bekkum H, Jansen J C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization [J]. J. Chem. Soc. Chem. Commun., 1997,(23):2281-2282.
    [26]Zhang Z T, Han Y, Xiao F S, Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures [J]. J. Am. Chem. Soc.2001,123(21):5014-5021.
    [27]Zhang Z T, Han Y, Zhu L, et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure [J]. Angew Chem. Int. Ed.,2001,40 (7):1258-1262.
    [28]Zhu L, Xiao F S, Zhang Z T, et al. High activity in catalytic cracking over stable mesoporous aluminosilicates [J]. Catalysis Today.,2001,68:209-216.
    [29]Di Y, Yu Y, Sun Y, et al. The control of phase and orientation in zeolite membranes by the secondary growth method [J]. Micropor. Mesopor. Mater.,2003,62:221-228.
    [30]Xiao F S, Han Y, Meng X J, et al. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites [J]. J. Am. Chem. Soc.,2002,124(6): 888-889.
    [31]Liu Y, Zhang W Zh, Pinnavaia T J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds [J]. J. Am Chem Soc.,2000,122:8791-8792.
    [32]Liu Y, Zhang W Zh, Pinnavaia T J. Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from ZSM-5 and Zeolite Beta Seeds [J]. Angew. Chem. Int. Ed.,2001,40(7):1255-1258.
    [33]Guo W., Huang L., Deng P., et al. Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture [J]. Micropor. Mesopor. Mater., 2001,44-45:427-434.
    [34]李工,阚秋斌,吴通好,等.含有沸石结构单元体介孔分子筛的合成及催化性能[J].化学学报,2002,60(5):759-763.
    [35]Ozin G A. Nanochemistry-Synthesis in Diminishing Dimensions [J]. Adv. Mater.,1992, 4:612-649.
    [36]Liu Y, Pinnavaia T J. Aluminosilicate Nanoparticles for Catalytic Hydrocarbon Cracking [J]. J. Am. Chem. Soc.,2003,125:2376-2377.
    [37]Jacobsen C J H, M adsen C, Houzvicka J, et al. Mesoporous Zeolite Single Crystals [J]. J. Am. Chem. Soc.,2000,122:7116-7117.
    [38]Christensen C H, Johannsen K, Schm idt I, et al. Catalytic B enzene Alkylation over M. esoporous Zeolite S ingle C rystals:Improving A ctivity and Selectivity w ith a N ew Fam ily of Porous M aterials [J]. J. Am. Chem. Soc.,2003,125:13370-13371.
    [39]Kim S. S., Shah J., Pinnavaia T. J. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite [J]. Chem. Mater.,2003,15(8): 1664-1668.
    [40]Janssen A H, Schmidt I, Jacobsen C J H, et al. Exploratory study of mesopore templating with carbon during zeolite synthesis [J]. Micropor. Mesopor. Mater.,2003,65(1):59-65.
    [41]Schmidt I, Boisen A, Gustavsson E, et al. Carbon nanotube templated growth of meso-porous zeolite single crystals [J]. Chem. Mater.,2001,13(12):4416-4418.
    [42]Boisen A, Schmidt I, Carlsson A, et al. TEM stereo-imaging of mesoporous zeolite single crystals [J]. Chem. Commun.,2003:958-959.
    [43]Schm idt I, Janssen A H, Cusiavsson E, et al. Carbon N anotube Templated Growth of Mesoporous Zeolite S ingle Crystals [J]. Chem. Mater.,2001,13:4416-4418
    [44]Kustova M Y, Hasselriis P, Christensen C H, et al. Mesoporous MEL-Type Zeolite Single Crystal Catalysts [J]. Catal. Lett.,2004,205-211.
    [45]Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels [J]. J. Am. Chem. Soc.,2003,125(20):6044-6045.
    [46]Tao Y, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel Templating [J]. J. Phys. Chem. B,2003,107(40):10974-10976.
    [47]Tao Y, Kanoh H, Hanzawa Y, et al. Template synthesis and characterization of mesoporous zeolites [J]. Colloids Surf. A.,2004,241(1-3):75-80.
