碱金属与碱土金属钛酸盐的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱金属和碱土金属钛酸盐是一类重要的无机非金属材料,具有优异的物理化学性能,作为新能源材料具有潜在和重要的应用前景。其中尖晶石结构的碱金属钛酸盐Li_4Ti_5O_(12)是一种新型能源材料,其结构稳定,作为锂离子电极材料在充放电过程中体积几乎不发生明显变化,具有非常好的循环性能,因此被广泛用于锂离子二次电池的负极材料。钙钛矿结构的碱土金属钛酸盐MTiO_3(M=Ca、Sr和Ba)是具有优良介电、压电、铁电和电光转换性能的功能材料,广泛用于电容器、传感器和随即存取存储器等电子器件。在无机材料领域中,探索合成具有纳米结构无机材料的方法,建立其相应的生长机理模型,并研究材料的结构与性能的关系在理论研究与实际应用方面具有重要的意义。
     本论文基于一维纳米结构钛酸盐的反应活性,以纳米管和纳米纤维作为结构单元构筑了具有新颖形貌的碱金属和碱土金属钛酸盐,采用SEM、TEM、HRTEM和XRD等分析手段对其结构和生长机理进行了表征,并研究其电化学和光电化学性能。
     论文采用质子钛酸盐纳米棒为先驱体,在LiOH碱性溶液中经过100℃水热离子交换得到具有一维纳米结构的中间体,该中间体产物经过800℃高温烧结后得到长几个微米,直径在100-200 am之间的Li_4Ti_5O_(12)纳米棒。结构分析表明采用低温水热有利于中间体及最终烧结产物保持一维棒状纳米结构。电化学测试显示,Li_4Ti_5O_(12)纳米棒因其具有一维纳米结构使Li~+具有较短的传输距离而表现出较好的循环稳定性和高倍率性能。特别是在1600 mA/g(~10C)充放电电流密度下,Li_4Ti_5O_(12)纳米棒仍具有较高的比容量133.8 mAh/g,同时在1.4 V(vs.Li~+/Li)具有平坦的放电平台。
     论文采用钛酸钠纳米管为先驱体,在LiOH碱性溶液中经过超声离子交换首先得到表面光滑,长为几百个纳米,外直径在10-15 nm的钛酸锂纳米管中间体。该钛酸锂纳米管经过不同温度烧结后得到形貌和组分均不同的Li-Ti-O化合物。研究表明,400℃所得产物为外直径为10-15 nm的层状Li-Ti-O纳米管;500℃烧结产物为直径20-50nm的纳米纤维,组成为Li_4Ti_5O_(12)和贫锂的锐钛矿相Li_xTiO_2。600℃产物是粒径大约50nm左右的纳米棒,组分为Li_4Ti_5O_(12)和贫锂的锐钛矿相Li_xTiO_2。电化学测试表明,400℃烧结所得管状产物具有较高的比容量和高倍率性能。循环伏安测试结果显示其峰电流与扫速成线性关系,表明该材料具有赝电容特征,这与其具有开放通道的管状一维纳米结构密切相关。
     论文采用质子钛酸盐纳米纤维为先驱体,在NaOH碱性条件下与MCl_2(M=Ca、Sr和Ba)进行水热反应24h,制备得到具有不同形貌的碱土金属钛酸盐。首次制备出具有方形开口的CaTiO_3微米管。同时制备出由纳米颗粒原位生长形成的SrTiO_3和BaTiO_3类棒状微米结构。研究表明碱土金属离子的浓度、水热反应温度和NaOH的浓度等是影响产物形貌、结构和碱土金属钛酸盐生长机理的重要因素。本文根据质子钛酸盐纳米纤维的反应活性和与不同碱土金属的反应特点,首次讨论提出两种可能的生长机制来解释CaTiO_3微米管以及SrTiO_3和BaTiO_3棒状结构的生长过程。其中,由纳米纤维组成的纤维束是形成CaTiO_3微米管的中间产物,纤维束中间产物通过“Ostwald ripening process”长大,再经过不断重结晶过程形成具有开口端的CaTiO_3微米管。而SrTiO_3和BaTiO_3具有和质子钛酸盐纳米纤维相同的TiO_6结构单元,Sr~(2+)和Ba~(2+)能够与H~+发生离子交换形成具有活性点的钛酸盐纳米纤维,SrTiO_3和BaTiO_3纳米颗粒在纳米纤维母体上原位生长并发生相变最终形成棒状微米结构。三种不同形貌的碱土金属钛酸盐可以作为染料敏化太阳能电池的光电极材料,交流阻抗(EIS)表明三种材料的光电极反应受钛酸盐/染料/电解液界面的电荷转移过程控制。
     论文采用质子钛酸盐纳米管为先驱体,在NaOH碱性条件下和MCl_2(M=Ca、Sr和Ba)进行水热反应24h,在不同水热温度下制备出具有不同形貌的碱土金属钛酸盐。在150℃水热温度下制备得到形状不规则、表面粗糙的微米管状CaTiO_3和较短的棒状BaTiO_3。在80℃水热条件下可以制备得到由纳米颗粒组成的100-200 nm的类花状SrTiO_3团聚体。在强碱水热条件下,质子钛酸盐纳米管之间的范德华力使其倾向于团聚形成具有相同取向的纳米管束,随着Ca~(2+)离子不断被消耗逐通过“Ostwald ripening process”和进一步溶解重结晶渐形成了两端具有锥形开口端的CaTiO_3微米管。而SrTiO_3类花状团聚体和BaTiO_3短棒的形成机理与纳米纤维制备的SrWiO_3和BaTiO_3类棒状结构相似,包括离子交换及原位相转变。
Alkaline titanate(Li_4Ti_5O_(12)) and alkaline earth titanate(MTiO_3,M = Ca,Sr,and Ba) have attracted much attention as a result of their novel properties and technical applications.These materials have the advantage in response to the increasing demands for cleaner and more efficient energy conversion and storage systems.Along with the intensive development of multifunctional nanomaterials,it is necessary to fabricate alkaline and alkaline earth titanate nanomaterials with novel morphology and investigate on the size-dependent properties of these titanate compounds.In particular,as a promising candidate for anode materials in rechargeable lithium-ion batteries,spinel Li_4Ti_5O_(12) was reported as zero-strain insertion material,which can undergo two-phase reaction and accommodate the structure changes during lithium insertion and extraction processes.Alkaline earth titanates(MTiO_3,M = Ca,Sr,and Ba) with a perovskite structure have been investigated intensively due to their unique dielectric,piezoelectric,and ferroelectric properties,which are of great interest in the technological applications such as capacitors,transducers,actuators,and nonvolatile random-access memorgy devices.
     In this work,we focused on the chemical reactivity of one-dimensional titanate nanostructures in alkaline solution.Based on nanostructured titanate reactivity, protonated titanate nanotube or nanofiber can serve as nanometer-sized building block to fabricate alkaline titanate and alkaline earth titatane materials with more complex morphology.The microstructure,morphology,and composition of the obtained titanate compounds are characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and high resolution transmission electron microscopy(HRTEM).
     Firstly,Li_4Ti_5O_(12) nanorods are fabricated after calcination of the hydrated lithium titanate,which is prepared from hydrothermal treatment of titanate nanorods in aqueous LiOH.The hydrothermal temperature has an impact on the chemical reactivity of titanate nanorods in LiOH solution and the relatively low temperature is beneficial for the retention of rodlike morphology.The galvanostatic charge-discharge tests were conducted to measure the electrochemical performance of the Li_4Ti_5O_(12) nanorods.It is demonstrated that the Li_4Ti_5O_(12) nanorods calcined at 800℃have excellent high rate discharge capability and good cycle stability during insertion and extraction processes,owing to the good crystallinity,unique structure, and the short diffusion distances originated from one-dimensional morphology.
