基于过氧化钛体系钛基功能化材料的可控合成及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2由于其宽的禁带宽度以及良好的稳定性,在半导体光催化领域得到最为广泛的重视,在污水处理、空气净化、抗菌以及自清洁等领域都有广泛的应用。另一方面,纳米材料的性质同其本身的结构,形貌,尺寸等密切相关,因此,可控形态和组成的纳米结构材料的制备和性能研究是当前纳米材料领域发展的研究热点。由于钛盐的高反应活性,使得在低温常压下可控合成TiO_2面临极大的挑战。本论文利用一种稳定的水性过氧化钛配合物(PeroxoTitanium Complex,缩写为PTC)作为合成TiO_2纳米粒子的前驱体,探索了其在低温可控合成钛基功能化纳米材料中的作用,并研究了所得产物的结构和性能,并研究了其在不同领域的应用,主要开展了以下几方面的工作:
     1、利用PTC结构随着体系pH值的变化而发生变化的特性,通过在常温常压下调节PTC前驱体的pH值,可控合成了不同晶型以及不同形貌的纳米TiO_2,在反应过程中,前驱体的pH值以及不同H_2O_2/Ti比值对产物晶型的影响很大,低的pH值(pH~0)以及高的H2O_2/Ti比(>20:1)有利于金红石相的生成。当pH值大于3时,无论H2O_2/Ti比例如何,只能得到锐钛矿相;而pH控制在1左右,且H2O_2/Ti比例在一个合适的值时(10~20,摩尔比),则有利于板钛矿相的生成。光催化结果表明,球形的锐钛矿粒子具有最好的光催化活性。另一方面,利用PTC前驱体的稳定性,可以控制其反应速度进而通过一步法在低温常压下合成纯的金红石纳米棒,金红石相的生成由PTC前驱体的结构直接决定,没有通过任何过渡相的转换。所制得的金红石纳米棒的粒径可以通过调节前驱体浓度而控制,光催化活性测试表明小粒径的金红石纳米粒子呈现出较好的光催化活性。
     2、利用SiO_2同TiO_2之间发生的复合作用,制得了一种具有高光催化活性的TiO_2&SiO_2复合溶胶。通过加入一定的表面活性剂和成膜助剂,该溶胶可以应用于不同的建材基底,如玻璃、瓷砖、金属以及塑料基底,并且呈现出良好的亲水性,在室外可以维持三个月以上,可应用于外墙自清洁涂料。而且,将该复合溶胶应用于纺织品表面,呈现出良好的甲醛降解效果。研究了不同纺织品基底的光催化降解效率,结果表明棉布由于表面具有大量的羟基组分,具有最好的甲醛降解效果。在20小时内,对室内甲醛的降解可达到70%以上,甲醛浓度低于2ppm。
     3、利用PTC体系可低温合成锐钛矿TiO_2溶胶的特性,将所制得的TiO_2溶胶作为柔性DSSC光阳极浆料的成膜助剂,引入到DSSC体系中,研究发现PTC溶胶的加入可以很好的提升所制得柔性染料敏化太阳能电池的性能。当PTC溶胶回流时间为9小时,添加量为10%(体积含量)时,所得的电池性能最好,同未加入PTC溶胶的体系相比,光电转换效率可以提高50%以上。
Titanium dioxide nanoparticles have attracted great attention in the semiconductor photocatalysis field due to its wide band gap and good stability. It has wide application for wastewater purfication, air cleaning, anti-bacteria and self-cleaning. Moreover, controllable synthesis of nanoparticles with particular structure and composition is a great research point, as the properties of nano materials can be affected by the particle sizes, morphologies and phases. However, due to the high reactivity of the titanium precursor, it is very difficult for controllable synthesis TiO_2 nanopartilces at ambient conditions. In our work, we utilized a stable water-base peroxo-titanum complex (PTC) as a precursor to controllably synthesize titanium fuctional materials at low temperature, and investigated the structures, properties as well as application as follows.
     1. We described a systemic approach for preparation of different phases and morphologies titanium dioxide nanoparticles with peroxotitanium complex (PTC) as a precursor by adjusting the system pH value at amident conditions. The pH value and molar ratio have obvious influence on the final phases. Low pH (pH ~ 0) and high H2O_2/Ti molar ratio (> 20:1) are benefit for rutile phase. There is an optimum H2O_2/Ti molar ratio for brookite formation at pH about 1. When the pH value reach to 3 or above, anatase particles are obtained whatever the [H2O_2]/[Ti] ratio is. Photocatalytic properties of different products were measured by decomposing methylene blue. The spherical anatase phase showed higher photocatalytic degradation rates for methylene blue than others. Futhermore, we described a one-step and solution (water-based) synthesis method for preparing rutile nanorods form PTC precursor at 100 oC. In this reaction process, rutile stucture is directly decided by the PTC precursor, without any transition phase. The size of the nanorods could be controlled by simply changing the concentration of the precursor. It is found that the smaller rutile nanoparticles show higher photocatalytic activity.
     2. SiO_2/TiO_2 composite sol was prepared from the PTC precursor. It showed not only high photocatalytic activity but also hydrophibility. The composite sol can be used for different architectural substrates by adding especially surfactant and assistant agent for about three months at outdoor experiment. Furthermore, the sol showed good activity formaldehyde-decomposing activity when used on texile. We discussed the photocatlytic activity on different substrates. It was proved that the cotton material shown the best activity due to its large amount of surface hydroxyl. The decomposing ctivity can reach 70% and the formaldehyde concentration was less than 2 ppm in 22 hours.
     3. The anatase TiO_2 sol prepared from Peroxotitanium Complex (PTC) at low temperature was used as the additive for photo-anode of flexible dye sensitized solar cells (DSSC). It is found that the photoelectric performance of DSSC was obviously increased by 50% with the addition of TiO_2 sol. Furthermore, we investigated the effects of the sol content and reaction time on the photoelectric performance. It is proved that there is an optimal addition value for the DSSC application. When the content (volume) of PTC sol is 10% and refluxing time reaches to 9 hours, the best photoelectric performance is obtained.
引文
[1] O.Carp, C. L. Huisman, A.Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32: 33-177.
    [2]刘尚长,光电催化化学,科学出版社,2005.
    [3]王占国,陈涌海,叶小玲,纳米半导体技术,化学工业出版社,2006.
    [4] M. A. Barteau, Organic Reactions at Well-Defined Oxide Surfaces. Chem. Rev. 1996, 96: 1413-1430.
    [5] A. Fujishima, T. N.Rao, D. A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C-Photochem. Rev. 2000, 1: 1-21.
    [6] M. Gratzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C-Photochem. Rev. 2003, 4: 145-153.
    [7]张兴华,水基涂料-原料选择、配方设计、生产工艺,中国轻工业出版社, 2000.
    [8] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode Nature 1972, 238, 37-38.
    [9] R. Wang, K. Honda, A. Fujishima, Light-induced amphiphilic surfaces. Nature 1997, 388: 431-432.
    [10] T. C. Patton, Pigment Handbook. Wiley:New York 1973.
