新型碳材料复合物催化剂用于富氢气氛下CO优先氧化及CO完全氧化反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化碳氧化和优先氧化均是放热反应,这导致传统氧化物催化剂上因传热不佳容易形成热点,而这些热点的存在有利于吸热的逆水煤气变化反应发生,从而影响CO的净化效果。石墨烯、纳米碳管等碳材料具有良好的导热性能,理论来说,在CO氧化催化剂中引入石墨烯或纳米碳管成分,可能避免热点生成,抑制逆水煤气变换反应的发生,该类复合物应该是一种值得研究的CO氧化及CO优先氧化催化剂。
     本文采用改进Hummers法以天然石墨为原料制备了氧化石墨,在此基础上通过低温热膨胀法和化学还原氧化石墨法分别制备了石墨烯,并采用SEM,TEM, XRD等表征手段对所制得的碳材料的形貌进行表征。采用石墨烯和氧化石墨作载体,过体积浸渍法制备了一系列负载金属催化剂,以CO完全氧化反应为探针,初步研究了石墨烯载体与所负载金属纳米颗粒之间相互作用,探索石墨烯及氧化石墨材料在催化反应中的应用价值。
     研究结果表明,250℃以下碳材料载体如Gn、GO本身表现出对CO氧化反应惰性,而浸渍法制备的不同碳材料载体负载的金属复合物催化剂则表现出一定的CO氧化活性,顺序为:PtNi/Gs (GO)>Pt/Gs(GO)>Ni/Gs (GO)>Gs (GO).其中,PtNi/Gs (1wt.%Pt1.5wt.%Ni)催化剂在质量空速98000ml·g-1h-1下,从175℃开始达到完全转化,表现出了良好的CO完全氧化性能。TPR, TEM, XPS等表征结果表明,催化剂表面PtNi合金相的形成起到了关键作用。
     通过过体积浸渍法、柠檬酸络合法和化学还原法制备了一系列Pt、PtNi负载的石墨烯催化剂,通过对催化剂制备条件的考察,研究金属或金属氧化物在此类碳材料上的负载情况,研究催化剂结构对CO优先氧化催化性能的影响。详细考察了制备方法、前驱物浓度、助剂Ni的加入、表面活性剂的加入等制备条件对催化剂物理化学性质的影响。主要得出以下结论:过体积浸渍法制备的Pt系负载石墨烯催化剂上,活性组分Pt、Ni颗粒细小,分散最为均匀,石墨烯载体具有的较大比表面积,有利于活性组分金属在催化剂表面的均匀分散,是其成为潜在催化剂载体的重要原因。
     CNTs具有很好的导热性,将Co3O4-CeO2催化剂与CNTs复合可以减缓催化剂上热点的生成,抑制CO2和H2发生逆水煤气变换反应,削弱CO2的负面影响。本文中,利用机械混合法和浸渍法将纳米碳管与CO3O4颗粒复合,制备了纳米碳管负载的CO3O4及Co3O4-CeO2系列催化剂,通过提高活性组分C0304在载体上的分散,改善催化剂性能。
     本文阐述了一种新的制备大孔-介孔材料的方法,采用纳米碳管做造孔剂,制备出纳米碳管与α-Al2O3大孔整体式复合材料,通过煅烧去除复合材料中的纳米碳管模板,从而在大孔孔壁上引入介孔,通过控制介孔的数量和尺寸,达到增加材料的比表面积的目的。在此介孔-大孔α-Al2O3载体基础上负载Ru,制备出了一系列不同活性组分含量的Ru/α-Al2O3催化剂,并将其应用于PROX反应中,均表现出了良好的催化活性。其中以催化剂2wt.%Ru/CNTs-α-Al2O3-750最优,在反应气组成为1vol.%CO,1vol.%O2,50vol.%H2,N2平衡,质量空速60,000mL·gcat-1·h-1下,100-150℃范围内达到CO转化率100%。
Both of the CO oxidation and preferential oxidation are exothermic reactions, for these rections, hot pots was easily formed during heat transfers on the traditional oxides catalyst and played a positive role on the Reversed water gas shift reaction, and finally effects the purification of CO. theoretically, the number of hot pots on the traditional CO oxidation catalysts can be decreased after the addition of graphene, carbon nanotubes and other carbon materials with good thermal performance. Such complexes would be a potential catalyst for CO oxidation and CO oxidation.