     Secondly,the layered nanotubes of Li-Ti-O compound are prepared by ultrasonic treatment of sodium titanate nanotubes in LiOH solution,which is involved in the ion-exchange process.It is found that Li-Ti-O compound maintain layered structure below 400℃and undergo phase transition to a mixture of Li-poor anatase Li_xTiO_2 and spinel Li_4Ti_5O_(12) as the main phases at 500 and 600℃.The lithium titanate nanotubes calcined at 400℃exhibit the large capacity and good high rate capability. Typical CV curves of the samples at various scan rates demonstrate that the faradaic pseudocapacitive process is involved in electrochemical lithium intercalation of the sample calcined at 400℃,in agreement with the linear relationship between the anodic peak currents and the scan rates.
     Based on the reactivity of titanate nanofibers,ternary perovskite oxides MTiO_3 (M = Ca,Sr,and Ba) with specific morphologies have been successfully prepared at low temperature for 24 h in NaOH solution.The resulting CaTiO_3 products possess a novel microtubular structure with rectangular cross-section,while SrTiO_3 and BaTiO_3 show the assemblies consisting of aggregated nanoparticles in a compact fashion.On the basis of the experimental results,we have proposed two types of growth mechanisms to elucidate the formation processes of CaTiO_3 and MTiO_3(M = Sr,and Ba) microstructures,respectively.The fabrication of microtubular CaTiO_3 undergoes the initial dissolution of titanate nanofibers by Ostwald ripening process,which results in the conversion into micrometer-sized fiber-bundles,and the recrystallization occurs simultaneously until tubular microstrucures are obtained. Completely different from the formation of CaTiO_3 microtubes,formation of MTiO_3 (M = Sr and Ba) microstructures involves ion-exchange reaction and in situ growth process.In addition,the photoelectrochemical properties of the as-obtained products were investigated,indicating that the charge transfer process across the MnTiO_3/dye/electrolyte interfaces is the dominant reaction in the MTiO_3 electrodes.
     Finally,series of alkaline earth titanate with specific morphology have also been synthesized through hydrothermal treatment using titanate nanotubes as a precursor. Namely,CaTiO_3 microtubes with rectangular open end and rough surface,and short BaTiO_3 nanorods are obtained in NaOH solution at 150℃for 24 h,whereas the flowerlike SrTiO_3 assemblies composed of nanoparticles are prepared at the lower temperature of 80℃.The experimental results indicate that the parent titanate nanotubes involved in the reaction exhibit high chemical reactivity as a precursor. The ion concentration,reaction temperature,and alkaline concentration play crucial roles in the phase transition and shape evolution.Moreover,the growth processes of alkaline earth titanate based on the titanate nanotubes share the similar mechanisms to those obtained from titanate nanofibers.
引文
[1]刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社。
    [2]Pradhan S K,MaoY B,Wong S S,et al.Atomic-scale structure of nanosized titania and titanate:particles,wires,and tubes.Chem Mater,2007,19:6180-6186
    [3]Yin S,Fujishiro Y,Wu J,et al.Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions.J Mater Proc Tech,2003,137:45-48
    [4]Marchand R,Brohan L,Tournox M.TiO_2(B) a new form of titanium dioxide and the potassium octatitanate K_2Ti_8O_(17).Mater Res Bull,1980,15:1129-1133
    [5]Feist T P,Davies P K.The soft chemical synthesis of TiO_2(B) from layered titanates.J Solid State Chem,1992,101:275-295
    [6]Feist T P,Mocarski S J,Davies P K,et al.Formation of TiO_2(B) by proton exchange and thermolysis of several alkali metal titanate structures.Solid State Ionics,1988,28-30:1338-1343
    [7]Kawamura H,Muranushi Y,Miura T,et al.Lithium insertion charateristics into TiO_2(B).Denki Kagaku,1991,59:766-769
    [8]Betz G,Tributsch H,Marchand R.Hydrogen insertion(intercalation) and light induced proton exchange at titanium dioxide(B)-electrodes.J Appl Electrochem,1984,14:315-322
    [9]Brace P G,Scrosati B,Tarascon J M.Nanomaterials for rechargeable lithium batteries.Angew Chem Int Ed,2008,47:2930-2934
    [10]Liu S M,Gan L M,Liu H L,et al.Synthesis of single-crystalline TiO_2 nanotubes.Chem Mater,2002,14:1391-1397
    [11]Chu S Z,Wada K,Inoue S,et al.Synthesis and characterization of titania nanostructures on glass by Al anodization and sol-gel proecss.Chem Mater,2002,14:266-272
    [12]Gong D,Grimes C A,Varghese O K,et al.Titanium oxide nanotube arrays prepared by anodic oxidation.J Mater Res,2001,16:3331-3334
    [13]Kasuga B,Hiramatsu M,Hoson A,et al.Formation of titanium oxide nanotube.Langmuir,1998,14:3160-3163
    [14]Seo D S,Kim J K,Kim H,et al.Preparation of nanotube-shaped TiO_2 powder.J Cryst Growth,2001,229:428-432
    [15]Tsai C C,Teng H.Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment.Chem Mater,2004,16:4352-4358
    [16]Elsanousi A,Elssfah E M,Zhang J,et al.Hydrothermal treatment duration effect on the transformation of titanate nanotubes into nanoribbons.J Phys Chem C,2007,111:14353-14357
    [17]Yuan Z Y,Colomer J F,Su B L.Titanium oxide nanoribbons.Chem Phys Lett.,2002,363:362-366
    [18]Kasuga T,Hiramatsu M,Hoson A,et al.Titania nanotubes prepared by chemical processing. Adv Mater, 1999, 11: 1307-1311
    [19] Lan Y, Gao X P, Zhu H Y, et al. Titanate nanotubes and nanorods prepared from rutile powder. Adv Funct Mater, 2005,15: 1310-1318
    [20] Schultge J W, Vetter K J. The influence of the tunnel probability on the anodic oxygen evolution and other redox reactions at oxide covered platinum electrodes. Electrochim Acta, 1973,18: 889-896
    [21] Chen Q, Zhou W Z, Du G H, et al. Tritiranate nanotubes made via asingle alkali treatment. Adv Mater, 2002,14: 1208-1211
    [22] Chen Q, Du G H, Zhang S, et al. The structure of trititanate nanotubes. Acta Crystallogr B, 2002, 58: 587-593
    [23] Zhou Y K, Cao L, Zhang F B, et al. Lithium insertion into TiO_2 nanotube prepared by the hydrothermal process. J Electrochem Soc, 2003, 150: A1246-A1249
    [24] Nakahira A, Kato W, Tamai M, et al. Synthesis of nanotube from a layered H_2T不_4O_-(H_2O) in a hydrothermal treatment using various titania sources. J Mater Sci, 2004, 39: 4239-4245
    [25] Ma R, Bando Y, Sasaki T. Nanotubes of lepidocrocite titanates. Chem Phys Lett, 2003, 380: 577-582
