新型色谱介质的制备及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
色谱介质对于色谱分离至关重要,是实现有效分离的关键,开发、研制新型色谱介质具有重要的现实意义。因此,本论文以新型色谱介质的合成为主要研究内容,并深入研究了它们作为色谱介质的结构和性能研究。
     采用自制亚微米级硫酸钠颗粒为固体致孔剂,环己醇和十二醇为液体致孔剂,甲基丙烯酸缩水甘油酯及二甲基丙烯酸乙二醇酯分别为单体和交联剂,通过原位聚合法合成了一种高渗透性整体柱分离介质。经二乙胺修饰后,制备了阴离子交换模式的介质。与不加硫酸钠颗粒合成的整体柱相比,这种超大孔整体柱介质对蛋白质保持高吸附容量的同时,柱效及渗透性都有了很大的提高。
     在成功合成高渗透性整体柱的基础上,为了提高介质的吸附容量,在整体柱孔道表面接枝带有功能团的聚合物长链,经二乙胺修饰后,得到了触须式阴离子交换模式的介质。介质经过接枝后,动态吸附容量比接枝前提高了2倍多,并且吸附容量不受流速影响。由于亲水性聚合物长链的存在,使蛋白质的传质阻力增加,柱效略有降低,但仍然具有较高的渗透性,显示了良好的应用性能。
     采用溶胶-凝胶模板法,利用自制琼脂糖凝胶球为模板、异丙醇钛为钛源合成了多孔二氧化钛微球。并通过详细考察模板、矿化时间、矿化次数、煅烧温度等因素,获得最佳合成条件。然后,将合成的二氧化钛微球装柱,进行色谱性能测试,考察了其机械强度、柱效及分离性能。通过对二氧化钛微球的色谱性能评价,发现其能够对分子结构差异比较小的碱性化合物基线分离,并且峰对称性很好,表现了良好的分离性能。
     在此基础上,在琼脂糖凝胶球内引入碳酸钙颗粒,通过溶胶凝胶-固相反应法合成了大孔钛酸钙微球。合成反应中,碳酸钙颗粒既是大孔致孔剂,也是生成钛酸钙的一种反应原料。实验中,详细考察了碳酸钙含量和温度对大孔钛酸钙微球的机械强度、孔道分布及比表面积等的影响。选择优化条件下合成的大孔钛酸钙微球进行色谱测试,与二氧化钛介质比较,显示其对碱性化合物非特异性吸附低,具有作为色谱介质的良好潜力价值。
The heart of a chromatographic separation process is the chromatographic media, and the key step to improve the separation technique is the development of chromatographic media. Therefore, the thesis focuses on the fabrication and characterization of novel media for chromatography.
     The details in this work are summarized as follows:
     A novel macroporous poly(glycidyl methacrylate-ethylene glycol dimethacrylate) monolith (MLS) was synthesized by in situ polymerization with customized solid granules of Na2SO4 and liquid solvent as co-porogen. After functionalized with diethylamine, an anion-exchanger monolith was obtained. Compared with the conventional monolith (ML) using organic solvents only as a porogen, the improved monolith (MLS) showed higher column efficiency and column permeability without obviously decreasing the dynamic binding capacity of protein. It is considered that the superpores introduced by the solid granules play an important role for the improvement of the monolith performance.
     To enhance the binding capacity of protein to the adsorbent, poly(glycidyl methacrylate-diethylamine) tentacles were grafted onto the pore surface of the macroporous monolith using ceric ammonium nitrate as a imitator. This further increased the dynamic binding capacity of BSA to 74.7 mg/ml, about three times higher than that of the monolith without the grafted tentacles. The grafted chains on the pore surface would hinder protein mass transfer, leading to the decrease of column efficiency. Despite this unfavorable effect, the grafted monolith still exhibited high permeability.
     Porous titania beads were synthesized by a sol-gel-templating method using agarose gel as template. The dipping time and repeated mineralization cycle played the important roles in the diffusion of the titanium precursors into templates and the maintenance of porous structure of the resultant titania beads. Calcination temperature affected the size and phase state of titania nanocrystals, specific surface area, pore volume and porosity. By control of these factors, it was possible to fabricate porous titania beads of 7 to 150μm in mean diameter. Larger-sized titania beads could be easily produced by using larger-sized agarose gel. Finally, flow hydrodynamics, column efficiency and separation performance were studied using the column packed with the optimized titania beads of 15μm. The results indicate that the porous titania beads had excellent mechanical stability, and the column exhibited high column efficiency and good separation performance of three aniline derivatives. Compared with other approaches to the fabrication of titania beads, the present strategy provides a readily controllable procedure for the preparation of well-defined beads of various sizes determined by the initial templates, so it may open a new way to the fabrication of well-defined inorganic beads with tailored properties for HPLC packings.
