二氧化钛薄膜电极光电催化降解有机农药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药废水因毒性大、浓度高和组分复杂,成为废水治理难题之一。半导体TiO_2是一种高效的光催化剂,具有很强的氧化能力,在紫外光辐射下,它能将空气中和水中的有机污染物降解为CO_2和H_2O,无二次污染,已引起研究者的极大关注。但普通粉体TiO_2催化剂存在电荷分离效率差、光催化活性低、不易回收等缺点,致使它的工业应用受到限制。光电催化技术是一种通过施加外加电压,将光激发半导体产生的光生电子迁移到对电极上,减少光生电子-空穴的复合,从而提高光催化活性的新技术。它集光电技术于一体,在降解有机污染物等环境污染治理方面已显示出广泛的应用前景。本文应用光电催化技术,主要围绕TiO_2光催化薄膜电极的制备和改性展开研究,以高效氯氰菊酯(BEC)和辛硫磷为目标降解物,评价所制薄膜电极的光电催化活性,揭示光电催化降解规律,具体研究工作如下:
     1.薄膜电极的制备研究
     以泡沫镍为载体,采用溶胶-凝胶法分别研究了TiO_2及Ce~(4+)/TiO_2薄膜电极的制备方法。以钛酸丁酯[Ti(OC_4H_9)_4]为前驱体,无水乙醇为溶剂,乙酰丙酮为络合剂,聚乙二醇[(PEG)400]为致孔剂,以冰醋酸为抑制剂,制得TiO_2溶胶;通过浸渍提拉技术在泡沫镍基体上制备了所需的TiO_2膜层;将镀好的电极置于马福炉中,500℃下保温2h,随炉冷却至室温即制得TiO_2薄膜电极。制备Ce~(4+)/TiO_2薄膜电极,只需向上述TiO_2溶胶中添加一定量的硫酸高铈Ce(SO_4)_2·4H_2O,制备出掺杂不同摩尔浓度n(Ce~(4+))/n(TiO_2)的薄膜电极,记作:n%Ce~(4+)/TiO_2薄膜电极。
     2.TiO_2薄膜电极光电催化性能研究
     利用自行设计的光电催化反应装置,使用三电极体系(以光催化薄膜电极为工作电极(WE),饱和甘汞电极(SCE)为参比电极(RE),铂电极为对电极(CE)),125W高压汞灯为光源,使用CHI600b电化学工作站较为系统地研究了TiO_2薄膜电极的光电催化性能,探讨了影响光电催化反应的各种因素,确定最佳降解条件,并对光电催化过程进行动力学分析。
     (1)选择BEC为实验对象,研究了TiO_2薄膜电极的光电催化活性。结果表明,当煅烧温度为500℃、镀膜层数为5层、BEC初始浓度为45mg·L~(-1),初始pH 6.08、NaCl浓度为0.01mol·L~(-1)、外加电压为0.6V(vs.SCE)时,反应120min,BEC的降解率可达80.3%,COD去除率达71.6%。降解过程服从Langmuir-Hinshehwood动力学模型,在较低质量浓度(≤90mg·L~(-1))下,光电催化降解过程为一级反应,并求得Langmuir速率常数k_0=2.166 mg·(L·min)~(-1),吸附常数K=2.214×10~(-2)L·mg~(-1)。
     (2)选择辛硫磷为实验对象,通过考察COD的变化,研究了TiO_2薄膜电极的光电催化性能。结果表明,当煅烧温度为500℃、镀膜层数为5层、辛硫磷初始浓度为70mg.L~(-1)、初始pH6.25、NaCl浓度为0.01mol·L~(-1)、光源为125W高压汞灯、外加电压为0.6V(vs.SCE)时,降解120min,辛硫磷溶液的COD去除率达63.6%。
     3.Ce~(4+)/TiO_2薄膜电极光电催化性能研究
     选择BEC为实验对象,使用三电极体系(以光催化薄膜电极为工作电极,饱和甘汞电极为参比电极,铂电极为对电极),分别用125W高压汞灯及25W日光灯作为辐射光源,对Ce~(4+)/TiO_2薄膜电极光电催化性能进行较为系统的对比研究。结果表明,当Ce~(4+)掺杂量0.5%(摩尔分数)、镀膜层数为5层、煅烧温度450℃、BEC初始浓度为45mg·L~(-1)、初始pH6.01、NaCl浓度为0.01mol·L~(-1)、光源为125W高压汞灯、外加电压为0.1V(vs.SCE)时,120min BEC降解率达到92.1%;保持其他条件不变,光源改为25W日光灯,选用TiO_2薄膜电极为工作电极时,120min BEC降解率只有3%,而用0.5%Ce~(4+)/TiO_2薄膜电极时,120min BEC降解率可以达到73%。
Due to high toxicity, high concentration and complicated composition of wastewater from manufacturing agrochemicals, its treatment and purification have become one of the biggest challenges.As a semiconductor oxides, TiO_2 is a photocatalyst that shows high photoefficiency and oxidation activity. TiO_2 has become a hot research area because it can decompose organic pollutants into CO_2 and H_2O in gases and liquids. The TiO_2 photo-oxidation process, however, has not been widely applied due to, for instance, low electron transfer rate to oxygen and high recombination rate of electron-hole pairs and, thus, low photo-oxidation rate of organic compounds on the catalyst surface.Photoelectrocatalysis is a method that applied the bias potential to take away the photoelectrons and decrease the combination of electronholes. So the method can increase the photoeeffciency evidently. Rare earth doped on the photocatalytic activities of TiO_2 was investigated. As the model pollutant of Beta-cypermethrin(BEC) and phomix to evaluate the photoelectrocatalysis activity of thin-film electrodes, the experimental results were as follows:
     1. Preparation of thin-film electrodes