    [26] Grey I E, Li C, Madsen I C, et al. The stability and structure of Cs_x[Ti_(2-x/4)n_(x/4)]O_4 (0.61    [27] Wei D J, Gao S, Shen Z, et al. AFM and STM study of trititanate nanotubes. Vac Sci Technol (Sinica), 2004, 24: 95-99
    [28] Enyashin A N, Seifert G. Structure, stability and electronic properties of TiO_2 nanostructures. Phys Status Solidi B, 2005,242: 1361-1370
    [29] Yang J J, Jin Z S, Wang X D, et al. Study on composition, structure and formation process of nanotube Na_2Ti_2O_4(OH)_2. Dalton Trans, 2003: 3898-3901
    [30] Bavykin D V, Gordeev S N, Moskalenko A V, et al. Apparent two-dimensional behavior of TiO_2 nanotubes revealed by light absorption and luminescence. J Phys Chem B, 2005, 109: 8565-8569
    [31] Sakai N, Ebina Y, Takada K, et al. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J Am Chem Soc, 2004,126: 5851-5158
    [32] Sasaki T, Watanabe M. Semiconductor nanosheet crystallites of quasi-TiO_2 and their optical properties. J Phys Chem B, 1997, 101: 10159-10161
    [33] Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO_2 nanotubes. J Mater Chem, 2004, 14: 3370-3371
    [34] Bavykin D V, Lapkin A A, Plucinski P K, et al. Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes. Top Catal, 2006, 39: 151-160
    [35] Umek P, Cevc P, Jesih A, et al. Impact of structure and morphology on gas adsorption of titanate-based nanotubes and nanoribbons. Chem Mater, 2005, 17: 5945-5950
    [36] Yin J B, Zhao X. P. Titanate nano-whiker electrorheological fluid with high suspended stability and ER activity. Nanotechnology, 2006,17: 192-196
    [37] Bavykin D V, Lapkin A A, Plucinski P K, et al. Reversible storage of molecular hydrogen by sorption into multilayered TiO_2 nanotubes. J Phys Chem B, 2005, 109: 19422-19427
    [38] Sun X, Li Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J, 2003, 9: 2229-2238
    [39] Ma R Z, Sasaki T, Bando Y. Alkali metal cation intercalation properties of titanate nanotubes. Chem Commun, 2005, 948-950
    [40] Bavykin D V, Lapkin A A, Plucinski P K, et al. TiO_2 nanotube-supported ruthenium(III) hydrated oxide: a highly active catalyst for selective oxidation of alcohols by oxygen. J Catal, 2005,235: 10-17
    [41] Pavasupree S, Suzuki Y, Yoshikawa S, et al. Synthesis of titanate, TiO_2(B), and anatase TiO_2 nanofibers from natural rutile sand. J Solid State Chem, 2005,178: 3110-3116
    [42] Yu H G, Yu J G, Cheng B, et al. Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. J Solid State Chem, 2006,179: 349-354
    [43] Qu J, Gao X P, Li G R, et al. Structure transformation and photoelectrochemical properties of TiO_2 nanomaterials calcined from titanate nanotubes. J Phys Chem C, 2009,113: 3359-3363
    [44] Zhu H Y, Lan Y, Gao X P, et al. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J Am Chem Soc, 2005,127: 6730-6735
    [45] Andersson S, Wadsley A D. The structure of Na_2Ti_6O_(13) and Rb_2Ti_6O_(13) and the alkali metal titanates. Acta Crystallogr, 1962,15: 194-201
    [46] Burdett J K, Hughbanks T, Miller G J, et al. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J Am Chem Soc, 1987,109: 3639-3646
    [47] Mao Y B. Wong S S, Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. J Am Chem Soc, 2006,128: 8217-8226
    [48] Van Hove M A. Enhanced vibrations at surfaces with back-bonds nearly parallel to the surface. J Phys Chem B, 2004,108: 14265-14269
    [49] Son D H, Hughes S M, Yin Y D, et al. Cation exchange reactions in ionic nanocrystals. Science, 2004, 306: 1009-1012
    [50] Paritskaya L N, Kaganovskii Y, Bogdanov V V. Size-dependent diffusion penetrability of nanomaterials. Solid State Phenom, 2003, 94: 25-34
    [51] Yang H G, Zeng H C. Synthetic architectures of TiO_2/H_2Ti_5O_(11)·H_2O, ZnO/H_2Ti_5O_(11)·H_2O, ZnO/TiO_2/H_2Ti_5O_(11)·H_2O, and ZnO/TiO_2 nanocomposites. J Am Chem Soc, 2005, 127: 270-278
    [52] Zhang D F, Sun L D, Jia C J, et al. Hierarchical assembly of SnO_2 nanorod arrays on a-Fe_2O_3 nanotubes: a case of interfacial lattice compatibility. J Am Chem Soc, 2005, 127: 13492-13493
    [53] Nian J N, Teng H. Hydrothermal synthesis of single-crystalline anatase TiO_2 nanorods with nanotubes as the precursor. J Phys Chem B, 2006,110:4193-4198
    [54]Jun Y W,Casula M F,Sim J H,et al.Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO_2 nanocrystals.J Am Chem Soc,2003,125:15981-15985
    [55]Penn R L,Banfield J F.Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insights from titania.Geochim Cosmochim Acta,1999,63:1549-1557
    [56]Banfield J F,Welch S A,Zhang H Z,et al.Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products.Science,2000,289:751~754
    [57]Shen L M,Bao N Z,Zheng Y Q,et al.Hydrothermal splitting of titanate fibers to single-crystalline TiO_2 nanostructrures with controllable crystalline phase,morphology,microstructure,and photocatalytic activity.J Phys Chem C,2008,112:8809-8818
    [58]Armand M,et al.In material for advanced batteries,New York,1980:145
    [59]Bruno S.Lithium rocking chair batteries:an old concept.J Electrochem Soc,1992,139:2776-2781
    [60]Guyomard D,Tarascon J M.The carbon/Li_(1+x)Mn_2O_4 system.Solid State Ionics,1994,69:222-237
    [61]Nagaura T.Progress in Batteries and Battery Materials.1991,10:209
    [62]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践.北京:化学工业出版社,2004
    [63]Arico A S,Bruce P,Scrosati B,et al.Nanostructured materials for advanced energy conversion and storage devices.Nat Mater,2005,4:366-377
    [64]Ohzuku T,Ueda A,Yamamoto N.Zero-strain insertion material of Li[Li_(1/3)Ti_(5/3)Ti_(5/3)]O_4 for rechargeable lithium cells.J Electrochem Soc,1995,142:1431-1435
    [65]Schamer S,Weppner W,Schmid-Beurmann P,et al.Evidence of two-phase formation upon lithium insertion into the Li_(1.3)3Ti_(1.67)O_4 spinel.J Electrochem Soc,1999,146:857-861
    [66]Suzuki S,Miyayama M.Lithium intercalation properties of hydrogen octatitanate hydrates with tunnel structure.Key Eng Mat,2003,248:151-154
    [67]Suzuki S,Miyayama M.Lithium intercalation properties of octatitanate synthesized through exfoliation reassembly.J Phys Chem B,2006,110:4731-4734
    [68]Bach S,Pereira-Ramos J P,Baffier N.Electrochemical properties of sol-gel Li_(4/3)Ti_(5/3)O_4.J Power Sources,1999,81-82:273-276
    [69]Jiang C H,Ichihara M,Honma I,et al.Effect of particle dispersion on high rate performance of nano-sized Li_4Ti_5O_(12) anode.Electrochim Acta,2007,52:6470-6475
    [70]Li J R,Tang Z L,Zhang Z T.Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li_4Ti_5O_(12).Electrochem Commun,2005,7:894-899