     Macroporous calcium titanate beads were fabricated through sol-gel mineralization of agarose gel entrapping calcium carbonate and subsequent heating treatment. In the reaction process, calcium carbonate was applied not only as porogen, but also as calcium source in the synthesis of calcium titanate material. The pore size distribution, porosity, specific surface area of final materials can be controlled by the temperature and content of calcium carbonate granules in the agarose gel. Finally, the optimized macroporous calcium titanate beads were investigated as chromatographic media. It exhibited good separation property and showed less nonspecific adsorption of basic compounds compared with titania beads.
引文
[1]刘铮,詹劲等译,生物分离科学,北京:清华大学出版社,2004,5
    [2]张勋,章银良,刘红伟,生物产品分离工程进展,中国食品学报,2002,4:77-81
    [3]施蕴渝,饶子河,陈常庆等译,蛋白质结构分析:制备、鉴定与微量测序,北京:科学出版社,2003,3
    [4]孙彦,生物分离工程,北京:化学工程出版社,1998
    [5]师治贤,王俊德,生物大分子的液相色谱分离和制备,北京:科学出版社,1999
    [6]浦宇,王芝祥,蛋白质层析用离子交换和疏水作用层析介质的发展状况,生物工程学报,2004,6:975-982
    [7]施良和,凝胶色谱法,北京:科学出版社,1980
    [8] Christian G.H. Biopolymer chromatography. New York: John Wiley & Sons Ltd., Chichester, 2000
    [9] Jason J-C, Ryden L. Protein purification: principles, high resolution methods and applications. New York: John Wiley & Sons, Inc., 1998
    [10] Himmelhoch SR. Chromatography of proteins on ion-exchange adsorbents. Meth Enaymol, 1971, 22: 273-286
    [11] He B, Huang W. Ion exchange and adsorption resin. Shanghai: Shanghai Science and Technology Education Press, 1995
    [12] Bonnerjera J, Oh S, Hoare M, et al. The right step at the right time. Bio/Technology, 1986, 4: 954-958
    [13] Wallen P, Bergsdorf N, Ranby M. Purification and identification of two structural variants of porcine tissue plasminogen activator by affinity adsorption on fibrin. Biochim Biophys Acta, 1982, 719:318-328
    [14] Staehelin T, Hobbs DS, Kung H, et al. Purification and characterization of recombinant human leukocyte interferon (IFLrA) with monoclonal antibodies. J Biol Chem, 1981, 256: 9750-9754
    [15] Scawen MD, Darbyshire J, Harvey MJ, et al. The rapid purification of 3-hydroxybutyrate dehydrogenase and malate dehydrogenase on triazine dye affinity matrices. Biochem J, 1982, 203: 609-705
    [16] Zawistowska U, Zamistowski J, Friesen AD. Application of immobilized metal affinity chromatography for large-scale purification of endogenousα-amylase inhibitor from barley Kernels. Biotechnol Appl Biochem, 1992, 15:160-170
    [17] Reversed Phase Chromatography: Principles and methods. Amersham Pharmacia Biotech, 18-1134-16
    [18] Olson CV, Reifsnyder DH, Canonva-Davis E, et al. Preparative isolation of recombinant human insulin-like growth factor 1 by reversed–phase high-performance liquid chromatography. J Chromatogr A, 1994, 675: 101-112
    [19] Moussaoui M., Hamieh T., Toufaily J., Naoufal D. Diffusion of globular proteins in a Sephadex G200 gel bead. J. Phys. IV France. 2005, 124: 41-48
    [20] Gustavsson P.-K., Larsson P.-F. Continuous superporous agarose beds for chromatography and electrophoresis. J. Chromatogr. A. 1999, 832: 23-39
    [21] Wang D.-M., Hao G., Shi Q.-H., Sun Y. Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography. J. Chromatogr. A. 2007, 1146: 32-40
    [22] Tiainen P., Gustavsson P.-K., Ljungl?f A., Larsson P.-F. Superporous agarose anion exchangers for plasmid isolation. J. Chromatogr. A. 2007, 1138: 84-94
    [23] Shi Q.-H., Zhou X., Sun Y. A novel superporous agarose medium for high-speed protein chromatography. Biotechnol. Bioeng. 2005, 92: 643 - 651
    [24] Carbonnier B., Janus L., Lekchiri Y., Morcellet M. Coating of porous silica beads by in situ polymerization/crosslinking of 2-hydroxypropylβ-cyclodextrin for reversed-phase high performance liquid chromatography applications. J. Appl. Polym. Sci., 2003, 91: 1419– 1426
    [25] WinklerJ., MarméS. Titania as a sorbent in normal-phase liquid chromatography. J. Chromatogr. A. 2000, 888: 51-62
    [26] Randon J., Huguet S., Piram A., Puy G., Demesmay C., Rocca J.-L. Synthesis of zirconia monoliths for chromatographic separations. J. Chromatogr. A. 2006, 1109: 19-25