     TiO_2 and Ce~(4+)/TiO_2 thin-film electrodes were successfully prepared on foam nickel substrates by sol-gel technique. TiO_2 sols were prepared with Ti(OC_4H_9)_4 as precusor, alcohol as solvent, acetylacetone as complexation, polyethylene glycol(PEG400) as pore-forming agent, glacial acetic acid as inhibiting agent. The needed TiO_2 films on substrate of nickel foam were prepared via a sol-gel dip-coating method. TiO_2 thin-film electrode was obtained by annealing the deposited coatings for 2h at 500℃. It was found that TiO_2 films were stabile. Meanwhile, it was also showed that photoproduction current of Ce~(4+)/TiO_2 films electrode increased obviously by single sweep voltammetry measurements.
     2. Photoelectrocatalytic activities of TiO_2 films
     A new photoelectrocatalytic reactor was designed,in which 125W mercury lamp was used as light source,and CHI600b used as power. A three-electrode system was used, in which photoelectrochemical thin-film electrode was used as working electrode(WE), Pt electrode as counting electrode(CE) and a saturated calomel electrode(SCE) as the reference electrode(RE). The photoelectrocatalysis activities of TiO_2 films were evaluated by the photoelectrodegradation of BEC and phomix, and the effects of various conditions on the photoelectrocatalytic characteristics were investigated. The experimental results were as follows:
     (1)BEC was choosed as the target. The experimental results showed that when heat-treated temperature was 500℃, the film layers was 5, concentration of BEC was 45mg·L~(-1),initial pH was 6.08, concentration of NaCl concentration was 0.01mol·L~(-1), potential was 0.6V(vs. SCE), degradation rate and COD removal were 80.3% and 71.6% in 120min, respectively. The results showed that the degradation reaction of the BEC almost followed Langmuir-Hinshehwood model, and the photoelectrocatalysis reaction is a first-order reaction at lower concentration ((?)90mg·L~(-1)). The reaction rate constant k_0 and the absorption constant K were determined to be 2.166 mg·(L·min)~(-1) and 2.214×10~(-2) L·mg~(-1), respectively.
     (2)Phomix was choosed as the target. Photoelectrocatalytic activities of TiO_2 electrode was evalued by COD removal efficiency.It's found that when heat-treated temperature was 500℃, concentration of phomix was 70mg·L~(-1),the film layers was 5, initial pH was 6.25, concentration of NaCl was 0.0lmol·L~(-1), potential was +0.6V(vs. SCE), COD removal was 63.6% in 120min.
     3. Photoelectrocatalytic activities of Ce~(4+)/TiO_2 films
     BEC was chosen as the research object.A three-electrode system was used,in which the photoelectroncatalytic thin-film electrode was used as working electrode, Pt electrode as counting electrode and a saturated calomel electrode as the reference electrode. Photoelectrocatalytic activities were evalued by 125W mercury lamp and 25W fluorescent lamp as light source, respectively.The results showed that when doping amount of Ce~(4+) was 0.5%(molar fraction), heat-treated temperature was 450℃, the film layers was 5, concentration of BEC and NaCl were 45mg·L~(-1) and 0.01mol·L~(-1) respectively,initial pH was 6.01, 125W mercury lamp as light source, potential was +0.1V(vs. SCE), degradation rate of BEC was 92.1% in 120 min.Compareing to 25W fluorescent lamp as light source with the same other conditions, the degradation rate of BEC by using TiO_2 films was 3% in 120min. When Ce~(4+)/TiO_2 films was used, however,the rate was even reached 73% in 120min.
引文
[1] 邱宇平,陈金龙,张全兴.农药生产废水处理方法资源化技术[J].环境污染治理技术与设备,2003, 4(9):63-67.
    