    [11] H. Kominami, M. Kohno, Y. Kera, Synthesis of brookite-type titanium oxide nano-crystals in organic media. J. Mater. Chem. 2000, 10: 1151-1156.
    [12]杨少凤,罗薇,朱燕超,刘艳华,赵敬哲,王子忱,单一板钛矿相TiO_2微晶的制备,高等学校化学学报,2003, 24: 1933-1936.
    [13] S. J. Kim, K. Lee, J. H. Kim, N. H. Lee, S. J. Kim, Preparation of brookite phase TiO_2 colloidal sol for thin film coating. Mater. Lett. 2006, 60, 364-367.
    [14] J. H. Lee, Y. S. Yang, Synthesis of TiO_2 nanoparticles with pure brookite at low temperature by hydrolysis of TiCl4 using HNO3 solution. J. Mater. Sci. 2006, 41: 557-559.
    [15] X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, F. Pedraza, Local order in titania polymorphs. Int. J. Hydrog. Energy 2001, 26: 1279-1287.
    [16] A. S. Barnard, L. A. Curtiss, Prediction of TiO_2 nanoparticle phase and shapetransitions controlled by surface chemistry. Nano Lett. 2005, 5(7): 1261-1266.
    [17] A. S. Barnard, P. Zapol, L. A. Curtiss, Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions. Surf. Sci. 2005, 582: 173-188.
    [18] M. P. Finnegan, H. Zhang, J. F. Banfield, Phase Stability and Transformation in Titania Nanoparticles in Aqueous Solutions Dominated by Surface Energy. J. Phys. Chem. C 2007, 111: 1962-1968.
    [19] U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48: 53-229.
    [20]林华香,王绪绪,TiO_2表面羟基及其性质,化学进展,2007, 19: 665-670.
    [21] A. Imanishi, T. Okamura, N. Ohashi, R. Nakamura, Y. Nakato, Mechanism of Water Photooxidation Reaction at Atomically Flat TiO_2 (Rutile) (110) and (100) Surfaces: Dependence on Solution pH. J. Am. Chem. Soc. 2007, 129: 11569-11578.
    [22]叶锡生,彭子飞,板钛矿纳米TiO_2微晶的热分析特性研究,无机材料学报, 1997, 12: 604-608.
    [23]叶锡生,焦正宽,板钛矿基TiO_2纳米晶的结构相变和热稳定性,材料研究学报,1999, 13: 487-491.
    [24]夏天,曹望和,付姚,田莹,周立新,板钛矿相对TiO_2纳米晶相转变的影响研究,材料科学与工程学报,2005, 23: 105-108.
    [25] H. Z. Zhang, J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 1998, 8: 2073-2076.
    [26] H. Z. Zhang, J. F. Banfield, Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO_2. J. Phys. Chem. B 2000, 104: 3481-3487.
    [27] J. M. Wu, H. C. Shi, W. T. Wu, Electron field emission from single crystalline TiO_2 nanowires prepared by thermal evaporation. Chem. Phys. Lett. 2005, 413: 490-494.
    [28] S. Seifried, Nanocrystalline Titania Films and Particles by Chemical Vapor Synthesis. Chem. Vapor. Deposition 2000, 6: 239-244.
    [29] S. K. Pradhan, P. J. Reucroft, F. Yang, A. Dozier, Growth of TiO_2 nanorods by metalorganic chemical vapor deposition. J. Crys. Grow. 2003, 256: 83-88.
    [30] Y. Bessekhouad, D. Robert, J. V. Weber, Synthesis of photocatalytic TiO_2 nanoparticles: optimization of the preparation conditions. J. Photochem. Photobiol. A: Chemistry 2003, 157: 47-53.
    [31] K. D. Kim, H. T. Kim, Synthesis of TiO_2 nanoparticles by hydrolysis of TEOT and decrease of particle size using a two-stage mixed method. Powder Technol. 2001, 119: 164-172.
    [32] G. Oskam, A. Nellore, R. L. Penn, P. C. Searson, The Growth Kinetics of TiO_2 Nanoparticles from Titanium(IV) Alkoxide at High Water/Titanium Ratio. J. Phys. Chem. B 2003, 107: 1734-1738.
    [33] T. Moritz, J. Reiss, K. Diesner, D. Su, A. Chemseddine, Nanostructured Crystalline TiO_2 through Growth Control and Stabilization of Intermediate Structural Building Units. J. Phys. Chem. B 1997, 101: 8052-8053.
    [34] H. Poniatowshi, Crystallization of nanosized titania particles prepared by the sol-gel process, J. Mater. Res. 1994, 9: 2102-2104.
    [35] M. Niederberger, M. H. Bartl, G. D. Stucky, Benzyl Alcohol and Titanium Tetrachloride-A Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles. Chem. Mater. 2002, 14: 4364-4370.
    [36] P. Arnal, R. J. Corriu, D. Leclercq, P. H. Mutin, A. Vioux, A Solution Chemistry Study of Nonhydrolytic Sol-Gel Routes to Titania. Chem. Mater. 1997, 9: 694-698.
    [37] P. D. Cozzoli, A. Kornowski, H. Weller, Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO_2 Nanorods. J. Am. Chem. Soc. 2003, 125: 14539-14548.
    [38] Y. Xie, C. Yuan, Characterization and photocatalysis of Eu3+-TiO_2 sol in the hydrosol reaction system. Mater. Res. Bull. 2004, 39: 533-543.
    [39] S. K. Poznyak, A. I. Kokorin, A. I. Kulak, Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO_2 electrodes. J. Electroanal. Chem. 1998, 442: 99-105.
    [40] F. Pedraza, A.Vazquez, Obtention of TiO_2 rutile at room temperature through direct Oxidation of TiCl3. J. Phys. Chem. Solids 1999, 60: 445-448.
    [41] S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, W. I. Lee, Preparation of Size-Controlled TiO_2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films. Chem. Mater. 2003, 15: 3326-3331.
    [42] M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, Preparation of Nanosize Anatase and Rutile TiO_2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol. J. Phys. Chem. B 2002, 106: 10674-10679.
    [43] D. Zhang, Low-Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface. Adv. Mater. 2003, 15: 814-817.
    [44] C. S. Kim, B. K. Moon, J. H. Park, S. Chung, S. M. Son, Synthesis of nanocrystalline TiO_2 in toluene by a solvothermal route. J. Crys. Grow. 2003, 254: 405-410.
    [45] X. L. Li, Q. Peng, J. Xiang, Y. X. Wang, Y. D. Li, Near Monodisperse TiO_2 Nanoparticles and Nanorods. Chem–Eur. J 2006, 12: 2383-2391.
    [46] X. Gao, J. Li, W. Gao, Study on preparation of nano-TiO_2 by W/O microemulsion reactor and its photocatalytic degradation of air pollution. Colloid Journal 2008, 70: 392-395.
    [47] K. T. Lim, H. S. Hwang, W. Ryoo, K. P. Johnston, Synthesis of TiO_2 Nanoparticles Utilizing Hydrated Reverse Micelles in CO_2. Langmuir 2004, 20: 2466-2471.