    [48]Tao Y, Hattori Y, Matsumoto A, et al. Comparative Study on Pore Structures of Mesoporous ZSM-5 from Resorcinol-Formaldehyde Aerogel and Carbon Aerogel Templating [J]. J. Phys.Chem. B.,2005,109(1):194-199.
    [49]Li W, Lu A, Palkovits R, et al. Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime [J]. J. Am. Chem. Soc.,2005,127(36):12595-12600.
    [50]Yang Z, Xia Y, Mokaya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template [J]. Adv. Mater.,2004,16(8):727-732.
    [51]Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys. Chem. B,1999,103(37): 7743-7746.
    [52]Jun S., Joo S. H., Ryoo R., et al. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure [J]. J. Am. Chem. Soc.,2000,122(43):10712-10713.
    [53]Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons [J]. Adv. Mater.,2001, 13(9):677-681.
    [54]Kim S-H, Lee C-Y, Kim G-J. Syntheses of ZSM-5 and TS-1 zeolites with bimodal micro/mesoscopic structures [J]. Stud. Surf. Sci. Catal.,2005,158:407-414.
    [55]Cho S I, Choi S D, Kim J-H, et al. Synthesis of ZSM-5 films and monoliths with bimodal micro/mesoscopic structures [J]. Adv. Funct. Mater.,2004,14(1):49-54.
    [56]Dong A, Ren N, Yang W, et al. Preparation of Hollow Zeolite Spheres and Three-Dimensionally Ordered Macroporous Zeolite Monoliths with Functionalized Interiors [J]. Adv. Funct. Mater.,2003,13(12):943-948.
    [57]Li W, Lu A, Palkovits R, et al. Hierarchically Structured Monolithic Silicalite-1 Consisting of Crystallized Nanoparticles and Its Performance in the Beckmann Rearrangement of Cyclohexanone Oxime [J]. J. Am. Chem. Soc.,2005,127(36): 12595-12600.
    [58]Rhodes K H, Davis S A, Caruso F, et al. Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks [J]. Chem. Mater.,2000,12(10):2832-2834.
    [59]Valtchev V P, Smaihi M, Faust A C, et al. Equisetum arvense Templating of Zeolite Beta Macrostructures with Hierarchical Porosity [J]. Chem. Mater.,2004,16(7):1350-1355.
    [60]林森,殷成阳,王利丰,等.Beta沸石分子筛前驱体修饰的SBA-15介孔分子筛及其催化性质[J].山东大学学报(理学版),2005,40(3):101-104.
    [61]Do T O, Nossov A, Springuel-Huet M A, et al. Zeolite Nanoclusters Coated onto the Mesopore Walls of SBA-15 [J]. J. Am. Chem. Soc.,2004,126(44):14324-14325.
    [62]Do T O, Kaliaguine S. Zeolite-Coated Mesostructured Cellular Silica Foams [J]. J. Am. Chem. Soc.,2003,125(3):618-619.
    [63]Habib S, Launay F, Springuel-Huet M A, et al. Monitoring the crystallization process of a zeolite structure on SBA-15 mesopore walls [J]. New J. Chem.,2006,30(8):1163-1170.
    [64]Kloestra K R, Bekkum H V, Jansen J C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization [J]. Chem. Commun.1997:2281-2282.
    [65]Verhoef M J, Kooyman P J, van derWaal J C, et al. Partial Transformation of MCM-41 Material into Zeolites:Formation of Nanosized MFI Type Crystallites [J]. Chem. Mater.,2001,13(2):683-687.
    [66]Trong On D., Kaliaguine S. Large-pore mesoporous materials with semi-crystalline zeolitic frameworks [J]. Angew. Chem. Int. Ed.,2001,40(17):3248-3251.
    [67]Campos A A, Dimitrov L, da Silva C R, et al. Recrystallisation of mesoporous SBA-15 into microporous ZSM-5 [J]. Micropor. Mesopor. Mater.,2006,95:92-103.
    [68]Fang Y, Hu H. An Ordered Mesoporous Aluminosilicate with Completely Crystalline Zeolite Wall Structure [J]. J. Am. Chem. Soc.,2006,128(33):10636-10637.