    [27] Aslam Khan, Muhammad Riaz, Shahid Bilal Butt and J.H. Zaidi. Novel modified alumina: Synthesis, characterization and application for separation of hydrocarbons. Separ. Purif. Technol, 2007, 55: 396-399
    [28] Jungbauer A., Hahn R., Deinhofer K., Luo P. Performance and Characterization of a Nanophased Porous Hydroxyapatite for Protein Chromatography. Biotechnol. Bioeng. 2004, 87: 364-375
    [29] Zhang Z., Zheng Y., Chen J. , Zhang Q. , Ni Y., Liang X. Facile Synthesis of Monodisperse Magnesium Oxide Microspheres via Seed-Induced Precipitation and Their Applications in High- Performance Liquid Chromatography. Adv. Funct. Mater. 2007, 17, 2447-2454
    [30] Michael R. Buchmeiser. New synthetic ways for the preparation of high- performance liquid chromatography supports. J. Chromatogr. A. 2001, 912: 233- 266
    [31] Nawrocki J., Dunlap C., McCormick A., and Carr P. W. Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J. Chromatogr. A. 2004, 1028:1-30
    [32] J. Nawrocki, C. Dunlap, J. Li, J. Zhao, C. V. McNeff, A. McCormick and P. W. Carr. Part II. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J. Chromatogr. A.2004, 1028:31-62
    [33]敦惠娟,于文肖,赵惠敏,陈立人,锆基色谱填料的制备方法和物理化学性质,色谱,2006,24:93-98
    [34] Tiselius A, Hjerten S, Levin O. Protein chromatography on cacium phosphate columns. Arch Biochem and Biophys, 1956, 65: 156-163
    [35] Chen, Y.; Yi. Y.; Brennan, J. D.; Brook, M. A. Development of Macroporous Titania Monoliths Using a Biocompatible Method. Part 1: Material Fabrication and Characterization Chem. Mater. 2006, 18:5326-5335
    [36] M. Grün, A. A. Kurganov, S. Schacht, F. Schüth and K. K. Unger. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high- performance liquid chromatography. J. Chromatogr. A.1996, 740: 1-9
    [37] Kurganov A., Trüdinger U., Isaeva T. , Unger K. Native and modified alumina, titania and zirconia in normal and reversed-phase high-performance liquid chromatography Chromatographia, 1996, 42: 217-222
    [38] Miyazaki S., Miah M. Y., Morisato K., Shintani Y., Kuroha T., Nakanishi K. Titania-coated monolithic silica as separation medium for high performance liquid chromatography of phosphorus-containing compounds. J. Sep. Sci. 2005, 28:39-44
    [39] Jungbauer A. Chromatographic media for bioseparation. J. Chromatogr. A. 2005, 1065: 3-12
    [40] Afeyan N. B., Gordon N. F., Mazsaroff I., Varady L., Fulton S. P., Yang Y. B. , Regnier F. E. Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography. J. Chromatogr. A. 1990, 519:1-30
    [41] Gu T., Zhou W., Ma G., Su Z. Rigid gigaporous chromatographic media and their potential impact on downstream processing. China particuology, 2005, 3: 349-353,
    [42] Buchmeiser M.R. Polymeric monolithic materials: Syntheses, properties. functionalization and applications. Polymer. 2007, 48: 2187-2198
    [43] P?lsson E., Gustavsson P.-E., Larsson P.-O. Pellicular expanded bed matrix suitable for high flow rates, J. Chromatogr. A. 2000, 878: 17-25
    [44] Zhou X., Sun Y., Liu Z., Superporous pellicular agarose–glass composite particle for protein adsorption. Biochem. Eng. J., 2007, 34: 99-106
    [45] Savina I. N., Galaev I. Y., Mattiasson B. Anion-exchange supermacroporous monolithic matrices with grafted polymer brushes of N,N-dimethylaminoethyl- methacrylate. J. Chromatogr. A. 2005, 109: 199-205
    [46] Tsuneda S., Saito K., Sugo T., Makuuchf K. Protein adsorption characteristics of porous and tentacle anion-exchange membrane prepared by radiation-induced graft polymerization. Radiat. Phys. Chem. 1995, 46: 239-245
    [47] Loh K.-C., Geng A. Hydrodynamic dispersion in perfusion chromatography- a network model analysis. Chem. Eng. Sci. 2003, 58: 3439-3451
    [48] Meyers J.J., Liapis A.I. Network modeling of the intraparticle convection and diffusion of molecules in porous particles packed in a chromatographic column. J. Chromatogr. A. 1998, 827:197-213
    [49]梁世中编译,生物分离技术,广州:华南理工大学出版社, 1995
    [50] Arshady R. Beaded polymer supports and gels. J. Chromatogr. 1991, 586: 181-197