     Graphite oxide (GO) was prepared by an improved Hummers method from natural graphite and turned to graphene sheets (Gs) through low-temperature thermal expansion method and chemical reduction method, and was then characterized by SEM, TEM and XRD. A series of graphite oxide and graphene supported nanometal catalysts were synthesized by wetness impregnation method and then used in the CO oxidation reaction. Preliminary research on the interactions between metal nano-particles and graphene support was also studied.
     The results show that, carbon materials such as of Gn and GO showed their inertance for CO oxidation reaction under250℃, while the supported carbon-metal complex catalysts prepared by wetness impregnation showed a certain amount of CO oxidation activity, following in this order:PtNi/Gs (GO)> Pt/Gs (GO)> Ni/Gs (GO)> Gs (GO). TPR, TEM, XPS and other characterization results showed that the formation of Pt-Ni alloy phase on the catalyst surface played a key role.
     A series of Pt, PtNi supported graphene catalysts were prepared by wetness impregnation, citric acid complex and chemical reduction methods. In this study, preparation conditions of these catalysts was studied in order to see the metal loading or metal oxide loading on those carbon materials, and the relationship between the structure of the catalyst and catalyst performance for the CO preferential oxidation was also studied. Detailed studies of catalyst preparation conditions such as preparation methods, precursor concentration, addition of Ni additives and surfactants was also carried out.
     Due to the good thermal conductivity of CNTs, the composite catalyst mixed with Co3O4-CeO2and CNTs can reduce the formation of hot spot on the catalyst surface, inhibit reversed water-gas shift reaction occurs and reduce the negative impact of CO2. In this paper, CNTs supported CO3O4and Co3O4-CeO2composite catalysts were prepared by mechanical mixing and impregnation, by increasing the active component dispersion of Co3O4on the CNTs support to improve their catalytic performance.
     In this text, a new way of preparing the macro-meso porous material with a CNTs template has been built. A series of meso-macro porous Ru/α-Al2O3catalysts with different Ru loading conents were prepared and used in the PROX reaction and showed good catalytic activities. Among these Ru/α-Al2O3catalysts,2wt.%Ru/CNTs-α-Al2O3-750showed the best ability of CO elimination, and under a space velocity of60,000ml·gcat-1·h-1and the reactant feed gas of1vol.%CO,1vol.%O2,50vol.%H2,48vol.%N2, the conversion of CO reached to100%at the range of100-150℃.
引文
[1]胡勇胜,徐庆,陈文,新型碳材料的研究现状,材料导报,2001,15(5):50~51
    [2]Iijima S, Helical microtubules of graphitic carbon, Nature,1991,354:56-58
    [3]Schnorr J M, Swager T M, Emerging applications of carbon nanotubes, Chemistry of Materials,2011,23(3):646-657
    [4]Baughman R H, Zakhidov A A, Heer W A, Carbon nanotubes-the route toward applications, Science,2002,297(5582):787-792
    [5]Ando Y, Zhao X, Inoue S, Iijima S, Mass production of multiwalled carbon nanotubes by hydrogen arc discharge, J. Cryst. Growth,2002,237:1926-1930
    [6]Zhao T, Liu Y, Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperatures, Carbon,2004,42(12-13):2765-2768
    [7]Guo T, Nikolaev P, Thess A, Colbert D T, Smalley R E, Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett.,1995,243(1):49-54
    [8]Ma R Z, Wei B Q, Xu C L, Liang J, Wu D H, The morphology changes of carbon nanotubes under laser irradiation, Carbon,2000,38(4):636-638
    [9]Nikolaev P, Bronikowski M J, Bradley R K, Rohmund F, Colbert D T, Smith K A, Smalley R E, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett.,1999,313(1):91-97
    [10]Jose-Yacaman M, Miki-Yoshida M, Rendon L, Santiesteban J G., Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett.,1993,62(2):202-204.