    [69]Holland B T, Abrams L, Stein A. Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks [J]. J. Am. Chem. Soc.,1999,121(17):4308-4309.
    [70]Huang L, Wang Z, Sun J, et al. Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals [J]. J. Am. Chem. Soc.,2000,122(14): 3530-3531.
    [71]Valtchev V. Silicalite-1 Preparation of regular macroporous structures built of intergrown silicalite-1 nanocrystals [J]. J. Mater. Chem.,2002,12:1914-1918.
    [72]Valtchev V. Silicalite-1 Hollow Spheres and Bodies with a Regular System of Macrocavities [J]. Chem. Mater.,2002,14:4371-4377.
    [73]Wang Y J, Caruso F. Macroporous Zeolitic Membrane Bioreactors [J]. Adv Funct. Mater, 2004,14:1012-1018.
    [74]Dong A G, Wang Y J, Tang Y, et al. Zeolitic tissue through wood cellular templating [J]. Adv. Mater.,2002,14(12):926-929.
    [75]Valtchev V P, Smaihi M, Faust A, et al. Equisetum arvense templating of Zeolite Beta macrostructures with hierarchical porosity [J]. Chem. Mater.,2004,16(7):1350-1355.
    [76]Zhang B, Davis S A, Mann S. Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films [J]. Chem. Mater.,2002,14(3):1369-1375.
    [77]Zhang B J, Davis S A, Mendelsonb N H, et al. Bacterial templating of zeolite fibres with hierarchical structure [J]. Chem. Commun.,2000:781-782.
    [78]Lee Y J, Lee S, Park Y S, et al. Synthesis of large monolithic zeolite foams with variable macropore architectures [J]. Adv. Mater.,2001,13(16):1259-1263.
    [79]Anderson M W, Holmes S M, Hanif N, et al. Hierarchical Pore Structures through Diatom Zeolitization [J]. Angew. Chem. Int. Ed.,2000,39(15):2707-2710.
    [80]Wang Y, Tang Y, Dong A, et al. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process [J]. J. Mater. Chem.,2002, 12(6):1812-1818.
    [81]Matsukata M, Ogura M, Osaki T, et al. Conversion of dry gel to microporous crystals in gas phase [J]. Top. Catal.,1999,9:77-92.
    [82]Tong Y, Zhao T, Li F, et al. Synthesis of Monolithic Zeolite Beta with Hierarchical Porosity Using Carbon as a Transitional Template [J]. Chem. Mater.,2006,18(18): 4218-4220.
    [83]Nakanishi K, Minakuchi H, Soga N, et al. Double Pore Silica Gel Monolith Applied to Liquid Chromatography [J]. J. Sol-Gel Sci. Technol.,1997,8:547-552.
    [84]Ishizuka N, Minakuchi H, Nakanishi K, et al. Designing monolithic double-pore silica for high-speed liquid chromatography [J]. J. Chromatog. A,1998,797 (1-2):133-137.
    [85]Nakanishi K. Porous Gels Made by Phase Separation:Recent Progress and Future Directions [J]. J. Sol-Gel Sci. Technol.,2000,19:65-70.
    [86]Kato M, Sakai-Kato K, Toyooka T. Silica sol-gel monolithic materials and their use in a variety of applications [J]. J. Sep. Sci.,2005,28(15):1893-1908.
    [87]Oh C G, Baek Y, Ihm S K. Synthesis of Skeletal-Structured Biporous Silicate Powders through Microcolloidal Crystal Templating [J]. Adv. Mater.2005,17 (3):270-273.
    [88]杨振忠,齐凯,容建华,等.模板技术合成有序介孔/大孔二氧化硅[J].科学通报,2001,46,1349-1353.
    [89]Caruso R A, Schattka J H. Cellulose Acetate Templates for Porous Inorganic Network Fabrication [J]. Adv. Mater.,2000,12(24):1921-1923.
    [90]Caruso R.A., Antonietti M. Silica Films with Bimodal Pore Structure Prepared by Using Membranes as Templates and Amphiphiles as Porogens [J]. Adv. Funct. Mater.,2002, 12(4):307-312.