    [51] Guiochon G. Monolithic columns in high-performance liquid chromatography. J chromatogr A, 2007, 1168: 101-168
    [52] Unger K.K., Jilge G., Kinkel J.N., Hearn M.T.W. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. II Performance of non-porous monodisperse 1.5μm silica beads in the separation elution high-performance liquid chromatography. J. Chromatogr. A, 1986, 359:61
    [53] Jilge G., Janzen R., Giesche H., Unger K. K., Kinkel J. N. , Hearn M. T. W. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography : III. Retention and selectivity of proteins and peptides in gradient elution on non-porous monodisperse 1.5-μm reversed-phase silicas. J. Chromatogr. A, 1987, 397: 71-80
    [54]赵庆香,阎虎生,何炳林,高效液相色谱的动力学增强填料,离子交换与吸附,1998,14:275-284
    [55]熊博晖,王俊德,灌注色谱的发展与应用,色谱,1997,15:486-489
    [56] Liapis A.I., Mccoy M.A., Theory of perfusion chromatography. J. Chromatogr. A. 1992, 599:87-104.
    [57] Sun G.Y., Shi Q.-H., Sun Y., Novel biporous polymeric stationary phase for high-speed protein chromatography, J. Chromatogr. A. 2004, 1061: 159-165
    [58] Maru?ka A., Korny?ova O. Continuous beds (monoliths): stationary phases forliquid chromatography formed using the hydrophobic interaction-based phase separation mechanism. J. Biochem. Biophys. Methods. 2004, 59: 1-48
    [59] Zhang M.L., Sun Y., Cooperation of solid granules and solvent as porogenic agents novel porogenic mode of biporous media for protein chromatography. J. Chromatogr. A. 2001, 22: 77-86
    [60] Sun, G. Y., Yang, Z., Dong, X. Y., Sun, Y. Biporous polymeric beads fabricated by double emulsification for high-speed protein chromatography J. Appl. Polym. Sci. 2007, 103: 17-23
    [61] Wu L., Bai S., Sun Y. Development of rigid bidisperse porous microspheres for high-speed protein chromatography. Biotechnol. Prog. 2003, 19: 1300-1306
    [62] Shi Y., Sun Y. Development of rigid biporous polymeric adsorbent for protein chromatography. Chromatographia, 2002, 55: 405-410
    [63] Zhang M.L., Sun Y., Poly(glycidyl methacrylate-divinylbenzene- triallylisocyanurate) continuous-bed protein chromatography. J. Chromatogr. A. 2001, 912: 31-38
    [64] Li Y, Dong XY, Sun Y. High-speed chromatographic purification of plasmid DNA with a customized biporous hydrophobic adsorbent Biochem. Eng. J. 2007, 27: 33-39
    [65] Afeyan N. B., Regnier F.E., Dean R.C. Persion chromatography. 1991. US: 5,019, 270
    [66] Martin C., Coyne J., Carta G. Properties and performance of novel high- resolution/high-permeability ion-exchange media for protein chromatography. J. Chromatogr. A. 2005, 1069: 43-52
    [67] Ferreira A., Bigan M., Blondeau D. Optimization of a polymeric HPLC phase: poly(glycidyl methacrylate–co-ethylene dimethacrylate): Influence of the polymerization conditions on the pore structure of macroporous beads. React. Funct. Polym., 2003, 56: 123-136
    [68] Grasselli M., Smolko E., Hargittai P., Sáfrányá. From microspheres to monoliths: Synthesis of porous supports with tailored properties by radiation polymerization. Nucl. Instr. and Meth. B, 2001, 185: 254-261
    [69] Han Y., Lee S.S., Ying J.Y. Spherical siliceous mesocellular foam particles for high-speed size exclusion chromatography. Chem. Mater. 2007, 19: 2292-2298
    [70] Peters E.C., Svec F., Fréchet J.M.J. Rigid macroporous polymer monoliths. Adv. Mater. 1999, 11: 1169-1181
    [71] Barut M., Podgornik A., Brne P., ?trancar A., Convective interaction media short monolithic columns: enabling chromatographic supports for the separation and purification of large biomolecules. J. Sep. Sci. 2005, 28: 1876-1892
    [72] Pelzbauer Z., Lukas J, Svec F., Kalal J. Reactive polymers: morphology ofpolymeric sorbents based on glycidyl methacrylate copolymer. J. Chromatogr. A. 1979,171, 101-107
    [73] Field S.M. Silica Xerogel as a continuous column support for high-performance liquid chromatography. Anal. Chem. 1996, 68: 2709-2712