    [48] C. C. Wang, J. Y. Ying, Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals. Chem. Mater. 1999, 11: 3113-3120.
    [49] K. Yanagisawa, J. Ovenstone, Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature. J. Phys. Chem. B 1999, 103: 7781-7787.
    [50] H. M. Cheng, Z. G. Zhao, L. M. Qi, Hydrothermal preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater. 1995, 7: 663-671.
    [51] M. M. Wu, G. Lin, D. H. Chen, G. G. Wang, D. He, S. H. Feng, R. R. Xu, Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystaltitanium dioxide. Chem. Mater. 2002, 14: 1974-1980.
    [52] W. Wang, B. Gu, L. Liang, W. A. Hamilton, D. J. Wesolowski, Synthesis of Rutile Nanocrystals with Controlled Size and Shape by Low-Temperature Hydrolysis: Effects of Solvent Composition. J. Phys. Chem. B 2004, 108: 14789-14792.
    [53] A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, J. P. Jolivet, Synthesis of brookite TiO_2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J. Mater. Chem. 2001, 11: 1116-1121.
    [54] M. Addamo, M. Bellardita, A. Di Paola, L. Palmisano, Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO_2 thin films. Chem. Comm. 2006, 47: 4943-4945.
    [55] S. L. Isley, R. L. Penn, Relative brookite and anatase content in sol-gel-synthesized titanium dioxide nanoparticles. J. Phys. Chem. B 2006, 110: 15134-15139.
    [56]周立君,燕姗姗,田宝柱,陈锋,张金龙,黄家祯, PET表面锐钛矿-板钛矿相TiO_2薄膜的制备及表征,物理化学学报, 2006, 22: 569-573.
    [57] S. Cassaignon, M.Koelsch, J. P. Jolivet, Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid. J. Mater. Chem. 2007, 42: 6689-6695.
    [58] C. Radhika B. I. L. Bhave, Experimental variables in the synthesis of brookite phase TiO_2 nanoparticles. Mater. Sci. Engin. A 2007, 467: 146-149.
    [59] C. Abdelkrim, M. Tomas, Nanostructuring Titania Control over Nanocrystal Structure, Size, Shape, and Organization. Eur. J. Inorg. Chem. 1999, 2: 235-245.
    [60] T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of Uniform Anatase TiO_2 Nanoparticles by Gel-Sol Method: 1. Solution Chemistry of Ti(OH)n(4-n)+ Complexes. J. Colloid Inter. Sci. 2002, 252: 339346.
    [61] T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO_2 nanoparticles by gel-sol method: 3. Formation process and size control. J. Colloid Inter. Sci. 2003, 259: 43-52.
    [62] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube. Langmuir 1998, 14: 3160-3163.
    [63] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania Nanotubes Prepared by Chemical Processing. Adv. Mater. 1999, 11, 1307-1311.
    [64]Q. Deng, M. Wei, X. Ding, L. Jiang, B. Ye, K. Wei, Brookite-type TiO_2 nanotubes. Chem. Comm. 2008, 33: 3657-3661.
    [65] A. Yu, G. Qing, J. Drennan, I. R. Gentle, Tubular Titania Nanostructures via Layer-by-Layer Self-Assembly. Adv. Func. Mater. 2007, 17: 2600-2605.
    [66] M. Wei, H. Zhou, Y. Konishi, M. Ichihara, H. Sugiha, H. Arakawa, Synthesis of Tubular Titanate via a Self-Assembly and Self-Removal Process. Inorg. Chem. 2006, 45, 5684-5690.
    [67] D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen, N. Ming, Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires and Nanobelts. Chem. Mater. 2006, 18: 547-553.
    [68] U. I. Gaya, A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C-Photochem. Rev. 2008, 9: 1-12.
    [69] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277: 637-638.
    [70] K. Tanaka, M. F. V. Capule, T. Hisanaga, Effect of crystallinity of TiO_2 on its photocatalytic action. Chem. Phys. Lett. 1991, 187: 73-76.
    [71] H. P. Maruska, A. K. Ghosh, Photocatalytic decomposition of water at semiconductor electrodes. Sol. Energy 1978, 20: 443-458.
    [72] G. Heinz, H. Adam, Photocatalytic Oxidation of Organic Molecules at TiO_2 Particles by Sunlight in Aerated Water. J. Electrochem. Soc. 1992, 139: 113-118.
    [73] R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano, R. J. D. Tilley, A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991, 92: 178-190.
    [74] A. Mills, S. K. Lee, A. Lepre, Photodecomposition of ozone sensitised by a film of titanium dioxide on glass. J. Photochem. Photobiol. A: Chemistry 2003, 155: 199-205.
    [75] D. S. Muggli; L. Ding, Photocatalytic performance of sulfated TiO_2 and Degussa P-25 TiO_2 during oxidation of organics. Appl. Catal. B: Environmental 2001, 32: 181-194.
    [76] G. Li, N. M. Dimitrijevic, L. Chen, J. M. Nichols, T. Rajh, K. A. Gray, The Important Role of Tetrahedral Ti4+ Sites in the Phase Transformation and Photocatalytic Activity of TiO_2 Nanocomposites. J. Am. Chem. Soc. 2008, 130: 5402-5403.
    [77] M. Anpo, J. M. Thomas, Single-site photocatalytic solids for the decomposition of undesirable molecules. Chem. Comm. 2006, 31: 3273-3278.
    [78] B. Notari, R. J. Willey, M. Panizza, G. Busca, Which sites are the active sites in TiO_2-SiO_2 mixed oxides? Catal. Today 2006, 116: 99-110.
    [79] W. Choi, A. Termin, M. R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98: 13669-13679.
    [80] S. T. Martin, C. L. Morrison, M. R. Hoffmann, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO_2 Particles. J. Phys. Chem. 1994, 98: 13695-13704.
    [81] M. I. Litter, J. A. Nav, Comparison of the photocatalytic efficiency of TiO_2, iron oxides and mixed Ti(IV)---Fe(III) oxides: photodegradation of oligocarboxylic acids. J. Photochem. Photobiol. A: Chemistry 1994, 84: 183-193.
    [82] K. Wilke, H. D. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol. A: Chemistry 1999, 121: 49-53.
    [83] K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, Time-resolved photo -luminescence of particulate TiO_2 photocatalysts suspended in aqueous solutions. J. Photochem. Photobiol. A: Chemistry 2000, 132: 99-104.
    [84] P. Yang, C. Lu, N. Hua, Y. Du, Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater. Lett. 2002, 57: 794-801.
    [85]N. I. AlSalim, S. A. Bagshaw, A. Bittar, T. Kemmitt, A. J. McQuillan, A. M. Mills, M. J. Ryan, Characterisation and activity of sol-gel-prepared TiO_2 photocatalystsmodified with Ca, Sr or Ba ion additives. J. Mater. Chem. 2000, 10: 2358-2363.
    [86] M. Kang, Synthesis of Fe/TiO_2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol. J. Mol. Catal. A: Chemical 2003, 197: 173-183.