    [91]Iwasaki M, Davis S A, Mann S. Spongelike Macroporous TiO2 Monoliths Prepared from Starch Gel Template [J]. J. Sol-Gel Sci. Technol.,2004,32:99-105.
    [92]Walsh D, Arcelli L, Ikoma T, et al. Dextran templating for the synthesis of metallic and metal oxide sponges [J]. Nat. Mater.,2003,2(3):386-390.
    [93]Zhao D, Yang P, Chmelka B F, et al. Multiphase Assembly of Mesoporous-Macroporous Membranes [J]. Chem. Mater.,1999,11(5):1174-1178.
    [94]Nishihara H, Mukai S R, Yamashita D, et al. Ordered Macroporous Silica by Ice Templating [J]. Chem. Mater.,2005,17(3):683-689.
    [95]Kim S H, Shin C K, Ahn C H, et al. Syntheses and application of silica monolith with bimodal meso/macroscopic pore structure [J]. J. Porous Mater.2006,13:201-205.
    [96]Xu L Y, Shi Z Y, Feng Y Q. A facile route to a silica monolith with ordered mesopores and tunable through pores by using hydrophilic urea formaldehyde resin as a template [J]. Microp. Mesop. Mater.,2007,98:303-308.
    [97]Antonietti M, Berton B, Goltner C, et al. Synthesis of Mesoporous Silica with Large Pores and Bimodal Pore Size Distribution by Templating of Polymer Latices [J]. Adv. Mater.,1998,10(2):154-159.
    [98]Zhao D, Yang P, Chmelka B F, et al. Multiphase Assembly of Mesoporous-Macroporous Membranes [J]. Chem. Mater.,1999,11(5):1174-1178.
    [99]Nakanishi K, Soga N. Phase Separation in Gelling Silica-Organic Polymer Solution: Systems Containing Poly(sodium styrenesulfonate) [J]. J. am. Ceram. Soc.,1991, 74(10):2518-2530.
    [100]Nakanishi K. Pore Structure Control of Silica Gels Based on Phase Separation [J]. J. Porous Mater.,1997,4:67-112.
    [101]Coppens M O, Sun J H, Maschmeyer T. Synthesis of hierarchical porous silicas with a controlled pore size distribution at various length scales [J]. Catalysis Today,2001,69: 331-335.
    [102]Huesing N, Raab C, Torma V, et al. Periodically Mesostructured Silica Monoliths from Diol-Modified Silanes [J]. Chem. Mater.,2003,15(14):2690-2692.
    [103]Zhao D, Yang P, Chmelka B F, et al. Multiphase Assembly of Mesoporous-Macroporous Membranes [J]. Chem.Mater.,1999,11(5):1174-1178.
    [104]Sattler,K., Gradzielski M., Mortensen K., et al. Influence of surfactant on the gelation of novel ethylene glycol esters of silicic acid [J]. Ber. Bunsen-Ges. Phys. Chem.,1998, 102:1544-1547.
    [105]Sattler K, Hoffmann H. A novel glycol silicate and its interaction with surfactant for the synthesis of mesoporous silicate [J]. Prog. Colloid Polym. Sci.,1999,112:40-44.
    [106]Brandhuber D, Torma V, Raab C, et al. Glycol-Modified Silanes in the Synthesis of Mesoscopically Organized Silica Monoliths with Hierarchical Porosity [J]. Chem. Mater.,2005,17(16):4262-4271.
    [107]Smatt J H, Schunk S, Linden M. Versatile Double-Templating Synthesis Route to Silica Monoliths Exhibiting a Multimodal Hierarchical Porosity [J]. Chem. Mater.,2003,15: 2354-2361.
    [108]Nakanishi K, Takahashi R, Nagakane T, et al. Formation of Hierarchical Pore Structure in Silica Gel [J]. J. Sol-Gel Sci. Technol.,2000,17:191-210.
    [109]Sato Y, Nakanishi K, Hirao K, et al. Formation of ordered macropores and templated nanopores in silica sol-gel system incorporated with EO-PO-EO triblock copolymer [J]. Colloids Surf. A,2001,187-188:117-122.