    [74] Mangelings D., Tanret I., Meert V., Eeltink S., Schoenmakers P.J. Evaluation of Polymeric Methacrylate-based Monoliths in Capillary Electrochromatography for their Potential to Separate Pharmaceutical Compounds. J. Chromatogr. Sci. 2007, 45: 578-586
    [75] Wang Q., Svec F., Fréchet J.M.J. Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly(styrene-co- divinylbenzene). J. Chromatogr. A. 1994, 669:230-235
    [76] Viklund C., Irgum K., Synthesis of porous Zwitterionic sulfobetaine monoliths and characterization of their interaction with protein. Macromolecules, 2000, 33:2539-2544
    [77] Lammerhofer, M.; Peters, E. C.; Yu, C.; Svec, F.; Frechet, J. M. J.; Lindner, W. Chiral Monolithic Columns for Enantioselective Capillary Electrochromatography Prepared by Copolymerization of a Monomer with Quinidine Functionality. 1. Optimization of Polymerization Conditions, Porous Properties, and Chemistry of the Stationary Phase. Anal. Chem. 2000, 72: 4614-4622
    [78] Svec F., Fréchet J.M.J. Molded rigid monolithic porous polymers: an inexpensive, efficient, and versatile alternative to beads for the design of materials for numerous applications. Ind. Eng. Chem. Res. 1999, 38:34-48
    [79]谷从影,蔺丽,方能虎,整体柱的制备及应用进展,化学研究与应用,2005,17:281-286
    [80] Matsui J., Kato T., Takeuchi T., Suzuki M., Yokoyama K., Tamiya E., Karube. I. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Anal. Chem. 1993, 65: 2223-2224.
    [81] Zhang H., Cooper A. I. Synthesis and applications of emulsion-templated porous materials.Soft Matter, 2005, 1: 107– 113
    [82] Zhang S., Chen J. Synthesis of open porous emulsion-templated monoliths using cetyltrimethylammonium bromide. Polymer. 2007, 48: 3021-3025
    [83] Svec F. Preparation and HPLC applications of rigid macroporous organic polymer monoliths. J.Sep.Sci. 2004, 27: 747-766
    [84] Svec F., Fréchet J.M.J., Temperature, a simple and efficient tool for the control of pore size distribution in macroporous polymers. Macromolecules, 1995, 28: 7580-7582
    [85] Santora B.P., Gagne M.R., Moloy K.G., Radu N.S. Porogen and cross-linkingeffects on the surface area, pore volume distribution, and morphology of macroporous polymers obtained by bulk polymerization. 2001, 34: 658-661
    [86] Viklund, C.; Svec, F.; Fréchet J.M.J.; Irgum, K. Monolithic, "Molded", Porous Materials with High Flow Characteristics for Separations, Catalysis, or Solid-Phase Chemistry: Control of Porous Properties during Polymerization. Chem. Mater. 1996, 8: 744-750
    [87] Peters E.C., Svec F., Fréchet J.M. J., Viklund C., Irgum K. Control of Porous Properties and Surface Chemistry in "Molded" Porous Polymer Monoliths Prepared by Polymerization in the Presence of TEMPO.Macromolecules, 1999, 32: 6377-6379
    [88] Bene? M.J., Hoák D., Svec F. Methacrylate-based chromatographic media. J. Sep. Sci. 2005, 28, 1855-1875
    [89] Courtois J., Bystr?m E., Irgum K. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer, 2006, 47: 2603-2611
    [90] Peters, E.C., Svec, F.,Fréchet J.M.J., Viklund C., Irgum K. Control of Porous Properties and Surface Chemistry in "Molded" Porous Polymer Monoliths Prepared by Polymerization in the Presence of TEMPO. Macromolecules, 1999, 32:6377-6379
    [91] Copper A.I., Holmes A.B. Synthesis of molded monolithic porous polymers using supercritical carbon dioxide as the porogenic solvent. Adv. Mater. 1999, 11: 1270-1274
    [92] A.I. Cooper, Porous materials and supercritical fluids, Adv. Mater., 2003, 15: 1049-1059
    [93] Hebb A.K., Senoo K., Cooper A.I. Synthesis of porous cross-linked polymer monoliths using 1, 1, 1, 2-tetrafluoroethane (R134a) as the porogen. Comp. Sci. Technol., 2003, 63: 2379-2387
    [94] Chirica G.S., Remcho V.T. Novel monolithic columns with templated porosity. J. Chromatogr. A. 2001, 924: 223-232
    [95] Zhang H., Cooper A.I. Synthesis of monodisperse emulsion-templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization. Chem. Mater. 2002, 14, 4017-4020
    [96] Coutinho F.M.B., Teixeira V.G., Baarbosa C. C. R. Influence of diluent mixture on the porous st ructure of the styrene-divinylbenzene copolymer. J. Appl. Poym. Sci, 1998, 67: 7812787.