    [87] M. I. Litter, J. A. Nav, Photocatalytic properties of iron-doped titania semiconductors. J. Photochem. Photobiol. A: Chemistry 1996, 98: 171-181.
    [88] Y. Yang, X. J. Li, J. T. Chen, L. Y. Wang, Effect of doping mode on the photocatalytic activities of Mo/TiO_2. J. Photochem. Photobiol. A: Chemistry 2004, 163: 517-522.
    [89] A. W. Xu, Y. Gao, H. Q. Liu, The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO_2 Nanoparticles. J. Catal. 2002, 207: 151-157.
    [90] J. A. Nav; M. I. Litter, G. N. Bianco, Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO_2 and iron(III) acetylacetonate. J. Mole. Catal. A: Chemical 1996, 106: 267-276.
    [91] W. C. Hung, Y. C. Chen, H. Chu, T. K. Tseng, Synthesis and characterization of TiO_2 and Fe/TiO_2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Appl. Surf. Sci. 2008, 255: 2205-2213.
    [92] X. Zhang, H. Meng, T. Sun, C. B. Zhou, Synthesis and Visible Response Activity of Fe3+/TiO_2 Composite Nanoparticles. Acta Metal. Sin. 2008, 44: 1394-1398.
    [93] I. Odeh, A. F. D. Lehlooh, S. H. Mahmood, X-ray diffraction and Mossbauer spectroscopy of high energy ball-milled alpha-Fe2O3/TiO_2 composite powders. Hyperfine Interact. 2008, 183: 25-29.
    [94] W. Zhou, H. G. Fu, K. Pan, C. G. Tian, Y. Qu, P. P. Lu, C. C. Sun, Mesoporous TiO_2/alpha-Fe2O3: Bifunctional Composites for Effective Elimination of Arsenite Contamination through Simultaneous Photocatalytic Oxidation and Adsorption. J. Phys. Chem. C 2008, 112: 19584-19589.
    [95] A. V. Vorontsov, E. N. Savinov, J. Zhen, Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation. J. Photochem. Photobiol. A: Chemistry 1999, 125: 113-117.
    [96] J. Li, H. C. Zeng, Preparation of Monodisperse Au/TiO_2 Nanocatalysts via Self-Assembly. Chem. Mater. 2006, 18: 4270-4277.
    [97] Valden, M.; Lai, X.; Goodman, D. W., Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281, 1647-1650.
    [98]J. H. Yang, J. D. Henao, M. C. Raphulu, Y. M. Wang, T. Caputo, A. J. Groszek, M. C. Kung, M. S. Scurrell, J. T. Miller, H. H. Kung, Activation of Au/TiO_2 catalyst for CO oxidation. J. Phys. Chem. B 2005, 109: 10319-10326.
    [99] T. Hirakawa, P. V. Kamat, Charge Separation and Catalytic Activity of Ag@TiO_2 Core/Shell Composite Clusters under UV Irradiation. J. Am. Chem. Soc. 2005, 127, (11): 3928-3934.
    [100] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293: 269-271.
    [101] J. L. Gole, J. D. Stout, C. Burda, Y. Lou, X. Chen, Highly Efficient Formation of Visible Light Tunable TiO_2-xNx Photocatalysts and Their Transformation at the Nanoscale. J. Phys. Chem. B 2004, 108: 1230-1240.
    [102] R. Vogel, P. Hoyer, H. Weller, Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors. J. Phys. Chem. 1994, 98: 3183-3188.
    [103] S. Banerjee, S. K. Mohapatra, P. P. Das, M. Misra, Synthesis of Coupled Semiconductor by Filling 1D TiO_2 Nanotubes with CdS. Chem. Mater. 2008, 20: 6784-6791.
    [104] K. Vinodgopal, P. V. Kamat, Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO_2/TiO_2 Coupled Semiconductor Thin Films. Environ. Sci. Tech. 1995, 29: 841-845.
    [105] S. G. Yang, X. Quan, X. Y. Li, Y. Z. Liu, S. Chen, G. H. Chen, Preparation, Characterization and Photoelectrocatalytic Properties of nanocrystalline Fe2O3/TiO_2, ZnO/TiO_2, and Fe2O3/ZnO/TiO_2 composite film electrodes towards pentachlorophenol degradation. Phys. Chem. Chem. Phys. 2004, 6: 659-664.
    [106] C. Minero, G. Mariella, V. Maurino, D. Vione, E. Pelizzetti, PhotocatalyticTransformation of Organic Compounds in the Presence of Inorganic Ions. 2. Competitive Reactions of Phenol and Alcohols on a Titanium Dioxide&Fluoride System. Langmuir 2000, 16: 8964-8972.
    [107] H. Park, W. Choi, Effects of TiO_2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors. J. Phys. Chem. B 2004, 108: 4086-4093.
    [108] V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Sustained production of H2O_2 on irradiated TiO_2-fluoride systems. Chem. Comm 2005, 20: 2627-2629.
    [109] M. Abdullah, G. K. C. Low, R. W. Matthews, Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem. 1990, 94: 6820-6825.
    [110] D. Zhao, C. Chen, Y. Wang, H. Ji, W. Ma, L. Zang, J. C. Zhao, Surface Modification of TiO_2 by Phosphate: Effect on Photocatalytic Activity and Mechanism Implication. J. Phys. Chem. C 2008, 112, 5993.
    [111] M. A. Behnajady, N. Modirshahla, M. Mirzamohammady, B. Vahid, B. Behnajady, Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters. J. Hazard. Mater. 2008, 160: 508-513.
    [112] G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mater. 2008, 160: 265-288.
    [113] L. H. Zhang, P. J. Li, Z. Q. Gong, X. M. Li, Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO_2 under UV light. J. Hazard. Mater. 2008, 158: 478-484.
    [114] S. Song, J. J. Tu, L. J. Xu, X. Xu, Z. Q. He, J. P. Qiu, J. G. Ni, J. M. Chen, Preparation of a titanium dioxide photocatalyst codoped with cerium and iodine and its performance in the degradation of oxalic acid. Chemosphere 2008, 73: 1401-1406.
    [115] R. Vargas, O. Nunez, The photocatalytic oxidation of dibenzothiophene (DBT). J. Mol. Catal. a-Chemical 2008, 294: 74-81.
    [116] M. V. P. Sharma, V. D. Kumari, M. Subrahmanyam, TiO_2 Supported overSBA-15: An efficient photocatalyst for the pesticide degradation using solar light. Chemosphere 2008, 73: 1562-1569.
    [117] C. W. Tsai, C. T. Chang, C. S. Chiou, J. L. Shie, Y. M. Chang, Study on the Indoor Volatile Organic Compound Treatment and Performance Assessment with TiO_2/MCM-41 and TiO_2/Quartz Photoreactor under Ultraviolet Irradiation. J. Air. Waste. Manag. 2008, 58: 1266-1273.
    [118] L. Shi, Y. Zhao, X. D. Zhang, H. J. Su, T. W. Tan, Antibacterial and anti-mildew behavior of chitosan/nano-TiO_2 composite emulsion. Korean J. Chem. Eng. 2008, 25: 1434-1438.