    [110]Nakanishi K, Kobayashi Y K, Amatani T, et al. Spontaneous Formation of Hierarchical Macro-Mesoporous Ethane-Silica Monolith [J]. Chem. Mater.,2004,16:3652-3658.
    [111]Amatani T, Nakanishi K, Hirao K, et al. Monolithic Periodic Mesoporous Silica with Well-Defined Macropores [J]. Chem. Mater.,2005,17:2114-2119.
    [112]Nakanishi K, Amatani T, Yano S, et al. Multiscale Templating of Siloxane Gels via Polymerization-Induced Phase Separation [J]. Chem. Mater.,2008,20:1108-1115.
    [113]Minakuchi H, Nakanishi K, Soga N, et al. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography [J]. J. Chromatogr. A,1997,762(1-2):135-146.
    [114]Minakuchi H, Nakanishi K, Soga N, et al. Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography [J]. J Chromatogr A,1998,797:121-131.
    [115]Liu G Q, Yu Zh L. Technology of Chromatographic Column [D]. Beijing:Chemical Industry Press,2001,317.
    [116]Liang C.D., Dai S., Guiochon G. Use of gel-casting to prepare HPLC monolithic silica columns with uniform mesopores and tunable macrochannels [J]. Chem. Commun., 2002,22:2680-2681.
    [117]Maekawa H., Esquena J., Bishop S., et al. Meso/Macroporous Inorganic Oxide Monoliths from Polymer Foams [J]. Adv. Mater.,2003,15(7):591-596.
    [118]Barrett E P, Joyner L G, Halenda P P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms [J]. J. Am. Chem. Soc.,1951,73:373-380.
    [119]Storck S, Bretinger H, Maier W F. Characterization of micro-and mesoporous solids by physisorption methods and pore-size analysis [J]. Applied Catalysis A:General,1998, 174:137-146.
    [120]Nakanishi K. Porous Gels Made by Phase Separation:Recent Progress and Future Directions [J]. J. Sol-Gel Sci. Technol.,2000,19:65-70.
    [121]Kato M, Sakai-Kato K, Toyooka T. Silica sol-gel monolithic materials and their use in a variety of applications [J]. J. Sep. Sci.,2005,28(15):1893-1908.
    [122]Kim S H, Shin C K, Ahn C H, et al. Syntheses and application of silica monolith with bimodal meso/macroscopic pore structure [J]. J. Porous Mater.,2006,13:201-205.
    [123]Xu L Y, Shi Z Y, Feng Y Q. A facile route to a silica monolith with ordered mesopores and tunable through pores by using hydrophilic urea formaldehyde resin as a template [J]. Microp. Mesop. Mater.,2007,98:303-308.
    [124]Yuan Z Y, Su B L. Insights into hierarchically meso-macroporous structured materials [J]. J Mater Chem.,2006,16(17):663-667.
    [125]Minakuchi H, Nakanishi K, Soga N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography [J]. J.Chromatogr. A,1997,762:135-142.
    [126]Ishizuka N, Minakuchi H, Nakanishi K, et al. Designing monolithic double-pore silica for high-speed liquid chromatography [J]. J. Chromatog. A,1998,797 (1-2):133-137.
    [127]Nakanishi K, Soga N. Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition [J]. J. Non-Cryst. Solids,1992,139:1-13.
    [128]Minakuchi H, Nakanishi K, Soga N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography [J]. J.Chromatogr. A,1997,762:135-142.
    [129]Nakanishi K. Pore Structure Control of Silica Gels Based on Phase Separation [J]. J. Porous Mater.,1997,4:67-112.
    [130]Takahashi R, Nakanishi K, Soga N. Aggregation Behavior of Alkoxide-Derived Silica in Sol-Gel Process in Presence of Poly(ethylene oxide) [J]. J. Sol-gel Sci. Technol., 2000,17:7-18.
    [131]杨静,高文慧,杨更亮,等.改性剂对硅胶整体柱结构性能的影响[J].河北大学学报,2004,24:274-276.
    [132]高文慧,杨静,杨更亮,等.硅胶整体注的制备及制备条件对整体柱的影响[J].化学通报,2004,24:214-217.
    [133]Nakanishi K. Pore Structure Control of Silica Gels Based on Phase Separation [J]. J.