    [71]Tang Y F,Yang L,Qiu Z,et al.Preparation and electrochemical lithium storage of flower-like spinel Li_4Ti_5O_(12) consisting of nanosheets.Electrochem Commun,2008,10:1513-1516
    [72]Jiang C H,Hosono E,Ichihara M,et al.Synthesis of nanocrystalline Li_4Ti_5O_(12) by chemical lithiation of anatase nanocrystals and postannealing.J Electrochem Soc,2008,155:A553-A556
    [73 Bai Y,Wang F,Wu F,et al.Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li_4Ti_5O_(12).Electrochim Acta,2008,54:322-327
    [74]Ju S H,Kang Y C.Characteristics of spherical-shaped Li_4Ti_5O_(12) anode powders prepared by spray pyrolysis.J Phys Chem Solids,2009,70:40-44
    [75]Hsiao K C,Liao S C,Chen J M.Microstructure effect on the electrochemical property of Lh_4i_5O_(12) as an anode material for lithium-ion batteries.Electrochimi Acta,2008,53:7242-7242
    [76]Yuan T,Cai R,Wang K,et al.Combustion synthesis of high-performance Li_4Ti_5O_(12) for secondary Li-ion battery,Ceram Int,2008(in press)
    [77]Woo S W,Dokko K,Kanamura K.Preparation and characterization of three dimensionally ordered macroporous Li_4Ti_5O_(12) anode for lithium batteries.Electrochim Acta,2007,53:79-82
    [78]Jiang C H,Zhou Y,Honma I,et al.Preparation and rate capability of Li_4Ti_5O_(12)hollow-sphere anode material.J Power Sources,2007,166:514-518
    [79]Ouyang C Y,Zhong Z Y,Lei M S.Ab initio studies of structural and electronic properties of Li_4Ti_5O_(12) spinel.Electrochem Commum,2007,9:1107-1112
    [80]Sun Y K,Jung D J,Lee Y S,et al.Synthesis and electrochemical characterization of spinel Li[Li_((1.x)/3)Cr_xTi_(5-2x)/3)]O_4 anode materials.J Power Sources,2004,125:242-245
    [81]Huang S,Wen Z,Zhang J,et al.Improving the electrochemical performance of Li_4Ti_5O_(12)/Ag composite by an electroless deposition method.Electrochim Acta,2007,52:3704-3708
    [82]Park K S,Benayad A,Kang D J,et al.Nitridation-driven conductive Li_4Ti_5O_(12) for lithium ion batteries.J Am Chem Soc,2008,130:14930-14931
    [83]Ge H,Li N,Li D Y,et al.Study on the effect of Li doping in spinel Li_(4+x)Ti_(5-x)O_(12)(0≤x≤0.2)materials for lithium-ion batteries,Electrochem Commun,2008,10:1031-1034
    [84]Wang G,Gao J,Fu L J,et al.Preparation and characteristic of carbon-coated Li_4Ti_5O_(12)anode material,J Powder Sources,2007,174:1109-1112
    [85]Gao J,Ying J R,Jiang C Y,et al.High-density spherical Li_4Ti_5O_(12)/C anode material with good rate capability for lithium ion batteries.J.Power Sources,2007,166:255-259
    [86]Huang J J,Jiang Z Y.The preparation and characterization of Li_4Ti_5O_(12)/carbon nano-tubes for lithium ion battery.Electrochim Acta,2008,53:7756-7759
    [87]Panero S,Satolli D,Salomon M,et al.A new type of lithium-ion cell based on the Li_4Ti_5O_(12)/Li_2Co_(0.4)Fe_(0.4)Mn_(3.2)O_8 high-voltage,electrode combination.Electrochem Commun,2000,2:810-813
    [88]Ariyoshi K,Yamamoto S,Ohzuku T.Three-volt lithium-ion battery with Li[Ni_(1/2)Mn_(3/2)]O_4and the zero-strain insertion material of Li[Li_(1/3)Ti_(5/3)]O_4.J Power Sources,2003,119-121:959-963
    [89]Abraham D P,Reynolds E M,Sammann E.Aging characteristics of high-power lithium-ion cells with LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 and Li_(4/3)Ti_(5/3)O)4 electrodes. Electrochim Acta, 2005, 51: 502-510
    [90] Stewart S, Albertus P, Srinivasan V, et al. Optimizing the performance of lithium titanate spinel paired with activated carbon or iron phosphate. J Electrochem Soc, 2008, 155: A253-A361
    [91] Belharouak I, Sun Y K, Lu W, et al. On the safety of Li_4Ti_5O_(12)/LiMn_2O_4 lithium-ion battery system. J Electrochem Soc, 2005,154: A1083-A1087
    [92] Majima M, Ujiie S, Yagasaki E, et al. Development of long life lithium ion battery for power storage. J. Power Sources, 2001,101: 53-59
    [93] Amatucci G G, Badway F, Du Pasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc, 2001,148: A930-A939
    [94] Du Pasquier A, Laforgue A, Simon P, et al. A nonaqueous asymmetric hybrid Li_4Ti_5O_(12) /poly(fluorophenylthiophene) energy storage device. J Electrochem Soc, 2002, 149:A302-A306
    [95] Du Pasquier A, Laforgue A, Simon P. Li4Ti_5O_(12)/poly(methyl)thiophene asymmetric hybrid electrochemical device. J Power Sources, 2004, 125: 95-102
    [96] Tang J F, Yu X B, Yang L Z, et al. Preparation and Al~(3+) enhanced photoluminescence properties of CaTiO_3: Pr~(3+). Mater Lett, 2006, 60: 326-329
    [97] Chen Z X, Chen Y, Jiang Y S. Comparative study of ABO_3 perovskite compounds. 1. ATiO_3 (A = Ca, Sr, Ba, and Pb). J Phys Chem B, 2002,106: 9986-9992
    [98] Lines M E, Glass A M. Principles and applications of ferroelectrics and related materials. Clarendon Press: Oxford, U K, 1977.
    [99] Lemanov V V, Sotnikov A V, Smirnova E P, et al. Peroskite CaTiO_3 as an incipient ferroelectric. Solid State Commun, 1999,110: 611-614
    [100] Kwei G H, Lawson A C, Billinge S J L. Structures of the ferroelectric phases of barium titanate. J Phys Chem, 1993, 97: 2368-2377
    [101] Beauger A, Mutin J C, Niepce J C. Synthesis reaction of metatitanate BaTiO_3, Part 1 effect of the gaseous atmosphere upon the thermal evolution of the system BaCO_3-TiO_2. J Mater Sci, 1983,18:3041-3046
    [102] Buscaglia M T, Buscaglia V, Alessio R. Coating of BaTiO_3 crystals with TiO_2: versatile approach to the synthesis of BaTiO_3 tetragonal nanoparticles. Chem Mater, 2007, 19: 711-718
    [103] Ivana R E, Howard J A K, Sreckovic T, et al. Variable temperature in situ X-ray diffraction study of mechanically activated synthesis of calcium titanate, CaTiO_3. Mater Res Bull, 2003, 38:1203-1213
    [104] Zhang X M, Zhang J H, Zhang X, et al. Size manipulated photoluminescence and phosphorescence in CaTiO_3: Pr~(3+) nanoparticles. J Phys Chem C, 2007, 111: 18044-18048 [105] Qi J Q, Li L T, Wang Y L, et al. Preparation of nanoscaled BaTiO_3 powders by DSS method near room temperature under normal pressure. J Cryst Growth, 2004, 260: 551-556
    [106] Calderone V R, Testino A, Buscaglia M T, et al. Size and shape control of SrTiO_3 particles grown by epitaxial self-assembly. Chem Mater, 2006, 18: 1627-1633
    [107] Brutchey R L, Morse D E. Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew Chem Int Ed, 2006, 45: 6564-6566
    [108] Xu J B, Zhai J W, Yao X. Structure and dielectric nonlinear characteristics of BaTiO_3 thin films prepared by low temperature process. J Alloys Compd, 2009,467: 567-571
    [109] Masuda Y, Yamada T, Koumoto K. Synthesis of acicular BaTiO_3 particles using acicular barium oxalates. Cryst Growth Des, 2008, 8: 169-171