    [11]Berber S, Kwon Y K, Tomanek D, Unusually high thermal conductivity of carbon nanotubes, Physical Review Letters,2000,84(20):4613-4616
    [12]Eder D, Carbon nanotube-inorganic hybrids, Chemical Reviews,2010,110(3):1348-1385
    [13]Wildgoose G G, Banks C E, Compton R G, Metal nanoparticles and related materials supported on carbon nanotubes:methods and applications,2006,2(2):182-183
    [14]Cha S I, Kim K T, Arshad S N, et al., Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Advanced Materials,2005,17(11):1377-1381
    [15]Jiang L Q, Gao L, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity, Materials Chemistry and Physics,2005,91(2-3):313-316
    [16]Liu T X, Phang I Y, Shen L, et al., Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6composites, Macromolecules,2004,37(19):7214-7222
    [17]Tasis D, Tagnatarchis N, Bianco A, Chemistry of carbon nanotubes, Chemical Reviews,2006,106(3):1105-1136
    [18]Rul S, Laurent C, Peigney A, et al., Carbon nanotubes prepared in situ in a cellular ceramic by the gelcasting-foam method, Journal of the European Ceramic Society,2003,23(8):1233-1241
    [19]Peigney A, Laurent Ch, Flahaut E, et al., Carbon nanotubes in nvel ceramic matrix nanocomposites, Ceramicas International,2000,26(6):677-683
    [20]Sun J, Gao L, Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation, Carbon,2003,41(5):1063-1068
    [21]Guo S Q, Sivakumar R, Kitazaewa H, et al., Electrical properties of silica-based nanocomposites with multiwall carbon nanotubes, Journal of the American Ceramic Society,2007,90(5):1667-1670
    [22]程继鹏,张晓彬,戈桂芬,含铁粒子修饰碳纳米管的初步研究,浙江大学学报(工学版),2006,40(4):676~678
    [23]王曙光,李延辉,赵丹,碳纳米管负载氧化铝材料的制备及其吸附水中氟离子的研究,高等学校化学学报,2003,24(1):95~99
    [24]Seeger T, Redlich P, Grobert N, et al., SiOx-coating of carbon nanotubes at room temperature, Chemical Physics Letters,2001,339(1-2):41-46
    [25]Seeger T, Fuente G, Maser W K, et al., Evolution of multiwalled carbon-nanotube/SiO2composites via laser treatment, Nanotechnology,2003,14(2):184-187
    [26]Hernadi K, Ljubovi E, Seo J W, et al., Synthesis of MWNT-based composite materials with inorganic coating, Acta Materialia,2003,51(5):1447-1452
    [27]L.P.Zhao, L.Gao, Coating of multi-Walled Carbon nanotubes with thick layers of tin (Ⅳ) oxide, Carbon,2004,42:1858-1861.
    [28]万淼,刘金平,黄新堂,MnO2对多壁碳纳米管的包覆与表面改性研究,材料科学与工程学报,2005,23(5):601~604
    [29]Planeix J M, Coustel N, Coq B, et al., Application of carbon Nanotubes as supports in heterogeneous catalysis, Journal of the American Chemistry Society,1994,116(17):7935-7936
    [30]Zhang Y, Zhang H B, Lin G D, et al. Preparat ion, characterization and catalytic hydroformylation properties of carbon nanotubes supported Rh phosphine catalyst[J].Appl Catal A:Gen,1999,187(2):213-224
    [31]Wang H, Wang H L, Jiang W F, Solar photocatalytic degradation of2,6-dinitropcresol(DNPC) using multi-walled carbon nanotubes (MWCNTs)-TiO2composite photocatalysts, Chemosphere,2009,75(8):1105-1111
    [32]Xia X H, Jia Z J, Yu Y, et al., Preparation of multi-walled carbon nanotube supported TiO2and its photocatalytic activity in the reduction of CO2with H2O, Carbon,2007,45(4):717-721
    [33]Chen H B, Lin J D, Cai Y, et al., Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure, Applied Surface Science,2001,180(3-4):328-335
    [34]Cai Y, Lin J D, Chen H B, et al., Novel Ru-K/carbon nanotubes catalyst for ammonia synthesis, Chinese Chemical Letters,2000,11(4):373-374
    [35]Van Steen E, Pr insloo F F, Com par ison o f preparation methods for carbon nanotubes supported iron Fischer Tropsch catalysts, Catal Today,2002,71(3/4):327-334
    [36]Dong X, Zhang H B, Lin G D, et al., Highly active CNT promoted Cu-ZnO2Al2O3catalyst for methanol synthesis from H2/CO/CO2, Catal Lett,2003,85(3/4):237-246
    [37]Pan X L, Fan Z L, Chen W, et al., Enhanced ethano1production inside carbon nano tube r eact ors co ntaining catalytic par ticles, Nature Mater ials,2007,6:507-511
    [38]Bocdaccini A R, Acevedo D R, Brusatin G, et al., Borosilicate glass matrix composites containing multi-wall carbon nanotubes, Journal of the European Ceramic Society,2005,25(9):1515-1523
    [39]Pereira M F R, Figueiredo J L, Orfao J J M, et al., Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene, Carbon,2004,42(14):2807-2813
    [40]Li C B, Pan W X, Wong W K, et al., Effect of CNTs on dir ect oxidation of cy clohex ene catalyzed by ruthenium diamino diphosphine complex, J. Mol. Catal. A:Chem,2003,193(1):71,275.