    Porous Mater.,1997,4:67-112.
    [134]Takahashi R, Nakanishi K, Soga N. Aggregation Behavior of Alkoxide-Derived Silica in Sol-Gel Process in Presence of Poly(ethylene oxide) [J]. J. Sol-gel Sci. Technol., 2000,17:7-18.
    [135]施治国,冯钰锜,达世禄,等.合成条件对硅胶整体柱中孔结构的影响[J].分析科学学报,2005,21(3):237.
    [136]林翠英,邱羽,将琳沁,等.Pluronic F127和P123嵌段共聚物胶束结构[J].福州大学学报(自然科学版),2000,28(6):77-81.
    [137]Tanev P T, Pinnavaia T J. A Neutral Templating Route to Mesoporous Molecular Sieves [J]. Science,1995,267:865-867.
    [138]Merisudesu P, Tuan Vu A, Nghiem Vu T. Characterization and Catalytic Properties of Hydrothermally Dealuminated MCM-22 [J]. J. Catal.1999,185:378-385
    [139]Holland B T, Abrams L, Stein A. Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks [J]. J. Am. Chem. Soc.,1999,121(17):4308-4309.
    [140]Rhodes K H, Davis S A, Caruso F, et al. Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks [J]. Chem. Mater.,2000,12(10):2832-2834.
    [141]L. Tosheva, V. Valtchev, J. Sterte. Silicalite-1 containing microspheres prepared using shape-directing macro-templates [J]. Micro. Meso. Mater.,2000,35:621-639.
    [142]V. Naydenov, L. Tosheva, J. Sterte. Palladium-Containing Zeolite Beta Macrostructures Prepared by Resin Macrotemplating [J]. Chem. Mater.,2002,14:4881-4885.
    [143]V. Naydenov, L. Tosheva, J. Sterte. Vanadium modified AlPO-5 spheres through resin macrotemplating[J]. Micro. Meso. Mater.,2003,66:321-329.
    [144]Y. J. Lee, J. S. Lee, Y. S. Park, et al. Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures [J]. AdV. Mater.,2001,13:1259-1263.
    [145]F. Scheffler, A. Zampieri, W. Schwieger, et al. Zeolite covered polymer derived ceramic foams:novel hierarchical pore systems for sorption and catalysis [J]. Advances in Applied Ceramics,2005,104:43-48.
    [146]L. Huerta, J. E. Haskouri, D. Vie, et al. Nanosized Mesoporous Silica Coatings on Ceramic Foams:New Hierarchical Rigid Monoliths [J].Chem. Mater.,2007,19: 1082-1088.
    [147]B. Zhang, S. A. Davis, S. Mann. Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films [J]. Chem. Mater.,2002,14,1369-1375.
    [148]A. Dong, Y. Wang, Y. Tang, et al. Zeolitic Tissue Through Wood Cell Templating [J]. Adv. Mater.,2002,14:926-929.
    [149]Q. F. Tan, X. J. Bao, T. Ch. Song, et al. Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-micro-porous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on kaolin [J]. Journal of Catalysis,2007,251:69-79.
    [150]B. A. Dong, Y. J. Wang, Y. Tang, et al. Mechanically Stable Zeolite Monoliths with Three-Dimensional Ordered Macropores by the Transformation of Mesoporous Silica Spheres [J]. Adv. Mater.,2002,14:1506-1510.
    [151]M. W. Anderson, S. M. Holmes, N. Hanif, et al. Hierarchical Pore Structures through Diatom Zeolitization [J]. Angew. Chem. Int. Ed.,2000,39:2707-2710.
    [152]V. P. Valtchev, M. Smaihi, A.C. Faust, et al. Equisetum arvense Templating of Zeolite Beta Macrostructures with Hierarchical Porosity [J].Chem. Mater.,2004,16: 1350-1355.
    [153]S. Calixto, C. P. Padilla. Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation [J]. Appl.Opt.,1996,35:6126-6130.
    [154]Ch. L. Li, Y. Q. Wang, B. F. Shi, et al. Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals [J]. Micro. Meso. Mater.,2009,117:104-110.