    [2] 闫海生,孙晓艳.催化技术在农药废水处理中的应用进展[J].农药论坛,2006,1(4):9-12.
    
    [3] 矫彩山,彭美嫒,中伟等.我国农药废水的处理现状及发展趋势[J].农药,2007,46(2):77-80.
    
    [4] 胥维昌.农药废水处理[M].北京:化学工业出版社,2003:6-141.
    
    [5] Lin C Y. Aerobic Treatment of Pesticide-plant Wastewater[J]. Biological Wastes, 1990, 34(4): 301-302.
    
    [6] Gapta M. Proc Aunu Meet-Air. Waste Manage Asso, 1994,87(13): 14.
    
    [7] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconducting n-type TiO_2 electrode [J], Nature, 1972,238:37-38.
    
    [8] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension [J], Bull. Environ. Contam. Toxicol, 1976.16:697-701.
    
    [9] 李琳.多相光催化在水污染治理中的应用[J],环境科学进展,1994,2(6):23-31.
    
    [10] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. Phys. Chem., 1977,81:1484-1488.
    
    [11] Dong H K, Anderson A. Photoclectrocatalytic degradation of formic acid using a porous TiO_2 thin-film electrode[J]. Enviom. Sci. Technol., 1994,28 (10):479-483.
    
    [12] Butterfield M, Christensen P A, Curtis T P et al.Water disinfection using an immobilesed titanium dioxide film in a photochemical reactor with electric field enhancement[J].Water Reserch,1997,31(3): 675-677.
    
    [13] Vinodgopal K, Hotchandani S, Kamat P V. Electrochemically Assisted Photocatalysis TiO_2 Particulate Film Electrodes for Photocatalytic Degradation of 4-Chlorrophenol[J]. Phys Chem, 1993, 97(35): 9040.
    
    [14] Byrne J A, Brian R E, William Byers etal. Photoelectrochemical cell for the combined photocatalytic oxidation of organic pollutants and the recovery of metal from waste waters[J]. Applied Catalysis B: Environmental, 1999,20 (3): L85-L89.
    
    [15] 冷文华,张昭,成少安等.直接热氧化制备氧化钦薄膜电极的研究Ⅰ:制备、结构和电化学性质[J]. 化学物理学报,2001,14(6):705-710.
    
    [16] 刘惠玲,周定,李湘中等.网状Ti/TiO_2电极光电催化氧化若丹明B[J].环境科学,2002,23(4):47-51.
    
    [17] 樊彩梅,郭向丹,梁镇海等.TiO_2薄膜光电极的制备及光电催化性能[J].稀有金属材料与工程,2005, 34(3):409-412.
    
    [18] 刘亚子,孙成,洪军.TiO_2光电催化技术降解有机污染物研究进展[J].环境科学与技术,2006,29(4): 109-112.
    