    [110] Wang D A, Guo Z G, Chen Y M, et al. In situ hydrothermal synthesis of nanolamellate CaTiO_3 with controllable structures and wettability. Inorg Chem, 2007,46: 7707-7709
    [111] Dutta P K, Gregg J R. Hydrothermal synthesis of tetragonal barium titanate. Chem Mater, 1992,4:843-846
    [112] Asiaie R, Zhu W D, Akbar S A, et al. Characterization of submicron particles of tetragonal BaTiO_3. Chem Mater, 1996, 8:226-234
    [113] Zhang S C, Liu J X, Han Y X. et al. Formation mechanisms of SrTiO_3 nanoparticles under hydrothermal conditions. Mater Sci Eng B, 2004,110: 11-17
    [114] Joshi U A, Yoon S, Baik S, et al. Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. J Phys Chem B, 2006, 110:12249-12256
    [115] Xu H Y, Wei S Q, Wang H, et al. Preparation of shape controlled SrTiO_3 crystallites by sol-gel hydrothermal method. J Cryst Growth, 2006,292: 159-164
    [116] Zhang X M, Zhang J H, Jin Y, et al. Larger-scale fabrication of Pr~(3+) doped or undoped nanosized ATiO_3(A = Ca, Sr, Ba) with different shapes via a facile solvothermal technique. Cryst Growth Des, 2008, 8: 779-781
    [117] Moreira M L, Mambrini G P, Volanti D P, et al. Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO_3 nanoparticles. Chem Mater, 2008, 20: 5381-5387
    [118] Wang Y G, Xu G, Yang L L, et al. Hydrothermal synthesis of single-crystal BaTiO_3 dendrites. Mater Lett, 2009, 63: 239-241
    [119] Testino A, Buscaglia V, Buscaglia M T, et al. Kinetic modeling of aqueous and hydrothermal synthesis of barium titanate (BaTiO_3). Chem Mater, 2005,17: 5346-5356
    [120] Kolen'ko Y V, Kovnir K A, Neira I S, et al. A novel, controlled, and high-yield solvothermal drying route to nanosized barium titanate powders. J Phys Chem C, 2007, 111:7306-7318
    [121] Zhao J L, Wang X H, Chen R Z, et al. Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates. Mater Lett, 2005, 59: 2329-2332
    [122] Lei Z B, Li J M, Zhang Y G, et al. Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol-gel method. J Mater Chem, 2000, 10: 2629-2631
    [123] Yang Y, Wang X H, Sun C K, et al. Structure study of single crystal BaTiO_3 nanotube arrays produced by the hydrothermal method. Nanotechnology, 2009, 20: 055709
    [124] Chen Y Y, Yu B Y, Wang J H, et al. Template-based fabrication of SrTiO_3 and BaTiO_3 nanotubes. Inorg Chem, 2009,48: 681-686
    [125] Yu J C, Zhang L Z, Li Q, et al. Sonochemical preparation of nanoporous composites of titanium oxide and size-tunable strontium titanate crystals. Langmuir, 2003,19: 7673-7675
    [126] Deng H, Qiu Y C, Yang S H. General surfactant-free synthesis of MTiO_3 (M= Ba, Sr, Pb) perovskite nanostrip. J Mater Chem, 2009,19: 976-982
    [127] Nuraje N, Su K, Haboosheh A, et al. Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates. Adv Mater, 2006,18: 807-811
    [128] Ahmad G, Dicherson M B, Cai Y, et al. Rapid bioenabled formation of ferroelectric BaTiO_3 at room temperature from an aqueous salt solution at near neutral pH. J Am Chem Soc, 2008, 130:4-5
    [129] Marinkovic B A, Jardim P M, Morgado Jr E, et al. Hydrothermal synthesis, crystal structure and thermal stability of Ba-titanate nanotubes with layered crystal structure. Mater Res Bull, 2008,43:1562-1572
    [130] Kang S O, Park B H, Kim Y. Growth mechanism of shape-controlled Barium titanate nanostructures through soft chemical reaction. Cryst Growth Des, 2008, 8: 3180-3186
    [131] Maxim F, Ferreira P,Vilarinho P M, et al. Hydrothermal synthesis and crystal growth studies of BaTiO_3 using Ti nanotube precursors. Cryst Growth Des, 2008, 8: 3309-3315
    [132] Bao N Z, Shen L M, Srinivasan G, et al. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: from nanotubes and nanowires to ordered nanostructures. J Phys Chem C, 2008, 112: 8634-8642
    [133] Xie J, Ji T H, Ou-Yang X H, et al. Preparation of SrTiO_3 nanomaterial from layered titanate nanotubes or nanowires. Solid state commmun, 2008,147: 226-229
    [134] Zhang X M, Zhang J H, Ren X G, et al. The dependance of persistant phosphorescence on annealing temperature in CaTiO_3: Pr~(3+) nanoparticles prepared by a coprecipitation technique. J Solid State Chem, 2008, 181: 393-398
    [135] Tang J F, Yu X B, Yang L Z, et al. Preparation and Al~(3+) enhanced photoluminescence properties of CaTiO_3:Pr~(3+). Mater Lett, 2006, 60: 326-329
    
    [136] Wang D A, Liu Y, Hu H Y, et al. Electrochemical characterization of the solution accessibility of CaTiO_3 microstructures and improved biomineralization. J Phys Chem C, 2008,112: 16123-16129
    [137] Konta R, Ishii T, Kato H, et al. Photocatalytic activites of noble metal ion doped SrTiO_3 under visible light irradiation. J Phys Chem B, 2004, 108: 8992-8995
    [138] Wrighton M S, Ellis A B, Wolczanski P T, et al. Strontium titanate photoeletrodes: efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc, 1976, 98: 2774-2779
    [139]Diamant Y,Chen S G,Melamed O,et al.Core-shell nanoporous electrode for dye sensitized solar cells:the effect of the SrTiO_3 shell on the electronic properties of the TiO_2core.J Phys Chem B,2003,107:1977-1981
    [140]Burnside S,Moser J E,Brooks K,et al.Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices:increasing photovoltage through flatband potential engineering.J Phys Chem B,1999,103:9328-9332
    [141 Kavasaki M,Takahasi K,Maeda T,et al.Atomic control of the SrTiO_3 crystal surface.Science,1994,266:1540-1542
    [142]Ray S,Kolen'ko Y V,Fu D S,et al.Direct observation of ferroelectricity in quasi-zero-dimensional barium titanate nanoparticles.Small,2006,2:1427-1431
    [143]Yun W S,Urban J J,Gu Q,et al.Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy.Nano Lett,2002,2:447-450
    [144]Spanier J E,Kolpak A M,Urban J J,et al.Ferroelectric phase transition in individual single-crystalline BaTiO_3 nanowires.Nano Lett,2006,6:735-739
    [145]Ahn C H,Rabe K M,Triscone J M.Ferroelectricity at the nanoscale:local polarization in oxide thin film and heterostructures.Science,2004,303:488-491
    [146]Junquera J,Ghosez P.Critical thickness for ferroelectricity in perovskite ultrathin films.Nature,2003,422:506~509
    [147]Mangalam R V K,Ray N,Waghmare U V,et al.Multiferroic properties of nanocrystalline BaTiO_3.Solid State Commun,2009,149:1-5
    [148]国家自然科学基金委员会工程与材料科学部,学科发展战略研究报告:无机非金属材料科学,北京:科学出版社,2006
    [1]王成国,丁洪太,后绪容.材料分析测试方法.上海交通大学出版社,1994,10
    [2]黄惠忠.纳米材料分析.化学工业出版社,2003,3
    [3]王佩玲,李香庭,陆昌伟等.现代无机材料组成与结构表征.北京:高等教育出版社,2006