    [119] X. Geng, C. Filipe, R. Pelton, Antibacterial paper from photocatalytic TiO_2. Appita J. 2008, 61: 456-460.
    [120]. D. W. Sheel, L. A. Brook, I. B. Ditta, P. Evans, H. A. Foster, A. Steele, H. M. Yates, Biocidal silver and silver/titania composite films grown by chemical vapour deposition. Inter. J. Photoenergy 2008, 168: 185-196.
    [121] A. Chabas, T. Lombardo, H. Cachier, M. H. Pertuisot, K. Oikonomou, R. Falcone, M. Verita, F. Geotti-Bianchini, Behaviour of self-cleaning glass in urban atmosphere. Build. Environ. 2008, 43: 2124-2131.
    [122] A. P. Popov, J. Lademann, A. V. Priezzhev, R. Myllyla, Effect of size of TiO_2 nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J. Biomed. Opt. 2005, 10: 6-7.
    [123] S. H. Hsieh, F. R. Zhang, H. S. Li, Anti-ultraviolet and physical properties of woolen fabrics cured with citric acid and TiO_2/chitosan. J. Appl. Polym. Sci. 2006, 100: 4311-4319.
    [124] N. Onar, M. Faruk, I. Kayatekin, E. Celik, Low-temperature, sol-gel-synthesized, silver-doped titanium oxide coatings to improve ultraviolet-blocking properties for cotton fabrics. J. Appl. Polym. Sci. 2007, 106: 514-525.
    [125] G. J. M. Fechine, M. S. Rabello, R. M. Souto-Maior, The effect of ultraviolet stabilizers on the photodegradation of poly(ethylene terephthalate). Polym. Degrad. Stabil. 2002, 75: 153-159.
    [126] C. D. Jaeger, A. J. Bard, Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J. Phys. Chem. 1979, 83: 3146-3152.
    [127] G. N. Schrauzer, T. D. Guth, Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1977, 99: 7189-7193.
    [128] K. Hirano, K. Inoue, T. Yatsu, Photocatalysed reduction of CO_2 in aqueous TiO_2 suspension mixed with copper powder. J. Photochem. Photobiol. A: Chemistry 1992, 64: 255-258.
    [129] M. W. R. Malati, A. Malati, The photocatalysed reduction of aqueous sodium carbonate to carbon using platinised titania. Chem. Comm 1987, 19: 1418-1420.
    [130] S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, Nanostructured Rutile TiO_2 for Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in Water. J. Am. Chem. Soc. 2008, 130: 1568-1569.
    [131] B.O'Regan, M. Gratezel, A low-cost, high-efficiency solar cell based on dye-sensitized collidal TiO_2 films. Nature 1991, 353: 737-740.
    [132]姜春华,胡宇宁,万发荣,龙毅,染料敏化纳米晶体TiO_2太阳电池的研究和进展,中国材料科技与设备, 2007, 1: 1-4.
    [133]史成武,王孔嘉,潘旭,郭力,染料敏化纳米薄膜太阳电池中电解质的研究进展,化学通报, 2005, 68: 1-8.
    [134]林红,王宁,李建保,染料敏化太阳能电池用电解质的研究现状,世界科技研究与发展, 2006, 28: 41-45.
    [135]陈今茂,马玉涛,王桂强,王正平,周晓文,林原,李学萍,肖绪瑞,纳晶敏化太阳能电池中铂修饰对电极的一种新制法,科学通报, 2005, 50: 28-31.
    [136] M. K. Nazeeruddin, A. K. I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis- X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide J. Am. Chem. Soc. 1993, 115: 6382-6390.
    [137] C. S. Karthikeyan,; Thelakkat, M.; Willert-Porada, M., Different mesoporoustitania films for solid-state dye sensitised solar cells. Thin Solid Films 2006, 511: 187-194.
    [138]孟庆波,林原,固态纳晶染料敏化太阳能电池研究进展,新材料进展, 2006, 8: 1-4
    [139]范乐庆,吴季怀,黄昀昉,林建明,阴极修饰对染料敏化TiO_2太阳能电池性能的改进,电子元件与材料, 2003, 22: 1-3.
    [140] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. J. Am. Ceram. Soc. 1997, 80: 3157-3171.
    [141] A. Hagfeldt, S. E. Lindquist, Photoelectrochemical studies of colloidal TiO_2-films: the charge separation process studied by means of action spectra in the UV region. Sol. Energ. Mater. Sol. C. 1992, 27: 293-304.
    [142]远存达,赵颖,蔡宁,苏燕,李媛,纪伟伟,张存善,熊绍珍, TiCl4处理对TiO_2薄膜显微结构以及染料敏化太阳电池性能的影响,人工晶体学报, 2008, 37: 1132-1135.
    [143] S. Hao, Influence of TiO_2 Film Prepared by Various Techniques on the Performance of Dye-sensitized Solar Cell. 15th International Photovoltaic Science & Engineering Conference (PVSEC-15) 2005, 126-129.
    [144] P. Hoyer, Formation of a titanium dioxide nanotube array. Langmuir 1996, 12: 1411-1413.
    [145] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16: 3331-3334.
    [146] M. Adachi, Y. Murata, I. Okada, S.Yoshikawa, Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 2003, 150: G488-G493.
    [147] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Use of Highly-Ordered TiO_2 Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Lett. 2006, 6: 215-218.
    [148] J. Bandara, H. C. Weerasinghe, Enhancement of photovoltage of dye-sensitizedsolid-state solar cells by introducing high-band-gap oxide layers. Sol. Energ. Mater. Sol. Cell. 2005, 88, 341.
    [149] I. Mora-Sero, J. Bisquert, F. Fabregat-Santiago, G. Garcia-Belmonte, G. Zoppi, K. Durose, Y. Proskuryakov, I. Oja, A. Belaidi, T. Dittrich, R. Tena-Zaera, A. Katty, C. Levy-Clement, V. Barrioz, S. J. C. Irvine, Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett. 2006, 6: 640-650.
    [150] Y. Diamant, S. Chappel, S. G. Chen, O. Melamed, A. Zaban, Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell characteristics on the electronic properties of the electrode. J. Phys. Chem. B 2003, 107: 1977-1981.
    [151] H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist, A. Hagfeldt, A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett. 2001, 1: 97-100.
    [152] J. H. Yum, S. S. Kim, D. Y. Kim, Y. E. Sung, Electrophoretically deposited TiO_2 photo-electrodes for use in flexible dye-sensitized solar cells. J. Photochem. Photobiol. A-Chemistry 2005, 173: 1-6.
    [153] S. Uchida, M. Timiha, H. Takizawa, M. Kawaraya, Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. J. Photochem. Photobiol. A-Chemistry 2004, 164: 93-96.
    [154] S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO_2 photoanode. Chem. Comm. 2006, 38: 4004-4006.
    [155] F. P. Dunnington, On Metatitanic Acid and The Estimation of Ttitanium by Hydrogen Peroxide. J. Am. Chem. Soc. 1891, 13: 210-211.