    [41]Wang C, Waje M, Wang X, et al., Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Letters,2004,4(2):345-348
    [42]Liu Z L, Lin X H, Lee J Y, et al., Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir,2002,18(10):4054-4060
    [43]Tanaka K, Shou M, Zhang H B, et al., An extremely active Pt/carbon nano-tube catalyst for selective oxidation of CO in H2at room temperature, Catalysis Letters,2008,126(1-2):89-95
    [44]Jeong H, Lee Y, Lahaye R J W E et al., Evidence of graphitic AB stacking order of graphite oxides, J. Am. Chem. Soc.,2008,130(4):1362-1366
    [45]Brodie B C, Note sur un nouveau procede pour la purification et la desagregation du graphite, Ann. Chim. Phys.,1855,45:351
    [46]Staudenmaier L, Ber. Dtsch, Chem. Ges.,1898,31:1484
    [47]Hummers W S, Offeman R E, Preparation of graphitic oxide, J. Am. Chem. Soc.,1958,80:1339
    [48]张磊,唐建国,刘海燕.氧化石墨纳米薄片表面枝接聚乙二醇,科学技术与工程,2009,9(14):3988~3993
    [49]莫尊理,史华峰,陈红,牛贵平,吴迎冰,赵仲丽.纳米石墨拨片/聚苯胺-g-聚乙二醇复合材料及导电性能.功能材料,2009,40(1):154~158
    [50]Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S B T, Ruoff R S, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium4-styrenesulfonate), J. Mater. Chem.,2006,16:155-158
    [51]Wei T, Luo G, Fan Z, Zheng C, Yan J,Yao C, Li W, Zhang C, Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion, Carbon,2009,47(9):2296-2299
    [52]Ansari S, Giannelis E P, Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites, J. Polym. Sci. Polym. Phys.,2009,47(9):888-897
    [53]Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li f, Guo T, Chen Y, Infrared-triggered actuators from graphene-based nanocomposites, J. Phys. Chem. C,2009,113(22):9921-9927
    [54]Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano,2008,2(3):463-470
    [55]Eda G, Chhowalla M, Graphene-based composite thin films for electronics, Nano Lett.,2009,9(2):814-818
    [56]Alwarappan S, Erdem A, Liu C, Li C, Probing the electrochemical properties of grapheme nanosheets for biosensing applications, J. Phys. Chem. C,2009,113(20):8853-8857
    [57]Zhou M, Zhai Y, Dong S, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem.,2009,81(14):5603-5613
    [58]Liu Z, Robinson J T, Sun X, Dai H, PEGylated nano-graphene oxide for delivery of water insoluble cancer drubs, J. Am. Chem. Soc.,2008,130(33):10876-10877
    [59]Wei T, Luo G., Fan Z, Zheng C, Yan J, Yao C, Li W, Zhang C, Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion, Carbon,2009,47(9):2296-2299
    [60]Zhou M, Zhai Y, Dong S, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem.,2009,81(14):5603-5613
    [61]Geim A K, Novoselov K S. The rise of grapheme, Nature Materials,2007,6:183-191
    [62]Novoselov K S, Geim A K, Morozov S V, et al., Electric Field Effect in Atomically Thin Carbon Films, Science,2004,306:666-669
    [63]Zhang Y B, Small J P, Pontius W V, et al., Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Applied Physics Letters,2005,86:073104
    [64]Juang Z, Wu C, Lo C, Chen W, Synthesis of graphene on silicon carbide substrates at low temperature, Carbon,2009,47(8):2026-2031
    [65]Obraztsov A.N. Chemical vapour deposition:making graphene on a large scale.[J] Nat. Nanotechnol.2009,4(4):212-213
    [66]Gilje S, Han S, Wang M, Wang K L, Kaner R B, A chemical route to graphene for device applications, Nano Lett.,2007,7(11):3394-3398
    [67]Margine E R, Bocquet M L, Blase X, Thermal stability of graphene and nanotube covalent functionalization, Nano Lett.,2008,8(10):3315-3319
    [68]Schwamb T, et al. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures[J] Nano technology,2009,20(40):1-5