    [19] 袁恒,胡波,任沁峰.纳米RuO_2-TiO_2光电催化处理农药废水研究[J].环境工程学报,2007,1(7):??29-34.
    
    [20] 樊美公.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001.
    
    [21] Pier R C, Sara M. A model for interfacial electron transfer on colloidal melanin[J]. Photochemisty and Photobiology,1999,50(2):119-123
    
    [22] 沈伟韧,赵文宽,贺飞等.TiO_2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4): 349-361.
    
    [23] Linsebigler A. Photocatalysis on TiO_2 Surface Priciples Mechanisms and Selected Results [J]. Chem. Rev, 1995,95:735-746.
    
    [24] 张彭义,余刚,蒋展鹏等.半导体光催化剂及其改性技术进展[J].环境科学进展,1997,5(3):1-5.
    
    [25] 陶跃武,赵梦月,陈士夫.有机物的光催化降解.太阳能学报,1995,16:234-237.
    
    [26] 成英之,纳米TiO_2粉体和复合TiO_2膜的制备及其光催化性能,暨南大学硕士论文,2000.
    
    [27] Zhu C M, Wang L Y, Kong L et al. Photocatalytic degradation of AZO dyes by supported TiO_2+UV in aqueous solution. Chemosphere, 2000,41(7):303-309.
    
    [28] Matthews R W, McEvoy S R. Photocatalytic degradation of phenol in the presence of near UV illuminated titanium dioxide[J], Photochem. Photobilo., A: Chem. 1992,64(6): 231-246.
    
    [29] 李桂云,马江权,栗洪道等.在薄膜TiO_2/r-Al_2O_3和粉末TiO_2上光催化降解苯酚的研究.高校化学 工程学报,2001,15(2):187-190.
    
    [30] Rodriguez J, Gomez M, Niklasson G A. Sputter-deposited Ti oxide films used for photoelectrocatalytic degradation of 4-chlorophenol. Journal of Materials Science, 2001,36(2):3699-3705.
    
    [31] Rodriguez J, Gomez M., Lindquist S. E., Granqvist C. Cx. Photo-electrocatalytic degradation of 4-chlorophenol over sputter deposited Ti oxide films. Thin Solid Films, 2000,360(6): 250-255.
    
    [32] Christensen P A., Eameaim J, Hamnett A. In situ FTIR studies of the photoelectrochemical behaviour of thermal TiO_2 films as a function of temperature. Phys. Chem.Chem. Phys., 1999,40(1): 5315-5321.
    
    [33] 符小荣,张校刚,宋世庚等.TiO_2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解.应用化 学,1997,14(8):77-79.
    
    [34] Waldner C, Pourmodjib M., Bauer R. et al. Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes. Chemosphere, 2003,50:989-998.
    
    [35] Mohapatra S K. A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water [J]. Catalylysis, 2007,28 (10):262-269.
    
    [36] Rothenberger G, Moser J, Gratzel M et al. Charge carrier trapping and recombination dynamics in small semiconductor particles[J].Am. Soc, 1985,107(26): 8054-8059.
    
    [37] Fojtik A, Weller H, Koch U et al. Photo-chemistry of colloidal metal sulfides-part 8. photo-physics of extremely small CdS particles: Q-state Cds and magic agglomeration numbers. Ber. Bunsenges.??Phys.Chem.,1984, 88(10): 969-977.
    
    [38] Faust B C, Zepp, R G Photochemistry of aqueous iron (Ⅲ)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol., 1993,27(12): 2517-1522.
    
    [39] Zuo Y, Hoigne J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(Ⅲ xalato complexes. Environ. Sci. Technol., 1992,26:313.
    
    [40] Bickley R, Carreno T G, Lees J. A spectral investigation of titanium dioxide photocatalysts. J. Solid State Chem., 1991,92:178-190.
    
    [41] 安太成,何春,朱锡海等.三维电极电助光催化降解直接湖蓝水溶液的研究.催化学报,2001,22(2): 193-197.
    
    [42] 邓南圣,吴峰.环境光化学[M].化学工业出版社,2003.
    