    [156] J. Muhlebach, K. Muller, G. Schwarzenbach, The Peroxo Complexs of Titanium. Inorg. Chem. 1970, 9: 2381-2390.
    [157]. H. Ichinose, M. Terasaki, H. Katsuki, Synthesis of Peroxo-modified anatase sol from peroxo titanic acid solution. J. Ceram. Soc. Japan 1996, 104: 715-719.
    [158] H. Ichinose, H. Katsuki, Photocatalytic Activities of Coating Films Prepared from Peroxotitanic Acid Solution-Derived Anatase Sols. J. Ceram. Soc. Japan 1998, 106: 344-347.
    [159] H. Ichinose, H. Katsuki, Photocatalytic Activities of Films Prepared from Peroxo-Modified Anatase Sol with Added TiO_2 Powder. J. Ceram. Soc. Japan 1999, 107: 73-80.
    [160] H. Ichinose, M. Terasaki, H. Katsuki, Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate. J. Sol-Gel Sci. Techn. 2001, 22: 33-40.
    [161] X. W. Bao, S. S. Yan, F. Chen, J. L. Zhang, Preparation of TiO_2 photocatalyst by hydrothermal method from aqueous peroxotitanium acid gel. Mater. Lett. 2005, 59: 412-415.
    [162] L. Ge, M. X. Xu, Fabrication and characterization of TiO_2 photocatalytic thin film prepared from peroxo titanic acid sol. J. Sol-Gel Sci. Techn. 2007, 43: 1-7.
    [163] Y. F. Gao, Y. Masuda, Z. F. Peng, T. Yonezawa, K. Koumoto, Room temperature deposition of a TiO_2 thin film from aqueous peroxotitanate solution. J. Mater. Chem. 2003, 13: 608-613.
    [164] Y. F. Gao, Y. Masuda, K. Koumoto, Micropatterning of TiO_2 Thin Film in an Aqueous Peroxotitanate Solution. Chem. Mater. 2004, 16: 1062-1067.
    [165] Y. F. Gao, Y. Masuda, K. Koumoto, Light-Excited Superhydrophilicity of Amorphous TiO_2 Thin Films Deposited in an Aqueous Peroxotitanate Solution. Langmuir 2004, 20: 3188-3194.
    [166]吴良专,只金芳,水相一步合成锐钛矿型二氧化钛空心球,物理化学学报, 2007, 23: 1173-1177
    [167] J. M. Wu, K. Tsuru, A. Osaka, S. Hayakawa, Low-Temperature Preparation of Anatase and Rutile Layers on Titanium Substrates and Their Ability To Induce in Vitro Apatite Deposition. J. Am. Ceram. Soc. 2004, 87: 1635-1642
    [168] K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Edit. 2006, 45: 2378-2381.
    [1]A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobio. C 2000, 1: 1-21.
    [2] X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, F. Pedraza, Local order in titania polymorphs. Inter. J. Hydrogen Energ. 2001, 26: 1279-1287.
    [3] Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO_2 Nanorod Superstructures. J. Phys. Chem. C 2007, 111: 2709-2714.
    [4] M. N. Tahir, P. Theato, P. Oberle, G. Melnyk, S. Faiss, U. Kolb, A. Janshoff, M. Stepputat, W. Tremel, Facile Synthesis and Characterization of Functionalized, Monocrystalline Rutile TiO_2 Nanorods. Langmuir 2006, 22: 5209-5212.
    [5] A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, J. P. Jolivet, Synthesis of brookite TiO_2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J. Mater. Chem. 2001, 11: 1116-1121.
    [6] M. Addamo, M. Bellardita, A. Di Paola, L. Palmisano, Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO_2 thin films. Chem. Comm. 2006, 36: 4943-4845.
    [7] M. Iwasaki, C. Lee, T. Kim, W. Park, Fabrication of a plastic dye-sensitized solar cell by using the high concentration TiO_2 sol through a sol-gel process. J. Ceram. Soc. Japan 2008, 116: 153-157.
    [8] A. Testino, I. R. Bellobono, V. Buscaglia, C. Canevali, M. D'Arienzo, S. Polizzi, R. Scotti, F. Morazzoni, Optimizing the Photocatalytic Properties of Hydrothermal TiO_2 by the Control of Phase Composition and Particle Morphology. J. Am. Chem. Soc. 2007, 129: 3564-3575.
    [9] M. M. Wu, G. Lin, D. H. Chen, G. G. Wang, D. He, S. H. Feng, R. R. Xu, Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide. Chem. Mater. 2002, 14: 1974-1980.
    [10]. H. Kominami, M. Kohno, Y. Kera, Synthesis of brookite-type titanium oxide nano-crystals in organic media. J. Mater. Chem. 2000, 10: 1151-1156.
    [11] J. G. Li, T. Ishigaki, X. Sun, Anatase, Brookite, and Rutile Nanocrystals viaRedox Reactions under Mild Hydrothermal Conditions: Phase-Selective Synthesis and Physicochemical Properties. J. Phys. Chem. C 2007, 111: 4969-4976.
    [12] H. Ichinose, M. Terasaki, H. Katsuki, Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate. J. Sol-Gel Sci. Techn. 2001, 22: 33-40.
    [13] Y. F. Gao, Y. Masuda, Z. F. Peng, T. Yonezawa, K. Koumoto, Room temperature deposition of a TiO_2 thin film from aqueous peroxotitanate solution. J. Mater. Chem. 2003, 13: 608-613.
    [14] X. W. Bao, S. S. Yan, F. Chen, J. L. Zhang, Preparation of TiO_2 photocatalyst by hydrothermal method from aqueous peroxotitanium acid gel. Mater. Lett. 2005, 59: 412-415.
    [15] H. Z. Zhang, J. F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO_2. J. Phys. Chem. B 2000, 104: 3481-3487.
    [16] C. H. Wu, J. M. Chern, Kinetics of Photocatalytic Decomposition of Methylene Blue. Ind. Eng. Chem. Res. 2006, 45: 6450-6457.
    [17] M. P. Finnegan, H. Z. Zhang, J. F. Banfield, Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. J. Phys. Chem. C 2007, 111: 1962-1968.
    [18] H. Yin, Y. Wada, T. Kitamura, T. Sumida, Y. Hasegawa, S. Yanagida, Novel synthesis of phase-pure nano-particulate anatase and rutile TiO_2 using TiCl4 aqueous solutions. J. Mater. Chem. 2002, 12: 378-383.
    [19] C. C. Wang, J. Y. Ying, Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals. Chem. Mater. 1999, 11: 3113-3120.
    [20] H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, S. Yanagida, Hydrothermal synthesis of nanosized anatase and rutile TiO_2 using amorphous phase TiO_2. J. Mater. Chem. 2001, 11: 1694-1703.
    [21] X. Huang, C. Pan, Large-scale synthesis of single-crystalline rutile TiO_2 nanorods via a one-step solution route. J. Cryst. Growth 2007, 306: 117-122.