    [69]Jiang Jinwu,Wang Jiansheng, Li Baowen, Thermal conductance of graphene and dmierite, Physical Review,2009,79(205418):1-6
    [70]Li Y, Fan X B, Qi J J, Ji J Y, Wang S L, Zhang G L, Zhang F B, Nano Res,2010,3:429-437
    [71]Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mulhaupt R, J Am Chem Soc,2009,131:8262-8270
    [72]Lu YH, Zhou M, Zhang C, Feng YP, J. Phys. Chem. C,2009,113:20156
    [73]Zhou M, Zhang A H, Dai Z X, Zhang C, Feng Y P, J. Chem. Phys.,2010,132:194704
    [74]Kirubakaran A, Jain S, Nema R K, A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews,2009,13(9):2430-2440
    [75]Akcaude F, Cabot P L, Brillas E, Fuel cells for chemicals and energy cogeneration, Journal of Power Sources,2006,153(1):47-60
    [76]Prince-Richard S, Whale M, Djilali N, A techno-economic analysis of decentralized electrolytic hydrogen production for fuel cell vehicles, International Journal of Hydrogen Energy,2005,30(11):1159-1179
    [77]Frenette G, Forthoffer D, Economic&commercial viability of hydrogen fuel cell vehicles from an automotive manufacturer perspective, International Journal of Hydrogen Energy,2009,34(9):3578-3588
    [78]Wee J-H, Applications of proton exchange membrane fuel cell systems, Renewable and Sustainable Energy Reviews,2007,11(8):1720-1738
    [79]Park E D, Lee D, Lee H C, Recent progress in selective CO removal in a H2-rich stream, Catalysis Today,2009,139(4):280-290
    [80]Acres G J K, Recent advances in fuel cell technology and its applications, Journal of Power Sources,2001,100(1-2):60-66
    [81]Barbir F, Gomez T, Efficiency and economics of proton exchange membrane (PEM) fuel cells, International Journal of Hydrogen Energy,1996,21(10):891-901
    [82]Cacciola G, Antonucci V, Freni S, Technology up date and new strategies on fuel cells, Journal of Power Sources,2001,100(1-2):67-79
    [83]Avgouropoulos G, Ioannides T, Papasopoulou C, et al., A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3and CuO-CeO2catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Today,2002,75(1-4):157-167
    [84]Mishra A, Prasad R, A review on preferential oxidation of carbon monoxide in hydrogen rich gases, Bulletin of Chemical Reaction Engineering&Catalysis,2011,6(1):1-14
    [85]Gamarra D, Homes A, Koppany Z, et al., Catalytic processes during preferential oxidation of CO in H2-rich streams over catalysts based on copper-ceria, Journal of Power Sources,2007,169(1):110-116
    [86]Jung C R, Han J, Nam S W, et al., Selective oxidation of CO over CuO-CeO2catalyst:effect of calcination temperature, Catalysis Today,2004,93-95:183-190
    [87]Sirichaiprasert K, Luengnaruemitchai A, Pongstabodee S, Selective oxidation of CO to CO2over Cu-Ce-Fe-O composite-oxide catalyst in hydrogen feed stream, International Journal of Hydrogen Energy,2007,32(7):915-926
    [88]Moretti E, Lenarda M, Storaro L, et al., One-step synthesis of a structurally organized mesoporous CuO-CeO2-Al2O3system for the preferential CO oxidation, Applied Catalysis A:General,2008,335(1):46-55
    [89]Avgouropoulos G, Ioannides T, Effect of synthesis parameters on catalytic properties of CuO-CeO2, Applied Catalysis B:Environmental,2006,67(1-2):1-11
    [90]Luengnaruemitchai A, Osuwan S, Gulari E, Selective catalytic oxidation of CO in the presence of H2over gold catalyst, International Journal of Hydrogen Energy,2004,29(4):429-435
    [91]Wang H, Zhu H Q, Qin Z F, et al., Preferential oxidation of CO in H2rich stream over Au/CeO2-Co3O4catalysts, Catalysis Communications,2008,9(6):1487-1492
    [92]Yang Y F, Sangeetha P, Chen Y W, Au/TiO2catalysts prepared by photo-deposition method for selective CO oxidation in H2stream, International Journal of Hydrogen Energy,2009,34(21):8912-8920