    [4]苏勉曾.固体化学导论.北京大学出版社,1987
    [5]苏锵.稀土化学.河南科学技术出版社,1993,8
    [6]蔡元霸,梁玉仓.结构化学.2001,20(6):425
    [7]查全性.电极过程动力学.北京:科学出版社,2002
    [8]田昭武.电化学研究方法.北京:科学出版社,1984
    [9]周伟舫.电化学测量.上海科学出版社,1985
    [10]高小霞.电分析化学导论.北京:科学出版社,1986
    [11]国家自然科学基金委员会工程与材料科学部,学科发展战略研究报告:无机非金属材料科学,北京:科学出版社,2006
    [12]韩宏伟.染料敏化二氧化钛纳米晶薄膜太阳电池研究.武汉大学博士学位论文,2005
    [1]Guo Y G,Hu J S,Wan L J.Nanostructured materials for electrochemical energy conversion and storage devices.Adv Mater,2008,20:2878-2887
    [2]Ohzuku T,Ueda A,Yamamoto N.Zero-strain insertion material of Li[Li_(1/3)Ti_(5/3)Ti_(5/)3]O_4 for rechargeable lithium cells.J Electrochem Soc,1995,142:1431-1435
    [3]黄可龙,王兆翔,刘素琴等.锂离子电池原理与关键技术.化学工业出版社,北京,2008:196-197
    [4]Prosini P P,Mancini R,Petrucci L,et al.Li_4Ti_5O_(12) as anode in all-solid-state,plastic,lithium-ion batteries for low-power applications.Solid State Ionics,2001,144:185-192
    [5]Colbow K M,Dahn J R,Haering R R.Structure and electrochemistry of the spinel oxides LiTi_2O_4 and Li_(4/3)Ti_(5/3)O_4.J Power Sources,1989,26:397-402
    [6]Bach S,Pereira-Ramos J P,Baffier N.Electrochemical properties of sol-gel Li_(4/3)Ti_(5/3)O_4.J Power Sources,1999,81-82:273-276
    [7]Kavan L,Gratzel M.Facile synthesis of nanocrystalline Li_4Ti_5O_(12)(spinel) exhibiting fast Li insertion.Electrochem Solid-State Lett,2002,5:A39-A42
    [8]Jiang C H,Ichihara M,Honma I,et al.Effect of particle dispersion on high rate performance of nano-sized Li_4Ti_5O_(12) anode.Electrochim Acta,2007,52:6470-6475
    [9]Bai Y,Wang F,Wu F,et al.Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li_4Ti_5O_(12).Electrochim Acta,2008,54:322-327
    [10]Huang J J,Jiang Z Y.The synthesis of hollow spherical Li_4Ti_5O_(12) by macroemulsion method and its application in Li-ion batteries.Electrochem Solid-State Lett,2008,11:A116-A118
    [11] Hsiao K C, Liao S C, Chen J M. Microstructure effect on the eletrochemical property of Li_4Ti_5O_(12) as an anode material for lithium-ion batteries. Electrochimi Acta, 2008, 53: 7242-7242
    [12] Sorensen E M, Barry S J, Jung H K, et al. Three-dimensionally ordered macroporous Li_4Ti_5O_(12): effect of wall structure on electrochemical properties. Chem Mater, 2006, 18: 482-489
    [13] Jiang C H, Hosono E, Ichihara M, et al. Synthesis of nanocrystalline Li_4Ti_5O_(12) by chemical lithiation of anatase nanocrystals and postannealing. J Electrochem Soc, 2008, 155: A553-A556
    [14] Li J R, Tang Z L, Zhang Z T. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li_4Ti_5O_(12). Electrochem Commun, 2005, 7: 894-899
    
    [15] Lan Y, Gao X P, Zhou H Y, et al. Titanate nanotubes and nanorods prepared from rutile powder. Adv Funct Mater, 2005,15: 1310-1318
    [16] Fattakhova D, Petrykin V, Brus J, et al. Solvothermal synthesis and electrochemical behavior of nanocrystalline cubic Li-Ti-0 oxides with cationic disorder. Solid State Ionics, 2005, 176: 1877-1885
    [17] Kavan L, Kalbac M, Zukalova M, et al. Lithium storage in nanostructured TiO_2 made by hydrothermal growth. Chem Mater, 2004,16: 477-485
    [18] Zukalova M, Kalbac M, Kavan L. Pseudocapacitive lithium storage in TiO_2(B). Chem Mater, 2005,17: 1248-1255
    [19] Li J R, Tang Z L, Zhang Z T. Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem Mater, 2005,17: 5848-5855
    [20] Li J R, Tang Z L, Zhang Z T. Pseudocapacitive characteristic of lithium ion storage in hydrogen titanate nanotubes. Chem Phys Lett, 2006,418: 506-510
    [21] Zhang H, Li G R, An L P, et al. Electrochemical lithium storage of titanate and titania nanotubes and nanorods. J Phys Chem C, 2007, 111: 6143-6148
    [22] Dominko R, Baudrin E, Umek P, et al. Reversible lithium insertion into Na_2Ti_6O_(13) structure. Electrochem Commun, 2006, 8: 673-677
    [23] Zhang H, Gao X P, Li G R, et al. Electrochemical lithium storage of sodium titanate nanotubes and nanorods. Electrochim Acta, 2008, 53: 7061-7068
    [24] Sun X M, Li Y Dong. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J, 2003, 9: 2229-2238
    [25] Bavykin D V, Walsh F C. Kinetics of alkali metal ion exchange into nanotubular and nanofibrous titanates. J Phys Chem C, 2007, 111: 14644-14651
    [26] Pei X R, Wang X D, Zhang S L, et al. Preparation and characterization of nanotube Li-Ti-O by molten salt method. Chin J Inorg Chem, 2006,22: 2135-2140
    [27] Chiba K, Kijima N, Takahashi Y, et al. Synthesis, structure and electrochemical Li-ion intercalation properties of Li_2Ti_3O_7 with Na_2Ti_3O_7-type layered structure. Solid State Ionics, 2008,178: 1725-1730
    [28] Yoshida R, Suzuki Y, Yoshikawa S. Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater Chem Phys, 2005, 91: 409-416
    [29] Wagemaker M, van de Krol R, Kentgens A P M, et al. Two phase morphology limits lithium diffuson in TiO_2 (anatase): A 7Li MAS NMR study. J Am Chem Soc, 2001, 123: 11454-11461
    [30] Qamar M, Yoon C R, Oh H J, et al. Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology, 2006,17: 5922-5929
    [31] Tsai C C, Teng H S. Structural features of nanotubes synthesized from NaOH treatment on TiO_2 with different post-treatments, Chem Mater, 2006,18: 367-373.
    [32] Kolen'ko Y V, Kovnir K A, Gavrilov A I, et al. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J Phys Chem B, 2006,110: 4030-4038
    [33] Li J R, Tang Z L, Zhang Z T. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochem Commun, 2005, 7: 62-67
    [34] Armstrong G, Armstrong A R, Canales J, et al. Nanotubes with the TiO_2-B structure. Chem Commun, 2005,19: 2454-2456
    [35] Gao X P, Lan Y, Zhu H Y, et al. Electrochemical performance of anatase nanotubes converted from protonated titanate hydrate nanotubes. Electrochem Solid-State Lett, 2005, 8: A26-A29
    [36] Zhao Z W, Guo Z P, Wexler D, et al. Titania nanotube supported tin anodes for lithium intercalation. Electrochem Commun, 2007,9: 697-702.
    [37] Lindstrom H, Sodergen S, Solbrand A, et al. Li~+ ion insertion in TiO_2 (anatase). 2. voltammetry on nanoporous films. J Phys Chem B, 1997,101:7717-7722
    [38] Van de Krol R, Goossens A, Schoonman J. Spatial extent of lithium intercalation in anatase TiO_2. J Phys Chem B, 1999,103: 7151-7159
    [1]O'Regan B,Gratzel M.A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films.Nature(London),1991,353:737-740
    [2]Adachi M,Murata Y,Takao J,et al.Highly efficient dye-sensitizd solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO_2 nanowires made by the "oriented attachment" mechanism.J Am Chem Soc,2004,126:14943-14949.