    [22] W. Wang, B. Gu, L. Liang, W. A. Hamilton, D. J. Wesolowski, Synthesis ofRutile Nanocrystals with Controlled Size and Shape by Low-Temperature Hydrolysis: Effects of Solvent Composition. J. Phys. Chem. B 2004, 108: 14789-14792.
    [23] Y. Li, J. Liu, Z. Jia, Morphological control and photodegradation behavior of rutile TiO_2 prepared by a low-temperature process. Mater. Lett. 2006, 60: 1753-1757.
    [24] Y. Gao, Y. Masuda, K. Koumoto, Light-Excited Superhydrophilicity of Amorphous TiO_2 Thin Films Deposited in an Aqueous Peroxotitanate Solution. Langmuir 2004, 20: 3188-3194.
    [25] Y. F. Gao, M. Nagai, W. S. Seo, K. Koumoto, Thick Transparent Rutile TiO_2 Films Crystallized in Solution. Langmuir 2007, 23: 4712-4714.
    [26] C. Ribeiro, C. Vila, D. B. Stroppa, V. R. Mastelaro, J. Bettini, E. Longo, E. R. Leite, Anisotropic Growth of Oxide Nanocrystals: Insights into the Rutile TiO_2 Phase. J. Phys. Chem. C 2007, 111: 5871-5875.
    [27] Y. Zhang, L. Wu, Q. Zeng, J. Zhi, An Approach for Controllable Synthesis of Different-Phase Titanium Dioxide Nanocomposites with Peroxotitanium Complex as Precursor. J. Phys. Chem. C 2008, 112: 16457-16462.
    [28] A. S. Barnard, L. A. Curtiss, Prediction of TiO_2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett 2005, 5: 1261-1266.
    [29] R. L. Penn, J. F. Banfield, Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals. Science 1998, 281: 969-971.
    [30] W. J. H. Borghols, M. Wagemaker, U. Lafont, E. M. Kelder, F. M. Mulder, Impact of Nanosizing on Lithiated Rutile TiO_2. Chem. Mater. 2008, 20, 2949-2955.
    [31] N. Mukaihata, H. Matsui, T. Kawahara, H. Fukui, H. Tada, SiOx Ultrathin Layer Coverage Effect on the (Photo)catalytic Activities of Rutile TiO_2. J. Phys. Chem. C 2008, 112: 8702-8707.
    [32] D. Wang, D. Choi, Z. Yang, V. V. Viswanathan, Z. Nie, C. Wang, Y. Song, J. G. Zhang, J. Liu, Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO_2. Chem. Mater. 2008, 20: 3435-3442.
    [33] Y. Li, Y. Fan, Y. Chen, A novel method for preparation of nanocrystalline rutile TiO_2 powders by liquid hydrolysis of TiCl4. J. Mater. Chem. 2002, 12: 1387-1390.
    [1] A. Murashkevich, A. Lavitskaya, T. Barannikova, I. Zharskii, Infrared absorption spectra and structure of TiO_2-SiO_2 composites. J. Appl. Spectro. 2008, 75: 730-734.
    [2] C. Anderson, A. J. Bard, An Improved: Photocatalyst of TiO_2/SiO_2 Prepared by a Sol-Gel Synthesis. J. Phys. Chem. 1995, 99, 9882-9885.
    [3] D. A. Panayotov, D. K. Paul, J. T. Yates, Photocatalytic Oxidation of 2-Chloroethyl Ethyl Sulfide on TiO_2&SiO_2 Powders. J. Phys. Chem. B. 2003, 107: 10571-10575.
    [4]孙姜东,徐耀,侯博,吴东, SiO_2/TiO_2催化剂的制备及其光催化性能.无机材料学报, 2008, 23: 1080-1084.
    [5] K. D. Kim, H. J. Bae, H. T. Kim, Synthesis and growth mechanism of TiO_2-coated SiO_2 fine particles. Colloids Surf. A 2003, 221: 163-173.
    [6] K. Qi, X. Chen, Y. Liu, J. H. Xin, C. L. Mak, W. A. Daoud, Facile preparation of anatase/SiO_2 spherical nanocomposites and their application in self-cleaning textiles. J. Mater. Chem. 2007, 17: 3504-3508.
    [7] J. W. Lee, S. Kong, W. S. Kim, J. Kim, Preparation and characterization of SiO_2/TiO_2 core-shell particles with controlled shell thickness. Mater. Chem. Phys. 2007, 106: 39-44.
    [8] A. A. Ismail, I. A. Ibrahim, M. S. Ahmed, R. M. Mohamed, H. El-Shall, Sol-gel synthesis of titania-silica photocatalyst for cyanide photodegradation. J. Photochem. Photobio. A: Chemistry. 2004, 163: 445-451.
    [9] M. Kang, W. J. Hong, M. S. Park, Synthesis of high concentration titanium incorporated nanoporous silicates (Ti-NPS) and their photocatalytic performance for toluene oxidation. Appl. Catal. B: Environ. 2004, 53:195-205.
    [10]王耀红,储伟,徐建春,罗仕忠, H2O_2络合凝胶法制备纳米TiO_2/SiO_2复合催化剂及其光催化性能.合成化学, 2006, 14: 388-391.
    [11] C. Xie, Q. Yang, Z. Xu, X. Liu, Y. Du, New Route to Synthesize Highly Active Nanocrystalline Sulfated Titania-Silica Synergetic Effects between Sulfate Species and Silica in Enhancing the Photocatalysis Efficiency. J. Phys. Chem. B. 2006, 110, 8587-8592.
    [12] Y. Arai, K. Tanaka, A.L. Khlaifat, Photocatalysis of SiO_2-loaded TiO_2. J. Mol. Catal. A: Chem. 2006, 243: 85-88.
    [13] H. Tada, M. Akazawa, Y. Kubo, S. Ito, Enhancing Effect of SiOx Monolayer Coverage of TiO_2 on the Photoinduced Oxidation of Rhodamine 6G in Aqueous Media. J. Phys. Chem. B. 1998, 102: 6360-6366.
    [14] H. Tada, Y. Kubo, M. Akazawa, S. Ito, Promoting Effect of SiOx Monolayer Coverage of TiO_2 on the Photoinduced Oxidation of Cationic Surfactants. Langmuir. 1998, 14: 2936-2939.
    [15] M.S. Vohra, K. Tanaka, Photocatalytic degradation of aqueous pollutants using silica-modified TiO_2. Water Res. 2003, 37: 3992-3996.
    [16] Z. Liu, X. Zhang, T. Murakami, A. Fujishima, Sol-gel SiO_2/TiO_2 bilayer films with self-cleaning and antireflection properties. Sol. Energy Mater. Sol. C. 2008, 92: 1434-1438.
    [17] M. Maeda, S. Yamasaki, Effect of silica addition on crystallinity and photo-induced hydrophilicity of titania-silica mixed films prepared by sol-gel process. Thin Solid Films. 2005, 483: 102-106.
    [18] K. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO_2/SiO_2 films. Surf. Coat. Tech. 2005, 191: 155-160.