    [43] Roberto J, Candal. Effect of pH and applied potential on photocurrent and oxidation rate of saline solution of formic acid in a photoelectrocatalytic reactor[J]. Environ. Sci. Technol., 2000, 34: 3443-3541.
    
    [44] Li X Z, Liu H L, Yue P T et al. Photoelectocatalytic oxidation of rose bengal in aqueous solution using a Ti/ TiO_2 mesh electrode[J]. Environ. Sci. Technol., 2000,34(20): 4401- 4406.
    
    [45] Bahnemann D, Goslich R. Mechanistic studies of water detoxification in illuminated TiO_2 suspensions[J]. Sol. Energy Mater. 1991,24:563-583.
    
    [46] 时桂杰.光催化氧化处理水中污染物的研究现状及发展趋向[J].环境科学与技术,1998,3:1-4.
    
    [47] Rodgers J D, Bunce N J. Electrochemical Treatment of 2,4,6-trinitrotoluene and related compounds[J]. Environ. Sci.Technol., 2001,35:406-410.
    
    [48] Jin Luo, Maria Hepel. Photoelectrochemical degradation of naphthol blue black diazo dye WO_3 film electrode[J]. Electrochimica Acta, 2001,46(19): 2913-2922.
    
    [49] Calvo M E, Candal R J, Bilmes S A. Photooxidation of organic mixtures on biased TiO_2 films[J]. Environ. Sci. Technol., 2001,35:4132-4138.
    
    [50] Okamoto K, Yamamoto Y, Tanaka H. Bull. Chem. Soc. Jpn, 1985,58:2023.
    
    [51] Bahnemann D, Bockelmann D, Goslich R., Solar Energy Mater., 1991,24: 504.
    
    [52] 韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展,1999,1(1):1-10.
    
    [53] Patrick B, Mat P V. TiO_2 photosensitized investigation of thionine[J]. Phys. Chem, 1992,96: 1473-1478.
    
    [54] Ashokkumar M, Maruthamuthu P. Prepartion and characterization of doped WO_3 photocatalyst powders[J]. Mat. Sci. 1989,24(6): 2135-2129.
    
    [55] Ishibashi K, Fujishima A, Watanabe T, Hashimoto K. Quantum yields of active oxidative species formed on TiO_2 photocatalyst[J]. Photochem. Photobiol. A: Chem.:134-139.
    
    [56] Gratzel M, Russell F H. Electron paramagnetic resonance studies of doped TiO_2 collids[J]. Phys Chem,1994, 98(51): 13669-13679.
    
    [57] Chun W J. Polarization-dependent total-reflection fluorescence XAFS study of Mo oxides on a rutile TiO_2 single crystal surface[J]. Phys Chem B, 1998,102(45): 9006-9014.
    
    [58] Ranjit K T. Iron (Ⅲ) phthalocyanine-modified titanium dioxide: a novel photocatalyst for the enhanced photodegradation of organic pollutants[J]. Phys Chem B, 1998,102(47): 9397-9403.
    
    [59] Choi W. The role of metal ion dopants in quantum sized TiO_2 correlation between photo-reactivity and charge carrier recombination dynamics[J]. Phys Chem, 1994,98 (51): 13669-13679.
    
    [60] Idriss B, Prashant V. K. Capped semiconductor colloids: synthesis and photo electronchemical behavior of TiO_2-capped SnO_2 nanocrystallites and its role in photocatalytic degradation of a textile azo dye[J]. Phys.Chem., 1995,99:9182-9188.
    
    [61] Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of azo dye using SnO_2/TiO_2 coupled semiconductor thin films[J]. Environ. Sci. Technol. 1995,29(3):841-845.
    
    [62] Vinodgopal K, Bedja I, Prashant V K. Nanostructured semiconductor films for photocatalysis [J] .Chem. Mater.,1996,8:2180-2183.
    
    [63] 邵颖,薛宽宏,何春建等.TiO_2纳米管的光催化降解SDBS实验[J].南京师大学报,2002,25: 116-118.
    
    [64] 邵颖,薛宽宏.TiO_2纳米管的光催化作用[J].应用化学,2003,20:433-436.
    