    [3]Khan S U M,Al-Shahry M,Ingler W B Jr.Efficient photochemical water splitting by a chemically modified n-TiO_2.Science,2002,297:2243-2245
    [4]In S,Orlov A,Berg R,et al.Effective visible light-activated B-doped and B,N-codoped TiO_2 photocatalysts. J Am Chem Soc, 2007, 129: 13790-13791
    [5] Wagemaker M, Kentgens A P M, Mulder F M. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO_2 anatase. Nature, 2002,418: 397-399
    [6] Armstrong A R, Armstrong G, Canales J. Lihtium-ion intercalation into TiO_2-B nanowires. Adv Mater, 2005,17: 862-865
    [7] Zhang H, Li G R, An L P, et al. Electrochemical lithium storage of titanate and titania nanotubes and nanorods. J Phys Chem C, 2007, 111: 6143-6148
    [8] Li J R, Tang Z L, Zhang Z T. Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem Mater, 2005,17: 5848-5855
    [9] Yang D J, Zheng Z F, Zhu H Y, et al. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv Mater, 2008, 20: 2777-2781
    [10] Sasaki T, Watanabe M, Hashizume H, et al. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate.Pairwise association of nanosheets and dynamic reassembling process inititated from it. J Am Chem Soc, 1996,118: 8329-8335
    [11] Sasaki T, Nakano S, Yamauchi S, et al. Fabrication of titanium dioxide thin flakes and their porous aggregate. Chem Mater, 1997, 9: 602-608
    [12] Andersson S, Wadsley A D. The structures of Na_2Ti_6O_(13) and the alkali metal titanates. Acta Crystallogr, 1962,15: 194
    [13] Izawa H, Kikkawa S, Koizumi M. Ion exchange and dehydration of layered sodium and potassium titanates, Na_2Ti_3O_7 and K_2Ti_4O_9. J Phys Chem, 1982, 86: 5023-5026
    [14] Zhu H Y, Gao X P, Lan Y, et al. Hydrogen titanate nanofibers covered with anatase nanocrystals: a delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. J Am Chem Soc, 2004,126: 8380-8381
    [15] Yang H G, Zeng H C. Synthetic architectures of TiO_2/H_2Ti_5O_(11)·H_2O, ZnO/H_2Ti_5O_(11)·H_2O, ZnO/TiO_2/H_2Ti_5O_(11)·H2O, and ZnO/TiO_2 nanocomposites. J Am Chem Soc, 2005, 127: 270-278
    [16] Ostermann R, Li D, Yin Y D. V_2O_5 nanorods on TiO_2 nanofibers: a new class of hierarchical nanostructures enabled by eletrospinning and calcination. Nano Lett, 2006, 6: 1297-1302
    [17] Ma W H, Hamagea C, Hesse D. Well-ordered arrays of pyramid-shaped ferroelectric BaTiO_3 nanostructures. Appl Phys Lett, 2003, 83: 3770-3772
    [18] Mathews S, Ramesh R, Venkatesan T, et al. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science, 1997, 276: 238-240
    [19] Park B H, Kang B S, Bu S D, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999,401: 682-684
    [20] Alexe M, Gruverman A, Harnagea C, et al. Switching properties of self-assembled ferroelectric memory cells. Appl Phys Lett, 1999, 75: 1158-1160
    [21] Evans P R, Zhu X H, Baxter P, et al. Toward self-assembled ferroelectric random access memories: hard-wired switching capacitor arrays with almost Tb/in densities. Nano Lett, 2007,7:1134-1137
    [22] Watanable Y, Bednorz J G, Bietsch A. Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO_3 single crystals. Appl Phys Lett, 2001, 78: 3738-3740
    [23] Cardona, M. Optical properties and band structures of SrTiO_3 and BaTiO_3. Phys Rev, 1965,140:A651-A655
    [24] Domen K, Kudo A, Onishi T, et al. Photocatalytic decomposition of water into hydrogen and oxygen over nickel( II) oxide-stronium titanate (SrTiO_3) powder.1. structure of the catalysts. J Phys Chem, 1986,90: 292-395
    [25] Wrighton M S, Ellis A B, Wolczanski P T. Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc, 1976, 98: 2774-2779
    [26] Burnside S, Moser J E, Brooks K, et al. Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering. J Phys Chem B, 1999, 103: 9328-9332
    [27] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO_2 and SrTiO_3 photocatalysts codoped with antimony and chromium. J Phys Chem B, 2002, 106: 5029-5034
    [28] Konta R, Ishii T, Kato H, et al. Photocatalytic activities of nobele metal ion doped SrTiO_3 under visible light irradiation. J. Phys. Chem. B 2004,108: 8992-8995
    [29] Miyauchi M, Takashio M, Tobimatsu H. Photocatalytic activity of SrTiO_3 codoped with nitrogen and lanthanum under visible light illumination. Langmuir, 2004,20: 232-236
    [30] Giocondi J L, Rohrer G S. Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO_3. J Phys Chem B, 2001,105: 8275-8277
    [31] Diallo P T, Boutinaud P, Mahiou R, et al. Red luminescence in Pr~(3+)-doped calcium titanates. Phys Status Solidi A, 1997,160: 225-263
    [32] Wang X S, Xu C N, Yamada H, et al. Electro-mechano-optical conversions in Pr~(3+)-doped BaTiO_3-CaTiO_3 ceramics. Adv Mater, 2005,17: 1254-1258
    
    [33] Dutta K P, Gregg J R. Hydrothermal synthesis of tetragonal barium titanate (BaTiO_3). Chem Mater, 1992,4:843-846
    [34] Um M H, Kumazawa H. Hydrothermal Hydrothermal synthesis of ferroelectric barium and strontium titanate extremely fine particles. J Mater Sci, 2000, 35: 1295-1300
    [35] Zhang S C, Liu J X, Han Y X, et al. Formation mechanism of SrTiO_3 nanoparticles under hydrothermal conditions. Mater Sci Eng B, 2004,110: 11-17
    [36] Pfaff G. Sol-gel synthesis of strontium titanate powders of various compositions. J Mater Chem, 1993,3:721-724
    [37] Zhu Q A, Sun X F, Chen W P, et al. Control synthesis of spherical and rod-like barium strontium nanoparticles in W/O microemulsion. Chin J Inorg Chem, 2007,23: 558-562.