    [19] M. Houmard, D. Riassetto, F. Roussel, A. Bourgeois, G. Berthom, J. C. Joud, M. Langlet, Enhanced persistence of natural super-hydrophilicity in TiO_2-SiO_2 composite thin films deposited via a sol-gel route. Surf. Sci. 2008, 602: 3364-3374.
    [20] S. Permpoon, M. Houmard, D. Riassetto, L. Rapenne, G. Berthom, B. Baroux, J. C. Joud, M. Langlet, Natural and persistent superhydrophilicity of SiO_2/TiO_2 and TiO_2/SiO_2 bi-layer films. Thin Solid Films. 2008, 516, 957-966.
    [21]闫金萍,甲醛及其对人体健康的危害,化学世界, 2004, 45: 558-559.
    [22]甲醛对人体有什么危害,监督与选择, 2004, 4: 4-5.
    [23] T. Noguchi, A. Fujishima, Photocatalytic degradation of gaseous formaldehyde using TiO_2 film. Environ. Sci. Technol. 1998, 32, 3831-3833.
    [24] W. H. Ching, M. Leung, D.Y. C. Leung, Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO_2 thin film for enhancement of indoor air quality.Sol. Energy. 2004, 77: 129-135.
    [25] F. Shiraishi, D. Ohkubo, K. Toyoda, S. Yamaguchi, Decomposition of gaseous formaldehyde in a photocatalytic reactor with a parallel array of light sources-1. Fundamental experiment for reactor design. Chem. Eng. J. 2005, 114: 153-159.
    [26]孙玉凤,宋颖涛,溶胶-凝胶法制备TiO_2薄膜及其对甲醛溶液的光催化性能研究,有色矿冶, 2008, 24: 33-37.
    [27]饶荣水,崔文勇,李开元,周泽,肖建军,刘凌,不同基材对二氧化钛光催化降解甲醛影响的实验研究,家电科技, 2005, 6: 62-67.
    [28]徐阳,魏取福,汪莹莹,黄锋林,朱贺, Preparation of TiO_2 Coated on Fabrics and Their Photocatalytic Reactivity.东华大学学报:英文版, 2007, 24: 333-336.
    
    [1] M.Gratzel, B.O'Regan, A low-cost, high-efficiency solar cell based on dye sensitized collidal TiO_2 films. Nature, 1991, 353: 737-740.
    [2] S.A. Haque, E. Palomares, H.M. Upadhyaya, L. Otley, R.J. Potter, A.B. Holmes, J.R. Durrant, Flexible dye sensitised nanocrystalline semiconductor solar cells. Chem. Comm., 2003, 24: 3008-3009.
    [3] S. Ito, N.L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Pechy, M.K. Nazeeruddin, M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO_2 photoanode. Chem. Comm., 2006, 38: 4004-4006.
    [4] X. Fan, F.Z. Wang, Z.Z. Chu, L. Chen, C. Zhang, D.C. Zou, Conductive mesh based flexible dye-sensitized solar cells. App. Phys. Lett., 2007, 90: 73501-73502
    [5] M.G. Kang, N.G. Park, K.S. Ryu, S.H. Chang, K.J. Kim, A 4.2% efficient flexible dye-sensitized TiO_2 solar cells using stainless steel substrate. Sol. Energy Mater. Sol. Cells, 2006, 90:574-581.
    [6] H. Lindstrom, A. Holmberg, E. Magnusson, S.E. Lindquist, L. Malmqvist, A. Hagfeldt, A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett., 2001, 1: 97-100.
    [7] T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO_2 photoelectrodes. Chem. Comm., 2007, 45: 4767-4769.
    [8] S. Uchida, M. Timiha, H. Takizawa, M. Kawaraya, Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. J. Photochem. Photobiol. A Chem., 2004, 164: 93-96.
    [9] C.S. Karthikeyan, M. Thelakkat, M. Willert-Porada, Different mesoporous titania films for solid-state dye sensitised solar cells. Thin Solid Films, 2006, 187: 511 187-194.
    [10] J.H. Yum, S.S. Kim, D.Y. Kim, Y.E. Sung, Flexible dye-sensitized solar cells using ZnO coated TiO_2 nanoparticles. J. Photochem. Photobiol. A Chem., 2005, 171: 269-173.
    [11]C. Y. Li, Y. Lin, X. P. Li, Z. P. Wang, Y. T. Ma, X. W. Zhou, S. J. Feng, X. R. Xiao, Nanocrystalline TiO_2 thin film electrodes prepared by common pressure hydrothermal method at low temperature, Chin. Sci. Bull., 2005, 50: 1449-1452.
    [12] D. S. Zhang, J. A. Downing, F. J. Knorr, J. L. McHale, Room-temperature preparation of nanocrystalline TiO_2 films and the influence of surface properties on dye-sensitized solar energy conversion, J. Phys. Chem. B, 2006, 110: 21890-21898.
    [13] D. S. Zhang, T. Yoshida, H. Minoura,Low-Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface. Adv. Mater., 2003, 15: 814-817.
    [14] T.N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka, Low temperature preparation of mesoporous TiO_2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation. J. Photochem. Photobiol. A Chem. 2004, 164: 187-191.
    [15] D.S. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, Room-temperature synthesis of porous nanoparticulate TiO_2 films for flexible dye-sensitized solar cells. Adv. Funct. Mater., 2006, 16: 1228-1234.
    [16] C.Y. Li, X.P. Li, Y.T. Ma, Z.P. Wang, X.W. Zhou, Y. Lin, S.J. Feng, X.R. Xiao, A novel nanocrystalline TiO_2 thin film electrodes prepared at low temperature. Chin. Chem. Lett., 2005, 16: 967-970.
    [17] F. Pichot, J.R. Pitts, B.A. Gregg, Lowtemperature sintering of TiO_2 colloids: Application to flexible dye-sensitized solar cells, Langmuir, 2000, 16: 5626-5630.
    [18] Y. Kijitori, M. Ikegami, T. Miyasaka, Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder-free coating of mesoscopic titania pastes. Chem. Lett. 2007, 36:190-191.
    [19] M. Iwasaki, C. Lee, T. Kim, W. Park, Fabrication of a plastic dye-sensitized solar cell by using the high concentration TiO_2 sol through a sol-gel process. J. Ceram. Soc. Jap., 2008, 116: 153-157.
    [20] J.Muhlebach, K.Muller, G.Schwarzenbach, The Peroxo Complexs of Titanium. Inorg. Chem., 1970, 9: 2381-2390.
    [21] H. Ichinose, M. Terasaki, H. Katsuki, Properties of peroxotitanium acid solutionand peroxo-modified anatase sol derived from peroxotitanium hydrate. J. Sol-Gel Sci. Tech., 2001, 22: 33-40.
    [22] Zhang Y, Zeng Q. H, Wu L Z, Zhi J F, An Approach for Controllable Synthesis of Different-Phase Titanium Dioxide Nanocomposites with Peroxotitanium Complex as Precursor [J], J. Phy. Chem. C, 2008, 117: 16457-16462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700