    [65] 孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002:28-30.
    
    [66] 李芳柏,古国榜,万洪富.多相光催化法在水处理上的应用简介[J].重庆环境科学,1998, 20(5):18-21.
    
    [67] Song Q,Qu J H. Mechanism and kinetics of 2-chlorophenol degradation in drinking water by photo-electrochemical synergic effect[J]. Science in China (Series B),2003,46(3): 259-270.
    
    [68] Li X Z,Li F B,Fan C M et al. Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO_2 mesh photoelectrode[J]. Water Research,2002,36:2215-2224.
    
    [69] Sun C C, Chou T C. Electrochemically promoted photocatalytic oxidation of nitrite ion by using rutile form of TiO_2/Ti electrode[J]. Journal of Molecular Catalysis A:Chemical, 2000,151:133-145.
    
    [70] Byrne J A,Eggins B R. Photoelectrochemistry of oxalate on particulate TiO_2 electrodes[J]. Electroanalytical Chemistry, 1998,457:61-72.
    
    [71] Vinodgopal K, Bedja I, Kamat P V. . Photoelectronchemical behavior of SnO_2/TiO_2 composite systems and its role in photocatalytic degradation of a textile azo dye [J]. Chem. Mater., 1996,8:2183-2187.
    
    [72] Toshiya W, Shigemichi F, Masahiro M. Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO_2 Thin Film Prepared by Sol-Gel Process on a Soda-Lime Glass[J]. Sol-gel sci Tech, 2000, 19:71-76.
    
    [73] Wu X H, Jiang Z H, Liu H L el al.Photo-catalytic activity of titanium dioxide thin films prepared by micro-plasma oxidation method[J]. Thin Solid Films, 2003,441:130-134.
    
    [74] Alam M J, Cameron D C. Preparation and Characterization of TiO_2 Thin Films by Sol-Gel Method[J]. Jo Sol-Gel Sci Tech, 2002,25:137-145.
    
    [75] 曹亚安,黄英,陈咏梅等,TiO_2纳米粒子膜的制备、表面态性质和光催化活性[J].催化学报,1999, 20(3):353-355.
    
    [76] Karthikeyan A, Rui M, Almeida. Crystallization of SiO_2-TiO_2 glassy films studied by atomic force microscopy[J]. Non-Cryst Solids .2000,274:169-174.
    
    [77] 刘惠玲,李宣东,姜兆华等.固定态TiO_2薄膜制备及光催化氧化性能研究[J].哈尔并工业大学学 报,2004,36(1):79-83.
    
    [78] Andrew M, Nicholas E, Ivan P P et al. Novel TiO_2 CVD films for semiconductor photocatalysis[J]. Photochem Photobio A. 2002,151:171-179.
    
    [79] 冷文华,张昭,成少安等.直接热氧化制备氧化钛薄膜电极的研究[J].化学物理学 报,2001,14(6):705-710.
    
    [80] 曹亚安,黄英,陈咏梅等.TiO_2纳米粒子膜的制备、表面态性质和光催化活性[J].催化学报,1999, 20(3):353-355.
    
    [81] Sopyan I, Watanabe M, Murasawa S et al. A film-type photocatalyst incorporating highly active TiO_2 power and fluororesin binder: photocatalytic activity and long-term stability[J]. Electroanalytical Chem., 1996,415 (1-2): 183-186.
    
    [82] 段仁官,梁开明,固守仁.TiO_2对粉煤灰玻璃晶化影响的研究[J].玻璃与搪瓷,1996,25(3):1-5.
    
    [83] 郭向丹,苯酚在固定态TiO_2上光电催化降解的研究,硕士学位论文[D].太原理工大学.2003:92
    
    [84] 姚秉华,李姗姗,赵青等.TiO_2薄膜光催化降解次甲基蓝的研究[J].纺织高校基础科学学 报,2004,17(3):235-238.
    
    [85] 张宏坤,杨卫军,田波等.玻璃纤维网上TiO_2薄膜光催化剂制备及性能研究[J].西安理工大学 学报,2003,19(3):265-268.
    