    [155]Y. J. Wang, Y. Tang, A. G. Dong, et al. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process [J]. J. Mater. Chem., 2002,12,1812-1818.
    [156]N. Katada, H. Igi, J.-H. Kim, et al. Determination of the Acidic Properties of Zeolite by Theoretical Analysis of Temperature-Programmed Desorption of Ammonia Based on Adsorption Equilibrium [J]. J. Phys. Chem. B,1997,101:5969-5977.
    [157]Engelhardt G, Michel D. High-resolution solidstate NMR of silicates and zeolites [D]. Chichester:New York,1987.
    [158]Y. Miyamoto, N. Katada, M. Niwa. Acidity of β zeolite with different Si/A12 ratio as measured by temperature programmed desorption of ammonia [J]. Micropor. Mesopor. Mater.,2000,40:271-281.
    [159]Klinowski. Nuclear magnetic resonance studies of zeolites [J]. J. Prog. NMR Spectrosc., 1984,16:237-309.
    [160]T. Bein, R. F. Carver, R.D. Farlee, et al. Solid-state silicon-29 NMR and infrared studies of the reactions of mono-and polyfunctional silanes with zeolite Y surfaces [J]. J. Am. Chem. Soc.,1988,110:4546-4553.
    [161]N. Kodakari, K. Tomita, K. Iwata, et al. Molecular Sieving Silica Overlayer on y-Alumina:The Structure and Acidity Controlled by the Template Molecule [J]. Langmuir,1998, (14):4623-4629.
    [162]I. Kiricsi, C. Flego, G. Pazzuconi, et al. Progress toward Understanding Zeolite.beta. Acidity:An IR and 27Al NMR Spectroscopic Study [J]. J. Phys. Chem.,1994, (98): 4627-4634.
    [163]Maschmeyer T, Rey F, Sankar G, et al. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica [J]. Nature,1995,378:159-162.
    [164]Yuan Q, Hagen A, Roessner F. An investigation into the Ti-grafting structure on MCM-41 and epoxidation catalysis [J]. Appl. Catal.,2006,303(1):81-87.
    [165]Jarupatrakorn J, Tilley T D. Silica-Supported, Single-Site Titanium Catalysts for Olefin Epoxidation. A Molecular Precursor Strategy for Control of Catalyst Structure [J]. J. Am. Chem. Soc.,2002,124(28):8380-8388.
    [166]Hua Z, Bu W, Shi J. Post-grafting preparation of large-pore mesoporous materials with localized high content titanium doping [J]. J. Mater. Chem.,2005,15:661-665.
    [167]Wu P, Tatsumi T. Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15 [J]. Chem. Mater.,2002, 14(4):1657-1664.
    [168]伏再辉,尹笃林,赵伟,等.中孔载体上组装Ti催化活性中心的研究Ⅰ-钛配合物在中孔HMS载体上的组装[J].无机化学学报,2000,16(4):624-630.
    [169]Yonemitsu M, Tanaka Y, Iwamoto M. Metal Ion-Planted MCM-41:2. Catalytic Epoxidation of Stilbene and Its Derivatives with tert-Butyl Hydroperoxide on Mn-MCM-41 [J]. J. Catal.,1998,178(1):207-213.
    [170]Wu P, Iwamoto M. Metal-ion-planted MCM-41. Part 3. Incorporation of titanium species by atom-planting method [J]. J. Chem. Soc. Faraday Trans.,1998,94: 2871-2875.
    [171]Li K T, Lin C C. Propylene epoxidation over Ti/MCM-41 catalysts prepared by chemical vapor deposition [J]. Catal. Today,97(4):257-261.
    [172]Chiker F, Nogier J P, Launay F, et al. New Ti-SBA mesoporous solids functionnalized under gas phase conditions:characterisation and application to selective oxidation of alkenes [J]. Appl. Catal.,243(2):309-321.
    [173]Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chem. Rev.,1997,97(6):2373-2420.
    [174]Yuan Q, Hagen A, Roessner F. An investigation into the Ti-grafting structure on MCM-41 and epoxidation catalysis[J]. Appl. Catal.2006,303(1):81-87.