    [38] Song F P, Zhu Q A, Wang S F. Preparation of BaTiO_3 spherical nanoparticles by reverse micromulsion. Chin J Inorg Chem, 2006,22: 355-358
    [39] Mao Y B, Banerjee S, Wong S S. Large-scale synthesis of single-crystalline perovskite nanostructures. J Am Chem Soc, 2003,125: 15718-15719
    [40] Bansal V, Poddar P, Ahmad A, et al. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc, 2006,128:11958-11963
    [41] Niederberger M, Garnweitner G, Pinna N. Nonaqueous and halide-free route to crystalline BaTiO_3, SrTiO_3, and (Ba, Sr)TiO_3 nanoparticles via a mechanism involving C-C bond formation. J Am Chem Soc, 2004, 126: 9120-9126
    [42] Urban J J, Yun W S, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barrium titanate and strontium titanate. J Am Chem Soc, 2002,124: 1186-1187
    [43] Mao Y B, Banerjee S, Wong S S. Hydrothermal synthesis of perovskite nanotubes. Chem Commun, 2003,408-409
    [44] Hernandez B A, Chang K S, Fisher E R, et al. Sol-gel template synthesis and characterization of BaTiO_3 and PbTiO_3 nanotubes. Chem Mater, 2002,14: 480-482
    [45] Bao N Z, Shen L M, Srinivasan G, et al. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: from nanotubes and nanowires to ordered nanostructures. J Phys Chem C, 2008,112: 8634-8642
    [46] Maxim F, Ferreira P, Vilarino P M. Hydrothermal synthesis and crystal growth studies of BaTiO_3 using Ti nanotube precursors. Cryst Growth Des, 2008, 8: 3309-3315
    [47] Wang D A, Guo Z G, Chen Y M. et al. In situ hydrothermal synthesis of nanolamellate CaTiO_3 with controllable structures and wettability. Inorg Chem, 2007,46: 7707-7709
    [48] Sasaki T, Nakano S, Yamanchi S. et al. Fabrication of titanium dioxide thin flakes and their porous aggregate. Chem Mater, 1997, 9: 602-608
    [49] Chen Q, Du G H, Zhang S, et al. The structure of trititanate nanotubes. Acta Crystallogr Sect B,2002, 58: 587-593
    
    [50] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
    [51] Wang Z X, Zhou S X, Wu L M. Preparation of rectangular WO_3·H_2O nanotubes under mild conditions. Adv Funct Mater, 2007, 17: 1790-1794
    [52] Chopra N G, Luyken R J, Cherrey K, et al. Boron nitride nanotubes. Science, 1995, 269: 966-967
    [53] Ajayan P M, Stephan O, Redlich P, et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375: 564-567
    [54] Hacohen Y R, Grunbaum E, Tenne R, et al. Cage structures and nanotubes of NiCl_2. Nature, 1998,395:336-337
    [55] Liu Y, Liu M L. Growth of aligned square-shaped SnO_2 tube arrays. Adv Funct Mater, 2005, 15: 57-62
    [56] Hu J Q, Bando Y, Zhan J H, et al. Growth of single-crystalline cubic GaN nanotubes with rectangular cross-sections. Adv Mater, 2004, 16: 1465-1468
    [57] Ding S, Lu P, Zheng J G, et al. Textured tubular nanoparticle structures: precursor-templated synthesis of GaN sub-micrometer sized tubes. Adv Funct Mater, 2007, 17: 1879-1886
    [58] Jia C J, Sun L D, Yan Z G, et al. Single-crystalline iron oxide nanotubes. Angew Chem, 2005, 117:4402-4407
    [59] Mayers B, Xia Y N. Formation of tellurium nanotubes through concentration depletion at the surface of seeds. Adv Mater, 2002,14: 279-282
    [60] Toneguzzo P, Viau G, Acher O. et al. Monodisperse ferromagnetic particles for microwave applications. Adv Mater, 1998,10:1032-1035
    [61] Liang L Y, Xu H F, Su Q, et al. Hydrothermal synthesis of prismatic NaHoF_4 microtubes and NaSmF_4 nanotubes. Inorg Chem, 2004,43: 1594-1596
    [62] Zhou L, Wang W Z, Zhang L S, et al. Single-crstalline BiVO_4 microtubes with square cross-sections: microstructure, growth mechanism, and photocatalytic property. J Phys Chem C,2007, 111: 13659-13664
    [63] Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions.J Phys Chem Solids, 1961,19: 35-50
    [64] Wagner C. Thoerie der altering von neiderschlagen durch umlosen. Z Elektrochem, 1961, 65: 581-591
    [65] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube. Langmuir 1998,14:3160-3163
    [66] Huang P X, Wu F, Zhu B L, et al. CeO_2 nanorods and gold nanocrystals supported on CeO_2 nanorods as catalyst. J. Phys. Chem. B 2005,109: 19169-19174
    [67] Huang P X, Wu F, Zhu B L, et al. Praseodymium hydroxide and oxide nanorods and Au/Pr_6O_(11) nanorod catalysts for CO oxidation J Phys Chem B, 2006,110: 1614-1620
    [68] Zhu H Y, Zheng Z F, Gao X P, et al. Structural evolution in a hydrothermal reaction between Nb_2O_5 and NaOH solution: from Nb_2O_5 grains to microporous Na_2Nb_2O_6·2/3H_2O fibers and NaNbO_3 cubes. J Am Chem Soc, 2006,128: 2373-2384
    [69] Wen B M, Liu C Y, Liu Y, et al. Bamboo-shaped Ag-doped TiO_2 nanowires with heterojunctions. Inorg Chem, 2005,44: 6503-6505
    [70] Xu X G, Ding X, Chen Q, et al. Modification of electronic, optical, and magnetic properties of titanate nanotubes by metal intercalation. Phys Rev B, 2007, 75: 035423
    [71] Wang X W, Gao X P, Li G R, et al. Ferromagnetism of Co-doped titanate and anatase nanorods before and after lithium intercalation. J Phys Chem C, 2008,112: 5384-5389
    [72] Koffyberg F P, Dwight K, Wold A. Interband transitions of semiconduting oxides determined from photoelectrolysis spectra. Solid State Commun, 1979, 30:433-437
    [73] Suzuki K, Kijima K. Optical band gap of barium titanate nanoparticles prepared by RF-plasma chemical vapor deposition. Jpn J Appl Phys, 2005,44: 2081-2082
    [74] Irie H, MaruyamaY, Hashimoto K, et al. Ag- and Pb-doped SrTiO_3 photocatalysts. A correlation between band structure and photocatalytic activity. J Phys Chem C, 2007, 111:1847-1852
    [75] Zhang D E, Zhang X J, Ni M X, et al. Fabrication of novel threefold shape CeO_2 dendrites: optical and electrochemical properties. Chem Phys Lett, 2006,430: 326-329
    [76] Zhao W, Ma W H, Chen C C, et al. Efficient degradation of toxic organic pollutants with NiO/TiOB under visible irradiation. J Am Chem Soc, 2004,126: 4782-4783
    [77] Ross M J, William K R. Impedance spectroscopy: emphasizing solid materials and systems. John Wiley & Sons: New York, 1987
    [78] Adachi M, Sakamoto M, Jiu J, et al. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B, 2006,110: 13872-13880
    [79] Han L Y, Koide N, Chiba Y, et al. Modeling of an equivalent circuit for dye-sensitized solar cells. Appl Phys Lett, 2004, 84: 2433-2435
    [80] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nat Mater, 2005, 4: 455-45
    [81] Lan Y, Gao X P, Zhu H Y, et al. Titanate nanotubes and nanorods prepared from rutile powder. Adv Funct Mater, 2005,15: 1310-1318
    [82] Zhang X J, Zhang X H, Shi W S, et al. Single-crystal organic mirotubes with a rectangular cross section. Angew Chem Int Ed, 2007,46: 1525-1528
    [83] Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J, 2003, 9: 2229-2238
    [84] Qi F, Hirasawa M, Yanagisawa K. Synthesis of crystal-axis-oriented BaTiO_3 and anatase platelike particles by a hydrothermal soft chemical process. Chem Mater, 2001,13: 290-296
    [85] Zhou G W, Kang Y S. Synthesis and structural properties of manganese titanate MnTiO_3 nanoparticle. Mater Sci Eng C, 2004, 24: 71-74
    [86] Song Z Q, Wang S B, Mo W Y, et al. Synthesis of manganese titanate MnTiO_3 powders by a sol-gel-hydrothermal method. Mater Sci Eng B, 2004,113: 121-124
    [87] Yang J J, Jin Z S, Wang X D, et al. Study on composition, structure and formation process of nanotube Na_2Ti_2O_4(OH)_2. Dalton Trans, 2003: 3898-3901
    [88] Tsai C C, Teng H S. Structural features of nanotubes synthesized from NaOH treatment on TiO_2 with different post-treatments. Chem Mater, 2006,18:367-373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700