    [97] Okubo M., Mori H., Ito A. Effect of nonionic emulsifier on the product ion of cationic multihollow polymer particles by the stepwise acid/alkali method. Colloid. Polym. Sci. 2000, 278: 358-363.
    [98]龚波林,单分散树脂及其在生物大分子分离中的应用,博士学位论文,西北大学,2003
    [99] Xu M., Peterson D.S., Rohr T., Svec F., Fréchet J.M.J., Polar polymeric stationary phases for normal-phase HPLC based on monodisperse macroporous poly(2,3-dihydroxypropyl methacrylate-co-ethylene dimethacrylate) beads. Anal. Chem. 2003, 75: 1011-1021
    [100] Bauer W., Tomandl G. Preparation of spherical TiO2 particles by an emulsion method using TiCl4. Ceram. Int. 1994, 20: 189-193
    [101] Minehan W. T., Messing G. L. Synthesis of spherical TiO2-SiO2 colloids from metal alkoxides. J. Non-Cryst. Solids.1990, 121: 375-382
    [102] Subramanian A., Carr P.W., McNeff C.V. Use of spray-dried zirconia microspheres in the separation of immunoglobulins from cell culture supernatant. J. Chromatogr. A, 2000, 890: 15-23
    [103] Wax M.J., Grasselli R.K. EP: 0490226 A1, 1991
    [104] Sathyagal A. N., Carr P. W., McCormick A. V. Synthesis of Porous Zirconia Spheres—Mechanism and Prospects for Multistep Processing. J. Colloid Interface Sci. 1999, 219: 20-30
    [105] Sun L., Annen M.J., Lorenzano-Porras F., Carr P.W., McCormick A.V., Synthesis of Porous Zirconia Spheres for HPLC by Polymerization-Induced Colloid Aggregation (PICA). J. Colloid Interface Sci. 1994, 163: 464-473
    [106] Annen M.J., Kizhappali R., Carr P.W., McCormick A. Development of Porous Zirconia Spheres by Polymerization-Induced Colloid Aggregation-Effect of Polymerization Rate. J. Mater. Sci. 1994, 29: 6123-30
    [107] Dunlap C.J., Carr P.W., McCormick A.V. A Chromatographic Comparison of the Pore Structures of Zirconia High Performance Liquid Chromatographic Materials Made by the Polymerization Induced Colloidal Aggregation and the Oil Emulsion Methods. Chromatographia, 1996, 42: 273-282
    [108] Jiang Z T, Zuo Y M, Synthesis of porous titania microspheres for HPLC packings by polymerization-induced colloid aggregation (PICA). Anal Chem. 2001, 73: 686-688
    [109] Yang X., Wang J., Liu X., Shang Z. High purity micron-scale macroporous silica spheres for high performance liquid chromatography. J. Sep. Sci. 2002, 25: 179-182
    [110] F?rster S., Plantenberg T. From self-ogranizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Ed. 2002, 41, 688-714.
    [111] Amatani, T., Nakanishi, K., Hirao, K., Kodaira, T. Monolithic periodic mesoporous silica with well-defined macropores. Chem. Mater. 2005, 17: 2114-2119.
    [112] Nakanishi, K., Kobayashi, Y.,Amatani, T.,Hirao, K., Kodaira, T. Spontaneous Formation of Hierarchical Macro-Mesoporous Ethane-Silica Monolith. Chem. Mater. 2004, 16: 3652-3658
    [113] M. Grüna, K.K. Ungera, A. Matsumotob, K. Tsutsumib,“Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology”, Micropor. Mesopor. Mater. 1999, 27: 207-216.
    [114] Trüdinger U, Müller G., Unger K.K. Porous zirconia and titania as packing materials for high-performance liquid chromatography. J. Chromatogr. 1990, 535: 111-125
    [115] Hata K., Morisaka H., Hara K., Mima J.,Yumoto N., Tatsu Y., Furuno M., Ishizuka N.,Ueda M. Two-dimensional HPLC on-line analysis of phosphopeptides using titania and monolihtic columns. Ana. Biochem. 2006, 350: 292-297
    [116] Tani K., Kitada M., Tahibana M., Koizumi H., Kiba T., Retention behavior of monosaccharides and disaccharides on titania. Chromatographia, 2003, 57:409-411
    [117] Tani K., Sumizawa T., Watanabe M., Tahibana M.,Koizumi H., Kiba T. Evaluation of titania as an ion-exchanger and as a ligand-exchanger in HPLC, Chromatographia, 2002, 55: 33-37
    [118] Zhang, D., Yang, D., Zhang, H., Lu, C., Qi, L. Synthesis and Photocatalytic Properties of Hollow Microparticles of Titania and Titania/Carbon Composites Templated by Sephadex G-100. Chem. Mater, 2006, 18: 3477-3485.