    [86] 杨莉,姚秉华,吴少林.TiO_2光催化剂的改性研究[J].环境科学与技术,2004,27(6):76-78.
    
    [87] 杨莉,姚秉华,吴少林.Ce~(4+)掺杂和燃料结构对TiO_2光催化性能的影响[J].水处理技术,2005, 31(3):49-52.
    
    [88] 姚秉华,王理明,余晓皎.RuO_2/TiO_2复合光催化剂的制备及其性能研究[J].光谱学与光谱分 析,2005,25(6).
    
    [89] 杨丽芹.CdS/TiO_2/FP复合光催化剂的制备[D].西安:西安理工大学,2006:62.
    
    [90] 姚秉华,郑怀礼,杨丽芹.CdS/TiO_2/漂珠复合光催化剂制备及其降解高效氯氰菊酯研究[J].光 谱学与光谱分析,2007,27(5).
    
    [91] 张荣.复合光催化剂的制备及其在农药废水中的应用研究[D].西安:西安理工大学,2007:64.
    
    [92] 程传煊.表面物理化学[M],北京:科学技术文献出版社,1995:303.
    
    [93] 余锡宗,王桂华,罗衍庆等.二氧化钛纳米微粒的制备与光催化活性[J].化学研究与应 用,2000,12(1).
    
    [94] The Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. CDC. US. http://www.cdc.gov/niosh/rtecs/gz.
    
    [95] 程家安,唐振华.昆虫分子科学[M].北京:科学出版社,2001.12.
    
    [96] 孟紫强.环境毒理学[M].北京:中国环境科学出版社,2000.8.
    
    [97] 何导天.COD测试方法分析及若干问题探讨[J].广东化工,2005,32(5):50-52.
    
    [98] 姚秉华,王理明,余晓皎等.RuO_2/TiO_2复合光催化剂的制备及性能研究[J].光谱学与光谱分析 2005,25(6):934-937.
    
    [99] MichaelL H. Studies of TiO_2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol[J]. Journal of Electro- analytical Chemistry, 2002, 538:165-172.
    
    [100] 杜琳,吴进,李桂英等.光电催化降解活性艳红K-2BP中电解质NaCl和Na_2SO_4的作用研究[J]. 化学学报,2006,64(24):2486-2490.
    
    [101] 施利毅,李春忠,房鼎业等.气相合成二氧化钛超细粒子光催化活性艳红X-3B脱色的研究[J].太 阳能学报,2000,21(1):100-105.
    
    [102] 姜艳丽,刘惠玲,姜兆华等.TiO_2/Ti光电催化体系中羟自由基的测定[J].材料科学与工艺,2006,14 (2):162-164.
    
    [103] Kakuta N, Park K H, Jinlayson M F et al. Photoassisted hydrogen production using visible light and coprecipitated ZnS-CdS without noble metal[J]. Phys Chem,1985,89:732-741.
    
    [104] Choi W.Tennin A,Hoffmann M R. The role of metal ion dopants in quantum-sized TiO_2:correlation between photoreactivity and charge carrier recombination dynamics[J]. Phys Chem,1994,98: 13669-13674.
    
    [105] 岳林海,徐铸德.半导体的表面修饰与其光电化学应用[J].化学通报,1998,9:28-34.
    
    [106] 岳林海,水淼,徐铸德等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报,2000,1.27(1): 69-74.
    
    [107] Rodriguez T R, Vargas S,Aarroyo M R et al.Modification of the phase transition temperatures in titania doped with various cations[J].Mater Res,1997,12:439-442.
    
    [108] 王君,郭宝东.TiO_2光催化降解农药的研究进展[J].现代农药,2004,3(2):1-4.
    
    [109] 糜岚.掺杂二氧化钛纳米颗粒膜的制备及其可见光催化特性和机理研究[D],上海:复旦大 学,2007:72
    
    [110] 水森,岳林海,徐铸德.稀土润掺杂二氧化钛的光催化特性[J].物理化学学报,2000,16(5):459-463.
    
    [111] 岳林海.稀土元素掺杂二氧化钛催化剂光解久效磷的研究[J].上海环境科学,1998,17(9):17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700