    [93]Dai W X, Zheng X P, Yang H Y, et al., The promoted effect of UV irradiation on preferential oxidation of CO in an H2-rich stream over Au/TiO2, Journal of Power Sources,2009,188(2):507-514
    [94]Kandoi S, Gokhale A A, Grabow L C, Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature, Catalysis Letters,93(1-2):93-100
    [95]Mozer T S, Dziuba D A, Vieira C T P, et al., The effect of copper on the selective carbon monoxide oxidation over alumina supported gold catalysts, Journal of Power Sources,2009,187(1):209-215
    [96]Ayastuy J L, Gonzallez Marcos M P, Gonzalez-Velasco, et al., MnOx/Pt/Al2P3catalysts for CO oxidation in H2-rich streams, Applied Catalysis B: Environmental,2007,70(1-4):532-541
    [97]Schubert M M, Kahlich M J, Feldmeyer G, et al., Bimetallic PtSn catalyst for selective CO oxidation in H2-rich gases at low temperatures, Physical Chemistry Chemical Physics,2001,3(6):1123-1131
    [98]Liu X S, Korotkikh O, Farrauto R, Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalyst, Applied Catalysis A: General,2002,226(1-2):293-303
    [99]Suh D J, Kwak C, Kim J H, et al., Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts, Journal of Power Sources,2005,142(1-2):70-74
    [100]Monyanon S, Pongstabodee S, Luengnaruemitchai A, Catalytic activity of Pt-Au/CeO2catalyst for the preferential oxidation of CO in H2-rich stream, Journal of Power Sources,2006,163(1):547-554
    [101]Komatsu T, Tamura A, Pt3Co and PtCu intermetallic compounds:Promising catalysts for preferential oxidation of CO in excess hydrogen, Journal of Catalysis,2008,258(2):306-314
    [102]Ayastuy J L, Gonzallez Marcos M P, Gonzalez-Velasco, et al., MnOx/Pt/Al2O3catalysts for CO oxidation in H2-rich streams, Applied Catalysis B: Environmental,2007,70(1-4):532-541
    [103]Epling W S, Cheekatamarla P K, Lane A M, Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams, Chemical Engineering Journal,2003,93(3):61-68
    [104]Sirijaruphan A, Goodwin J G, Jr, et al., Effect of Fe promotion on the surface reaction parameters of Pt/y-Al2O3for the selective oxidation of CO, Journal of Catalysis,2004,224(2):304-313
    [105]Ko E Y, Park E D, Seo K W, et al., Pt-Ni/γ-Al2O3catalyst for the preferential CO oxidation in the hydrogen stream, Catalysis Letters,2006,110(3-4):275-279
    [106]Liu Yunping, Yuan Junjun, Lin Peiyan, Zhang Manwei, Qian Yitai, Catalytic activity nanocrystalline manganese oxide for CO oxidation, Chinese Journal of Chemical Physics,1999,12(1):86-82
    [107]Jonas Janson, Low-temperature CO oxidation over Co3O4/Al2O3.Journal of Catalysis,2000,194:55-60
    [108]Haruta M, Yamada N, Kobayashi T, et al, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, Journal of Catalysis,1989,115:301-309
    [109]Haruta M, Size-and support-dependency in the catalysis of gold, Catal. Today,1997,36:153-166
    [110]Carrettin S, Concepcion P, Corma A, et al. Nanocrystalline CeO2increases the activity of Au for CO oxidation by two orders of magnitude, Angew. Chem. Int. Ed.,2004,43:2538-2540
    [111]吴玉,徐柏庆,TiO2修饰钛酸钠纳米管负载Au催化剂上CO低温氧化,中国化学会催化委员会,第十三届全国催化学术会议论文集,兰州,2006
    [112]董园园,吕爱花,金明善,载体对纳米金催化剂用于CO氧化反应活性的影响,中国化学会催化委员会,第十三届全国催化学术会议论文集,兰州,2006
    [113]Wang H, Xu B Q, Remarkable nanosize effect of zirconia in Au/ZrO2catalyst for CO oxidation, J. Phys.Chem. B,2005,109:9678-9683
    [114]Konova P, Naydenov A, Tabakova T, et al., Deactivation of nanosize gold supported on zirconia in CO oxidation, Catal. Commun.,2004,5(9):537-542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700