    [119] Meyer U., Larsson A., Hentze H.-P., Caruso R. A. Templating of Porous Polymeric Beads to Form Porous Silica and Titania Spheres. Adv. Mater. 2002, 14: 1768- 1772
    [120] Deshpande A. S., Shchukin D. G., Ustinovich E., Antonietti M., Caruso R. A. Titania and Mixed Titania/Aluminum, Gallium, or Indium Oxide Spheres: Sol-Gel/Template Synthesis and Photocatalytic Properties. Adv. Funct. Mater. 2005, 15: 239-245
    [121] Fujita K., Konishi J., Nakanishi K., Hirao K. Strong light scattering in macroporous TiO2 monoliths induced by phase separation. Appl. Phys. Lett. 2004, 85:5595-5597
    [122] Nakanishi K., Tanaka N. Sol–Gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance Liquid Chromatography Separations. Acc. Chem. Res. 2007, 40: 863-873
    [123] Konishi J., Fujita K., Nakanishi K. Hirao K. Phase-Separation-Induced Titania Monoliths with Well-Defined Macropores and Mesostructured Framework from Colloid-Derived Sol-Gel Systems. Chem. Mater. 2006, 18: 864-866
    [124] Fujita K., Konishia J., Nakanishib K., Hirao K. Morphological control and strong light scattering in macroporous TiO2 monoliths prepared via a colloid-derived sol-gel route. Sci. Technol. Adv. Mater. 2006, 7: 511-518
    [125] Konishi, J., Fujita K., Nakanishi K., Hirao K. Monolithic TiO2 with Controlled Multiscale Porosity via aTemplate-Free Sol-Gel Process Accompanied by Phase Separation. Chem. Mater. 2006, 18: 6069-6074
    [126] Toberer, E. S.; Epping, J. D.; Chmelka, B. F.; Seshadri, R. Hierarchically Porous Rutile Titania: Harnessing Spontaneous Compositional Change in Mixed-Metal Oxides. Chem. Mater. 2006, 18: 6345-6351.
    [127] Hahn, R., Podgornik, A., Merhar, M., Schallaun, E., Jungbauer, A. Affinity monoliths generated by in-situ polymerization of the ligand. Anal Chem, 2001,73: 5126-5132.
    [128] Dai Q., Wu D., Zhang Z., Ye Q. Preparation of monodisperse poly(methyl methacrylate) particles by radiation-induced dispersion polymerization using vinyl terminus polysiloxane macromonomer as a polymerizable stabilizer. Polymer, 2003, 44: 73-77.
    [129] Zhang S.H., Zhang J., Horvoth C.S. Capillary electrochromatography of proteins with polymer-based strong-cation-exchanger microspheres. J. Chromatogr. A. 2002, 965: 83-92
    [130] Zhang S.H. Huang X., Yao N., Horváth C. Preparation of monodisperse porous polymethacrylate microspheres and their application in the capillary electrochromatography of macrolide antibiotics. J. Chromatogr. A. 2002, 948: 193-201
    [131] Chen X., Cui Z., Chen Z., Zhang K., Lu G., Zhang G., Yang B. The synthesis and characterizations of monodisperse cross-linked polymer microspheres with carboxyl on the surface. Polymer. 2002, 43: 4147-4152
    [132] Kawaguchi H. Functional polymer microspheres. Prog. Polym. Sci. 2000, 25: 1171-1210
    [133]卫引茂,黄晓冬,陈强,耿信笃,一种金属螯合连续棒色谱柱的制备及色谱性能,高等学校化学学报,2001,22:1664-1666
    [134] Domenici E., Bertucci C., Salvadori P. Synthesis and chromatographic properties of an HPLC chiral stationary phase based upon human serum albumin. Chromatographia, 1990, 29: 170-176
    [135] Schafer W.A., Carr P.W. Physical and chemical characterization of a porous phosphate-modified zirconia substrate. J. Chromatogr. 1991, 587: 137-147
    [136] Griffith C. M., Morris J., Robichaud M., Annen M. J., McCormick A. V. , Flickinger M. C. Fluidization characteristics of and protein adsorption on fluoride-modified porous zirconium oxide particles. J. Chromatogr. A. 1997,776: 179-195
    [137] Sarkar S.; Carr P.W.; McNeff C.V.; Subramanian A. Characterization and optimization of a chromatographic process based on ethylenediamine-N, N, N', N'-tetra(methylphosphonic) acid-modified zirconia particles. J. Chromatogr. B. 2003, 790: 143-152
    [138] Ellwanger A., Matyska M.T., Albert K., Pesek J.J., Comparision of octadecyl bonded titania phases. Chromatographia. 1999, 49: 424-430
    [139] McNeff C., Carr P.F. High-performance anion-exchange chromatography of oligonucleotides and oligodeoxynucleotides on quaternized polyethylenimine coated zirconia. Anal. Chem. 1995, 67: 2350-2353
    [140] Ncneff C., Carr P.W. Synthesis and use of quaternized polyethylenimine-coated zirconia for high-performance anion-exchange chromatography. Anal. Chem. 1995, 67: 3886-3892
    [141] Müller E. Properties and characterization of high capacity resins for biochromatography. Chem. Eng. Technol. 2005, 28: 1295-1305.