    [175]Morey M, Davidson A, Eckert H, et al. Pseudotetrahedral O3/2V=O centers immobilized on the walls of a mesoporous, cubic MCM-48 support:preparation, characterization, and reactivity toward water as investigated by 51V NMR and UV-Vis spectroscopies [J]. Chem. Mater.,1996,8(2):486-492.
    [176]张美英,王乐夫,黄仲涛.Cu-HMS分子筛的合成条件及其催化性能[J].催化学报,2003,24(12):914-918.
    [177]Cagnoli M V, Casuscelli S G, Alvarez A M, et al. Ti-MCM-41 silylation:Development of a simple methodology for its estimation:Silylation effect on the activity and selectivity in the limonene oxidation with H2O2 [J]. Catal. Today,2005,107-108:397-403.
    [178]Pena M L, Dellarocca V, Rey F, et al. Elucidating the local environment of Ti(Ⅳ) active sites in Ti-MCM-48:a comparison between silylated and calcined catalysts [J]. Micropor. Mesopor. Mater.,2001,44-45:345-356.
    [179]Li K T, Lin C C. Propylene epoxidation over Ti/MCM-41 catalysts prepared by chemical vapor deposition [J]. Catal. Today,97(4):257-261.
    [180]Yang Q, Wang S, Lu J, et al. Epoxidation of styrene on Si/Ti/SiO2 catalysts prepared by chemical grafting [J]. Appl. Catal.,2000,194-195:507-514.
    [181]Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chem. Rev.,1997,97(6):2373-2420.
    [182]Notari B. Synthesis and Catalytic Properties of Titanium Containing Zeolites [J]. Stud Surf Sci Catal,1988,37:413-425.
    [183]Notari B. Titanium Silicalite:A New Selective Oxidation Catalyst [J]. Stud Surf Sci Catal,1991,67:243-256.
    [184]Lok B M, Messina C A, Lyle P R, et al. Crystalline silicoaluminophosphate [P]. US4440871,1984.
    [185]Liang J, Li H Y. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion [J]. Appl Catal.,1990,64:31-40.
    [186]Cai G Y, Liu Z M, Shi R M, et al. Light alkenes from syngas via dimethyl ether [J]. Applied CatalysisA:General,1995,125:29-38.
    [187]Chen D, Rebo H P, Moljord K, et al. The role of coke deposition in the conversion of methanol to olefins over SAPO-34 [J]. Stud. Surf. Sci. Catal.,1997,111:159-166.
    [188]Chen D, Moljord K, Fuglerud T, et al. The effect of crystal size of SAPO-34 on the selectivityand deactivation of the MTO reaction [J]. Micro. Mesop. Mater.,1999,29: 191-203.
    [189]Keil F J. Methanol to hydrocarbons:process technology [J]. Micro. Mesop. Mater., 1999,29:49-66.
    [190]Liu Z M, Cai G Y. Research progress and pilot plant test on SDTO process [J]. Studies in Surface Science and Catalysis., Vol.119 (NATURAL GAS CONVERSION V),1998.
    [191]Marchi A J, Froment G F. Catalytic Conversion of Methanol to Light Alkenes on SAPO Molecular Sieves [J]. Appl. Catal.,1991,71:139-152.
    [192]M Popovav. Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various source of silicon and aluminium [J]. Appl.Catal. A:General., 1998,169:227-235.
    [193]Stocker M. Methanol to hydrocarbons:catalytic material and their behavior [J]. Micro. Mesop.Mater.,1999,29:3-48.
    [194]Wu X C, Anthony R G Effect of Feed Composition on Methanol Conversion to Light Olefins over SAPO-34 [J]. Appl. Catal. A:General.,2001,218:241-250.
    [195]范闵光.SAPO-34分子筛积炭问题的研究[J].南宁职业大学学报,1999,2:25-27.
    [196]Chen D, Rebo H PMoljord K, et al. Influence of coke deposition on selectivity in zeolite catalysis [J]. Ind Eng Chem Res.,1997,36:3473-3479.
    [197]Tan J, Liu Zh M, Bao X H, et al. Crystallization and Si incorporation mechanisms of SAPO-34 [J]. Microporous and Mesoporous Materials,2002,53:97-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700