    [142] Torres R., Pessela B.C.C., Fuentes M., Mateo C., Munilla A.R., Fernandez-Lafuente R., Guisan J.M. Supports coated with PEI as a new tool in chromatography. Enzyme and Microbial Technology, 2006, 39: 711-716
    [143] Viklund C., Svec F., Fréchet J.M. J., Irgum K. Fast Ion-Exchange HPLC of Proteins Using Porous Poly(glycidyl methacrylate-co-ethylene dimethacrylate) Monoliths Grafted with Poly(2-acrylamido-2-methyl-1-propanesulfonic acid). Biotechnol. Prog. 1997, 13: 597-600.
    [144] Viklund C., Nordstr?m A., Irgum K., Svec F., Fréchet J.M. J. Preparation of Porous Poly(styrene-co-divinylbenzene) Monoliths with Controlled Pore Size Distributions Initiated by Stable Free Radicals and Their Pore Surface Functionalization by Grafting.Macromolecules. 2001, 34: 4361 - 4369
    [145] Peters E.C., Svec F., Fréchet J.M. J. Thermally responsive rigid polymer monoliths. Adv. Mater. 1997, 9: 630-632
    [146]秦启宗,毛家俊,金忠浩,化学分离法,北京:原子能出版社,1984
    [147] Ma ZY, Guan YP, Liu XQ, Liu HZ, Synthesis of magnetic chelator for high-capacity immobilized metal affinity adsorption of protein by cerium initiated graft polymerization. Langmuir, 2005, 21: 6987-6994.
    [148] Rühe J, Surface-attached polyfunctional polymer networks for sensor chips. European Patent, 2002, No. 1176423.
    [149] Gupta KC, Sahoo S, Khandekar K, Graft copolymerization of ethyl acrylate onto cellulose using ceric ammonium nitrate as initiator in aqueous medium. Biomacromolecules, 2002, 3: 1087-1094.
    [150] Cao YM, Qing XS, Sun J, Zhou FM, Lin SA, Graft copolymeization ofacrylamide onto carboxymethyl starch. European Polymer J., 2002, 38: 1921-1924.
    [151] Chowdhury P, Banerjrr M, Graft polymerization of methyl methacrylate onto polyvinyl alcohol using Ce4+ initiator. J. Appl. Polym. Sci., 1998, 70: 523-527.
    [152] Zhou J. F., Zhou M. F., Caruso R. A. Agarose template for the fabrication of macroporous metal oxide structures. Langmuir 2006, 22: 3332-3336.
    [153] Caruso R. A., Schattka J. H. Cellulose Acetate Templates for Porous Inorganic Network Fabrication. Adv. Mater. 2001, 12: 1921-1923
    [154] Caruso R. A., Schattka J. H. , Greiner A.. Titanium Dioxide Tubes from Sol-Gel Coating of Electrospun Polymer Fibers. Adv. Mater. 2001, 13: 1577-1579
    [155] Lendero N., Vidic J., Brne P., Podgornik A., Strancar A. Simple method for determining the amount of ion-exchange groups on chromatographic supports. J. Chromatogr. A. 2005, 1065: 29-38
    [156] Ramzi M., Rochas C., Guenet J.-M. Structure-Properties Relation for Agarose Thermoreversible Gels in Binary Solvents. Macromoleculaes. 1998, 31: 6106-6111
    [157] You, Z.; Balint, I.; Aika, K. Mesostructured Alumina Nanocomposites Synthesized via Reverse Microemulsion Route. Chem. Lett. 2003, 32:630-631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700